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Abstract Identification of cancer driver genes plays an important role in precision oncology

research, which is helpful to understand cancer initiation and progression. However, most existing

computational methods mainly used the protein–protein interaction (PPI) networks, or treated the

directed gene regulatory networks (GRNs) as the undirected gene–gene association networks to

identify the cancer driver genes, which will lose the unique structure regulatory information in

the directed GRNs, and then affect the outcome of the cancer driver gene identification. Here, based

on the multi-omics pan-cancer data (i.e., gene expression, mutation, copy number variation, and

DNA methylation), we propose a novel method (called DGMP) to identify cancer driver genes

by jointing directed graph convolutional network (DGCN) and multilayer perceptron (MLP). DGMP

learns the multi-omics features of genes as well as the topological structure features in GRN with

the DGCN model and uses MLP to weigh more on gene features for mitigating the bias toward the

graph topological features in the DGCN learning process. The results on three GRNs show that

DGMP outperforms other existing state-of-the-art methods. The ablation experimental results on

the DawnNet network indicate that introducing MLP into DGCN can offset the performance

degradation of DGCN, and jointing MLP and DGCN can effectively improve the performance

of identifying cancer driver genes. DGMP can identify not only the highly mutated cancer driver

genes but also the driver genes harboring other kinds of alterations (e.g., differential expression

and aberrant DNA methylation) or genes involved in GRNs with other cancer genes. The source

code of DGMP can be freely downloaded from https://github.com/NWPU-903PR/DGMP.
Introduction

Cancer is a heterogeneous disease that is driven by various

kinds of genomic and epigenomic alterations, such as single
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nucleotide variations, DNA methylation, and chromosomal
aberrations [1]. Some of these alterations confer growth and
positive selection advantages to the mutant cells, leading to

intensive proliferation and tumors [2]. That is, the accumula-
tion of diverse genetic mutations causes cancer progression,
and these genetic mutations confer a selective growth advan-

tage to the mutant cells [3]. Thus, identification and compre-
hensive understanding of cancer driver genes that play causal
roles in cancer evolution are crucial for cancer diagnosis and

therapy [4].
Several cancer sequencing projects [5–7] have generated a

large volume of gene mutation data. Therefore, many compu-
tational methods have been proposed to identify the driver

genes and disease genes from the cancer genomic data. Gener-
ally, these methods can be cataloged into three groups: 1)
mutation frequency-based methods, 2) network-based meth-

ods, and 3) machine learning-based methods.
Mutation frequency-based methods identify the signifi-

cantly hypermutated genes as the driver genes compared with

a background mutation frequency distribution [8,9]. For exam-
ple, MutSigCV [8] calculated the statistical significance of their
mutation frequency among all the samples to identify the

recurrently mutated genes as the driver genes. However, due
to the tumor heterogeneity, it is difficult to build a reliable
background mutation model. In addition, these methods can-
not be used to detect the low-mutated frequency and non-

mutated cancer driver genes, because part of driver genes are
mutated at high frequencies (> 20%), whereas most of the
cancer genes are mutated at intermediate frequencies (2%–

20%) or even lower frequencies [10], and even many genes
involved in tumorigenesis are not altered on the DNA
sequences, and these genes are dysregulated through various

cellular mechanisms [3].
Network-based methods often adopted random walk with

restart (RWR) [11,12], network diffusion [13,14], subnetwork

enrichment analysis [15–17], matrix completion [18], and net-
work structure control [19–22] to predict cancer driver genes
and disease genes at the biological network level by incorpo-
rating the protein–protein interactions (PPIs), pathway knowl-

edge, and so on. For example, pgWalk [11] constructed a
disease–gene network by integrating the multiple genomic
and phenomic data and then simulated the process of a ran-

dom walker wandering on such a heterogeneous network to
prioritize the candidate genes. MAXIF [15] constructed a
phenome–interactome network by integrating the given pheno-

type similarity profile, PPI network, and associations between
diseases and genes, and then maximized the information flow
in this phenome–interactome network to uncover the candi-
date disease genes. Jiang et al. [16] constructed a gene semantic

similarity network by the biological process domain of the
gene ontology and then used the gene semantic similarity
scores in the network to infer disease genes. Although these

methods have been successfully used for detecting cancer
driver genes and disease genes, they are still limited to the
unreliable and incomplete interactions in biological network

[23]. Developing an integrative framework by incorporating
cancer multi-omics data (e.g., somatic mutations, structural
variations, gene expression, and methylation) and adopting

the hybrid approaches would improve the prediction of cancer
driver genes for the network-based methods.

Machine learning-based methods [24–28] usually train the
classifier, e.g., random forest and support vector machine
(SVM), by extracting the diverse features from different types
of cancer data to predict new cancer driver genes. For exam-
ple, deepDriver [26] predicted cancer driver genes with a con-

volutional neural network (CNN) model that was trained
with the gene mutation features and their neighbors in the sim-
ilarity networks. Integrating the functional impact of muta-

tions and the similarity of gene expression patterns with
CNN model can improve the prediction accuracy of driver
genes. NRFD [28] constructed a cancer gene interaction net-

work by integrating various kinds of cancer-related informa-
tion sources to obtain the feature vector of each gene and
then used the random forest to predict the cancer driver genes.

Most existing machine learning-based methods just extract

the network-based features by using network analysis. They
cannot effectively combine the network topology features
and the multi-omics features of genes. That is, very few meth-

ods can combine both multidimensional gene features with the
graph representation features of gene–gene interaction net-
works. For example, the explainable multiomics graph integra-

tion (EMOGI) method [29] adopted the graph convolutional
network (GCN) model to combine the multidimensional
multi-omics gene features with the topological features of the

PPI network to identify cancer genes. Although EMOGI [29]
successfully identified not only highly mutated cancer genes
but also other non-mutated cancer-dependency genes, it only
used the association information between genes in an undi-

rected PPI network and does not make full use of the regula-
tion information between genes in gene regulatory network
(GRN). In addition, the spectral-based GCN can only be

applied to the undirected network, whereas GRN is a directed
network that provides the specific causal links (e.g., one gene
activates or inhibits other genes) between genes, which helps

to understand the molecular mechanism of gene regulation
in cancers and the molecular basis of cancer subtypes [30,31].
Thus, we proposed a novel deep learning-based method (called

DGMP) to identify the cancer driver genes by integrating the
multidimensional multi-omics gene features as well as the
topological structure features of the GRN through the directed
graph convolutional network (DGCN) model. Compared to

the GCN, DGCN [32] uses the first- and second-order proxim-
ity to extend the spectral-based graph convolutional to the
directed graphs for retaining the connection properties in the

directed graph, and also expanding the receptive field in con-
volutional operation without stacking more convolutional
layers.

Generally, the role of the graph in GCN is to guide the
weights training by averaging the features of a node with its
graph neighbors [33]. When the relationships represented
through the graph are consistent with the information of nodes

(i.e., the features of neighbor nodes in the graph are expected
to be more similar than those of other nodes), GCN can
improve the performance of node classification [33,34]. If fea-

ture similarities of neighborhood nodes in the graph are not
congruent, this graph-based averaging is not beneficial in the
training process. It will result in the performance of GCN

being lower than that of these methods [e.g., multilayer percep-
tron (MLP)] that rely exclusively on the node feature informa-
tion [33,34]. Considering that the features of some genes that

are graph neighbors in GRN may not be more similar than
other genes, we introduced the MLP classifier into the DGMP
model for further improving the performance of cancer driver
gene identification. DGMP uses the DGCN model to learn the
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multi-omics features of genes, as well as the topological struc-
ture features in GRN and adopts MLP to weigh more on gene
features for mitigating the bias toward the graph topological

features in the DGCN learning process. DGMP aims to not
only identify the highly mutated cancer driver genes, but also
predict the driver genes that harbor other kinds of alterations

(e.g., differential expression and aberrant DNA methylation),
or identify the driver genes involved in GRN with other cancer
genes. Overall, our main contributions include two points. 1)

We use the DGCN model to perform the graph convolutional
operation on the directed GRN for capturing the directed
information (i.e., regulation information) and expand the
receptive field to the second-order neighbor of a gene for

aggregating more its neighbor and the topological feature
information. 2) We introduce MLP into the DGMP frame-
work to weigh more on gene features for mitigating the bias

toward the topological features in the DGCN learning process.
The results on three networks of DawnNet, Kyoto Encyclo-

pedia of Genes and Genomes (KEGG), and RegNetwork

show that our DGMP outperforms other existing state-of-
the-art methods in terms of the area under the receiver operat-
ing characteristic (ROC) curve (AUROC) and the area under

the precision–recall (PR) curve (AUPRC), demonstrating that
our DGMP can effectively identify the cancer driver genes.

Method

DGMP model

DGMP is based on DGCN and MLP and trained in a semi-
supervised manner to discriminate the cancer driver genes

from the non-cancer driver genes. The inputs of DGMP are
gene single nucleotide variants (SNVs), gene copy number
aberrations (CNAs), gene expression information, DNA
methylation in gene promoter regions, and the GRN in which

some genes have labels, while most have no labels. The positive
labels correspond to the annotated cancer driver genes, and the
negative labels correspond to the non-caner driver genes in the

partially labeled GRN. The output of DGMP is a fully labeled
graph, in which each gene is assigned a probability to be a
cancer-driver gene. As shown in Figure 1, DGMP mainly con-

sists of three modules. The first module (Figure 1A) is that
DGCN [32] is used to learn the embedding vectors of genes
from GRN and genomic data (i.e., SNVs, CNAs, DNA methy-

lation, and gene expression) by utilizing the first-order proxim-
ity (AF), the second-order in-degree proximity (Ain), and the
second-order out-degree proximity (Aout). The first- and
second-order proximity can expand the convolutional opera-

tion receptive field, and extract and leverage the directed graph
information. The second module (Figure 1B) is the MLP
which is used to obtain the embedding vectors of genes only

from the genomic data of SNVs, CNAs, gene expression,
and DNA methylation. The third module (Figure 1C) is a fully
connected neural network that is built to predict the cancer

driver genes by concatenating the output embedding vectors
from DGCN and MLP.

In the process of training our DGMP model, the semi-
supervised training manner is implemented in DGCN module.

By inputting both the structural features of partially labeled
GRN and the multi-omics features of genes, DGCN encodes
GRN structure by directly using a neural network model to
obtain the embedding feature vectors of all genes in GRN
(in which some genes have labels, while most have no labels),
and then trains on a supervised target for all genes with labels.

That is, all the labeled and unlabeled genes participate in the
generation of graph embedding vectors, and only the labeled
genes are used to evaluate the loss of DGMP.

DGCN

In order to use the GCN model which can effectively learn the

underlying pairwise relationship among vertices in a directed
graph, Tong et al. [32] used the first- and second-order proxim-
ity to extend the spectral-based graph convolutional to the

directed graphs and then developed a DGCN model to learn
the embedding vectors of nodes in directed graphs.

For a directed gene interaction network G, it can be consid-
ered a multi-layer GCN by using first- and second-order prox-

imity of the network G [32].
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where r is an activation function; A
�
F is the first-order proxim-

ity matrix with self-loop derived from the gene interaction net-

work matrix A 2 RN�N with partially labeled genes (i.e., cancer

driver genes, non-cancer driver genes, and unlabeled genes);

A
�
in is the second-order in-degree proximity with self-loop

derived from the gene interaction network matrix A; A
�
out is

the second-order out-degree proximity with self-loop derived
from the gene interaction network matrix A; X is the feature
matrix of genes; H is a shared trainable weight matrix; ZF is

the first-order proximity convolutional output of DGCN; Zin

and Zout are the second-order in-degree and out-degree prox-
imity convolutional outputs of DGCN. ZF, Zin, and Zout can

not only obtain the first- and second-order neighbor feature
information in network G, but also Zin and Zout retain the
directed structure information in network G.

The first-order proximity entry AFði; jÞ, the second-order in-
degree proximity entry Ain i; jð Þ, and the second-order out-
degree proximity entry Aout i; jð Þ between genes vi and vj in

matrix A are defined as follows:

AF i; jð Þ ¼ Asym i; jð Þ
Ain i; jð Þ ¼P

k

Ak;iAk;j

Aout i; jð Þ ¼
P
k

Ai;kAj;k

ð3Þ

where Asym is the symmetric matrix of matrix A. If there is no
link from vi to vj or vj to vi, then AF i; jð Þ ¼ 0. Ain i; jð Þ is an entry

in the in-degree matrix of A. Aout i; jð Þ is an entry in the out-
degree matrix of A.



Figure 1 Schematic of DGMP model framework

A. DGCN module. GRN with partially labeled genes and the genomic information (i.e., SNVs, CNAs, DNA methylation, and gene

expression) are inputted into the DGCN module. According to the definition of first-order and second-order proximity, we can obtain three

proximity networks (i.e., three undirected graphs) of the first-order proximity network (AF), second-order in-degree proximity network (Ain),

and second-order out-degree proximity network (Aout) from GRN (i.e., directed graph), and then implement the graph convolutional operation

on these three proximity networks to achieve graph convolutional of directed graph for generating three embedding vectors (ZF, Zin, and Zout)

of genes. B.MLPmodule. The genomic data of SNVs, CNAs, gene expression, and DNAmethylation are inputted into the MLP to obtain the

embedding vectors (ZMLP) of genes. C. Fully connected neural network module. The first-order proximity convolutional output ZF, second-

order in-degree proximity convolutional output Zin, and second-order out-degree proximity convolutional output Zout of DGCN, the output

ZMLP of MLP are concatenated in series to form an embedding matrix Z that is fed into a fully connected neural network to identify the cancer

driver genes. gn represents the n-th gene;N is the total number of genes; C represents the dimension of gene features; L represents the dimension

of gene labels; HF, Hin, Hout, and HMLP represent the dimension of gene embedding feature vectors. GRN, gene regulatory network; SNV,

single nucleotide variant; CNA, copy number aberration; MLP, multilayer perceptron; DGCN, directed graph convolutional network.
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Since Ain i; jð Þ is the sum of the input edges both of genes vi
and vj, i.e.,

P
kA i k! jf g, which reflects the in-degree sim-

ilarity between genes vi and vj. The greater the value of Ain i; jð Þ,
the higher the similarity of the second-order in-degree. Simi-
larly, Aout i; jð Þ measures the second-order out-degree proximity

by accumulating the links from both genes vi and vj, i.e.,P
kA i! k jð Þ. If there are no shared genes linked from gene

vi to gene vj, the second-order proximity is set to zero.

MLP

MLP is a forward-structured artificial neural network, which
maps a set of input vectors to a set of output embedding vec-

tors. The feature matrix X of genes is inputted into the MLP to
get the embedding matrix ZMLP.

ZMLP ¼ rðXWÞ ð4Þ
where X is the feature matrix of genes, W is a shared trainable

weight matrix, and rð�Þ is an activation function.

Fully connected neural network

The first-order proximity convolutional output ZF, the second-
order in-degree proximity convolutional output Zin, the
second-order out-degree output Zout from DGCN, and the

output matrix ZMLP from MLP are concatenated to form an
embedding matrix Z, which is fed into a fully connected neural
network to obtain the probability of a gene as a cancer driver

gene.

Z ¼ ConcatðZF;Zin;Zout;ZMLPÞ ð5Þ
In summary, the DGMP model can be written as follows:

Y¼ f X;Að Þ ¼ softmax Concat ReLU
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Three different proximity convolutions on GRN share the

same filter weight matrix Hð0Þ 2 RC�H. It transforms the input
dimension C to the embedding size H. The weight matrix

W 0ð Þ 2 RC�H in MLP also transforms the input dimension C

to the embedding size H. The outputs of three different
proximity convolutions on GRN and the output of MLP are
concatenated to feed into a fully connected network layer,

which is used to convert the feature dimension from 4H to

F. Hð1Þ 2 R4H�F is an embedding-to-output weight matrix.
The activation function is defined as softmax xið Þ ¼
exp xið Þ=

P
iexp xið Þ. All labeled samples are used to calculate

the cross-entropy error in this semi-supervised cancer driver
gene identification task.

We utilized the ADAM optimizer for training 500 epochs

and set the dropout rate to 0.6, learning rate to 0.001, and
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weight decay to 0.01. In our DGMP model, the dimensions of
all four embedding vectors (i.e., ZF, Zin, Zout, and ZMLP) were
set to 4.

Results and discussion

Datasets

The genomic data of gene expression, gene mutation, copy
number, and DNA methylation used in EMOGI work are
taken to assess the performance of our DGMP model. These
genomics data are collected from 29,446 samples in The Can-

cer Genome Atlas (TCGA) database, covering 16 different
cancer types. By performing the same data preprocessing pipe-
line as EMOGI, we can obtain the pan-cancer gene feature

matrix X (X 2 RN�64) in which each gene is represented with

a 16 � 4 dimensional vector, where N is the gene number; 16
is the number of cancer types; and 4 refers to the values of four
omics types (i.e., SNVs, CNAs, DNA methylation, and gene
expression) that are computed for each cancer type.

The GRNs of DawnNet, KEGG, and RegNetwork are
selected to implement our DGMP model and other competi-
tive methods. For the GRN of DawnNet built-in DawnRank

[35], we merge all the redundant genes into single genes, and
combine their corresponding edges to generate a directed gene
association network (namely DawnNet) that contains 9677

genes, 176,826 directed edges, and 10,150 undirected edges.
For the KEGG network, we integrated the pathways in the
KEGG database [36] with the pathview tool [37] to obtain

the KEGG pathway network. The KEGG network contains
4798 genes and 61,520 directed edges. For the RegNetwork,
we extracted the regulatory interactions of transcription factor
(TF)–TF and TF–gene from the RegNetwork data repository

[38] to generate a directed network, named as RegNetwork.
RegNetwork contains 20,300 TFs/genes and 148,387 regula-
tion interaction edges. RegNetwork data repository [38] was

established by integrating the documented regulatory interac-
tions among TFs, microRNAs (miRNAs), and target genes
from 25 selected databases, including five-type transcriptional

and posttranscriptional regulatory relationships (i.e., TF–TF,
TF–gene, TF–miRNA, miRNA–TF, and miRNA–gene) for
human and mouse. The data of DawnNet, KEGG, and
RegNetwork can be downloaded from Tables S1–S3.

The known cancer driver genes (KCGs) are obtained from
the expert-curated list in NCG [6] and IntOGen [39] to form a

positive set Sþ. The non-cancer driver genes can be selected
from those most likely to be unassociated with cancers. We

use the following criteria to recursively remove the genes from
the set of all genes to get the non-cancer driver genes, thus
forming a negative set S�. 1) Removing the genes that are part
of the KCGs in NCG; 2) removing the genes that present in the

Online Mendelian Inheritance in Man (OMIM) disease data-
base [40]; 3) removing the genes that associate with cancer
pathways in the KEGG database [36]; and 4) removing the

genes whose expression is correlated to the expression of can-
cer driver genes [41]. Generally, the number of non-cancer dri-
ver genes is far more than that of the KCGs. In order to avoid

the bias of the prediction model toward the negative samples in
the training process, we randomly sample the non-cancer dri-
ver genes from the negative set S�, whose numbers are same
as those of the KCGs. In addition, only the positive and neg-
ative samples that are included in the directed networks of
DawnNet, KEGG, and RegNetwork are used for training.

That is, we used 693 positive samples and 693 negative samples
to train the prediction models for DawnNet network, and 406
positive samples and 406 negative samples for KEGG net-

work, and 826 positive samples and 826 negative samples for
RegNetwork network.

Performance comparison of DGMP with other methods

In this work, we take the AUROC and AUPRC metrics to
evaluate the prediction power of different methods. AUROC

value is defined as the area under the ROC curve, which plots
the false positive rate (FPR) against the true positive rate
(TPR) at different thresholds. AUPRC value is defined as
the area under the PR curve, which plots the ratio of true pos-

itives among all positive predictions for each given recall rate.
AUPRC is a more significant quality metric than AUROC for
identifying the cancer driver genes, because it punishes much

more the existence of false-positive cancer driver genes among
the best-ranked prediction scores [42].

To evaluate the performance of our DGMP for identifying

the pan-cancer driver genes, we first compared our DGMP
with the machine learning-based methods of NRFD [28],
EMOGI [29], and DeepWalk [43] + SVM on the DawnNet
network in 5-fold cross-validation (5CV) test, and then com-

pared it with the network-based methods of PageRank [44]
and HotNet2 [13], and the mutation frequency-based method
of MutSigCV [8]. For the 5CV test [45], all the labeled genes

(i.e., KCGs and the non-cancer driver genes selected according
to some criteria) are randomly partitioned into 5 non-
overlapping subsets of roughly equal size. One of these subsets

is singled out in turn as the test set and the other four subsets
are used as the training sets. This process is repeated for 5 iter-
ations until all the labeled genes are tested in turn. In addition,

we also performed these methods on KEGG and RegNetwork
networks. The results of our DGMP and other six methods on
three directed networks of DawnNet, KEGG, and RegNet-
work are shown in Table 1. The ROC curves and PR curves

of these seven methods on DawnNet, KEGG, and RegNet-
work networks are shown in Figures S1–S6, and the statistical
results of significance between DGMP and other six methods

are shown in Figure S7, respectively.
From Table 1 and Figures S1–S7, we can see that the per-

formance of our DGMP outperforms all of the other six state-

of-the-art methods of EMOGI, NRFD, DeepWalk + SVM,
HotNet2, PageRank, and MutSigCV for identifying the cancer
diver genes on three directed networks of DawnNet, KEGG,
and RegNetwork. The AUPRC and AUROC values of

DGMP on the DawnNet network are 0.875 and 0.889, which
are 0.054–0.355 and 0.053–0.284 higher than those of the other
six methods, respectively; AUPRC and AUROC values of

DGMP on KEGG pathway network are 0.854 and 0.876,
which are 0.035–0.272 and 0.043–0.307 higher than those of
other six methods, respectively; AUPRC and AUROC values

of DGMP on RegNetwork network are 0.915 and 0.904, which
are 0.097–0.279 and 0.086–0.228 higher than those of other six
methods, respectively. These results demonstrate that our

DGMP method has superior performance in identifying the
cancer driver genes.



Table 1 AUPRCs and AUROCs of DGMP and other six methods on three GRNs in 5CV test

Method DawnNet KEGG RegNetwork

AUPRC AUROC AUPRC AUROC AUPRC AUROC

DGMP 0.875 0.885 0.854 0.876 0.915 0.904

EMOGI 0.821 0.832 0.819 0.833 0.818 0.818

NRFD 0.788 0.792 0.758 0.795 0.790 0.748

DeepWalk + SVM 0.770 0.788 0.755 0.801 0.816 0.789

PageRank 0.755 0.722 0.746 0.698 0.817 0.801

HotNet2 0.778 0.724 0.801 0.759 0.784 0.738

MutSigCv 0.520 0.601 0.582 0.569 0.636 0.676

Note: For DeepWalk + SVM, we first transform the directed GRN network to the undirected network, and then use node2vec to learn the

embedding vector for every gene. The learned embedding vectors of genes are fed into a radial basis function SVM classifier for identifying the

cancer driver genes. For PageRank, we fix the known cancer driver genes as the seed genes and set their probability as 1, and then implement RWR

on GRN network to prioritize the genes for predicting the cancer driver genes. KEGG, Kyoto Encyclopedia of Genes and Genomes; AUPRC, the

area under the precision–recall curve; AUROC, the area under the receiver operating characteristic curve; SVM, support vector machine; GRN,

gene regulatory network; 5CV, 5-fold cross-validation.
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To further assess the performance of DGMP, we designed
other two scenarios using the unbalanced positive and negative

training samples to train the prediction models on DawnNet
and STRING PPI [46] networks. That is, we used 693 cancer
driver genes and 1763 non-cancer driver genes to train the pre-

diction models on the DawnNet network and utilized 734 can-
cer driver genes and 1152 non-cancer driver genes to train the
prediction models on the STRING PPI network that contains

12,412 genes (Table S4). The experimental results of two sce-
narios in the 5CV test are shown in Table S5, from which we
can see that DGMP achieves the best performance on two net-
works in terms of AUROC and AUPRC values compared

with all other methods, demonstrating the effectiveness of
DGMP for identifying the cancer driver genes.

In order to evaluate the generalization performance of our

DGMP, we built an independent test set of the cancer driver
genes from the CancerMine database [47]. CancerMine is a
literature-mined resource of cancer-related genes, which col-

lects the genes of drivers, oncogenes, and tumor suppressors
in different types of cancer. The genes in the independent test
set (Table S6) do not overlap with those in the training set. To
calculate the AUPRC and AUROC values, we counted hits in

the independent test set as true positive samples, and all other
predicted genes not contained in the independent test set as
false positive samples. The results of our DGMP and other

comparison methods in the independent test are shown in
Table 2, from which we can see that DGMP achieves the best
performance on DawnNet and RegNetwork networks com-

pared with all other methods. Although AUPRC and AUROC
Table 2 Results of DGMP and other six methods on three GRNs in i

Method DawnNet

AUPRC AUROC TPR AUPR

DGMP 0.136 0.706 0.769 0.107

EMOGI 0.107 0.659 0.747 0.100

NRFD 0.122 0.659 0.706 0.092

DeepWalk + SVM 0.124 0.696 0.671 0.119

PageRank 0.101 0.589 – 0.089

HotNet2 0.079 0.512 – 0.101

MutSigCv 0.053 0.491 – 0.073

Note: Since the outputs of PageRank, HotNet2, and MutSigCV methods a

TPRs. TPR = TP/(TP + FN). TPR, true positive rate; TP, true positive;
values of DGMP on the KEGG network are slightly lower
than those of the DeepWalk + SVM method, the TPR of

DGMP is higher than that of the deepwalk + SVM method.
For the independent test that only knows the driver gene
labels, TPR is more objective than AUPRC and AUROC to

measure the generalization performance of prediction models,
because we counted all other unlabeled driver genes as the
non-cancer driver genes in the process of calculating AUPRC

and AUROC, while all these unlabeled (or unannotated) genes
are not really non-cancer driver genes. In addition, AUPRC
and AUROC values of DeepWalk + SVM on the KEGG net-
work are slightly higher than those of our DGMP, the reason

may be that DeepWalk + SVM obtains better performance on
a smaller network, while our DGMP achieves superior perfor-
mance on larger networks. These results in independent tests

further demonstrate the power of DGMP to identify the can-
cer driver genes.

Ablation experiments of diverse architecture components in

DGMP

To evaluate the contributions of diverse architecture compo-

nents in our DGMP, we conducted ablation experiments on
the DawnNet network in the 5CV test. The ablation experi-
mental results of DGMP are shown in Table 3. In Table 3,
DGMP-direction denotes that we neglect the directionality of

regulation edges in DawnNet directed network, and adopt
DGMP to identify the cancer driver genes. MLP denotes
that we remove the DGCN module from the DGMP model
ndependent test

KEGG RegNetwork

C AUROC TPR AUPRC AUROC TPR

0.635 0.801 0.115 0.757 0.864

0.602 0.767 0.103 0.684 0.847

0.594 0.781 0.092 0.698 0.843

0.659 0.790 0.098 0.697 0.662

0.545 – 0.069 0.648 –

0.538 – 0.055 0.555 –

0.483 – 0.031 0.447 –

re the rank orders of genes, not gene labels, we cannot calculate their

FN, false negative; –, division operation.



Table 3 The ablation experimental results of DGMP on DawnNet

network in 5CV test

AUPRC AUROC

DGMP 0.875±0.020 0.885±0.019

DGMP-direction 0.871±0.0017 0.881±0.018

MLP 0.801±0.017 0.839±0.018

DGCN 0.828 ±0.018 0.856±0.022

DGCN-direction 0.825±0.019 0.838±0.018

DGCN-X 0.758±0.013 0.743±0.016

DGCN-XMLP 0.841±0.021 0.857±0.016

Note: MLP, multilayer perceptron.
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architecture to identify the cancer driver genes; DGCN

denotes that we remove the MLP module from DGMP model
architecture to identify the cancer driver genes; DGCN-direction

denotes that we neglect the directionality of regulation edges in

DawnNet directed network, and adopt DGCN to identify the
cancer driver genes. DGCN-X denotes that we just use the
topological information of GRN in the DGCN module with-
out considering the genomic information (i.e., SNVs, CNAs,

DNA methylation, and gene expression) of genes, and also
remove the MLP module from DGMP model architecture to
identify the cancer driver genes; DGCN-XMLP denotes that

we combine DGCN-X with MLP and the full connected neural
network to identify the cancer driver genes.

As shown in Table 3, we can see that the AUPRC of

DGMP that consists of DGCN and MLP is 0.875, which is
0.047 and 0.074 higher than that of DGCN and MLP, respec-
tively, indicating that jointing DGCN and MLP can improve
the performance of identifying the cancer driver genes.

AUPRC of DGCN-XMLP is 0.083 higher than that of
DGCN-X, indicating that MLP does mitigate the bias toward
the graph topological features in the DGCN learning process,

further enhancing the prediction performance of DGMP.
AUPRC of DGCN is 0.07 higher than that of DGCN-X, indi-
cating that feeding the multi-omics information of genes into

DGCN can improve the prediction performance of DGMP.
AUPRC of DGMP-direction is 0.004 lower than that of DGMP,
and DGCN-direction is 0.003 and 0.05 lower than that of DGCN

and DGMP, respectively, indicating that there is a trend to
improve the performance of GCN by considering the regula-
tion information (i.e., the directionality of regulation edges).
The results in Table 3 show that all the proposed components

for building DGMP are valid and contribute to the final per-
formance of DGMP, and jointing MLP and DGCN can effec-
tively improve the performance of identifying cancer driver

genes.
Previous studies [33,34] show that if the features of neigh-

bors of a center node are not similar, further graph convolu-

tional operation will result in lower performance for GCN.
Considering that the neighbors’ features of some center genes
in GRN may not be more similar than other genes, performing
graph convolutional operation on these neighbors will reduce

the performance of DGCN, we introduce MLP to offset the
performance degradation of DGCN. In order to further show
the effectiveness of MLP mitigating the bias toward the graph

topological features in the DGCN learning process, the neigh-
borhood discrete entropy ScoreetpðuÞ [34] (its definition and

formulation are given in File S1) was used to measure the
diversity of neighborhoods of a gene. We picked the top 50
predicted cancer driver genes and the top 50 predicted non-
cancer driver genes with the highest discrete entropy and then
employed t-distributed stochastic neighbor embedding (t-SNE)

to visualize the distribution (Figure 2) of these genes by
extracting their embedding vectors (i.e., ZF, Zin, Zout, and
ZMLP). From Figure 2, we can see that after concatenating

these embedding vectors (i.e., ZF, Zin, and Zout) generated by
DGCN with the embedding vectors (i.e., ZMLP) generated by
MLP, the within-class variance of cancer/non-cancer driver

genes is smaller than that of DGCN, and the between-class dis-
tances of cancer/non-cancer driver genes are larger than those
of DGCN in embedding space. These results demonstrate that
graph convolutional operation is not so good for distinguish-

ing these genes when the features of their neighbors are dissim-
ilar, while MLP can offset the performance degradation of
DGCN, that is, MLP can mitigate the bias toward the graph

topological features in DGCN learning process.

De novo cancer driver gene analysis

To analyze the de novo cancer driver genes, we selected the
genes that are not annotated as driver genes in the NCG data-
base [6] from top 100 cancer driver genes (Table S7) predicted

by DGMP on DawnNet, and considered these genes as the
newly predicted cancer driver genes (namely NPCGs). As a
result, we obtained 52 NPCGs (Table S8), of which 41 NPCGs
are labeled as the cancer driver genes, or oncogene/tumor sup-

pressor genes in the CancerMine database [47]. For example,
transcriptional activator Sp3 as a driver gene competes with
the tumor suppressor AP-2 for binding the VEGF promoter

in prostate cancer, thereby repressing AP-2 expression [48];
TFF2 expression inhibits the gastric cancer cell growth and
invasion in vitro via interactions with the transcription factor

Sp3, and Sp3 knockdown in gastric cancer cells antagonizes
TFF2 antitumor activity [49]. NFKB1 is a tumor suppressor
in cervical cancer by inhibiting cell proliferation, colony for-

mation, and migration, and its mutation will affect the radio-
therapy sensitivity in cervical cancer [50]. GBP1 is down-
regulated and acts as a tumor suppressor in colorectal cancer
cells [51]. These lines of evidence show that our DGMP can

effectively predict the new and candidate cancer driver genes
(CCGs). We also designed the following experiments to
demonstrate the effectiveness of our DGMP in predicting de

novo cancer driver genes.
Firstly, we calculated the interaction percentages of KCGs

from the NCG database [6] with NPCGs, CCGs [6], and

KCGs, as well as the interaction percentage of KCGs with
other genes that neither belong to NPCGs nor KCGs and
CCGs. The statistical results are shown in Figure 3A. As
shown in Figure 3A, we can find that genes in NPCGs gener-

ally have more interactions with KCGs than other genes, indi-
cating that the NPCGs predicted by DGMP are closely related
to the initiation and progression of cancers. We also found

that SP1 and SHC1 have the largest number of interactions
with KCGs. Among them, SP1 is strongly associated with
Ser345-phosphorylated PR-B receptors to regulate growth-

promoting (EGFR) target genes and PR cell cycle (p21) for
breast cancer cell proliferation [52]; SHC1 may be an impor-
tant route of DEPDC1B regulating the development of blad-

der cancer. In DEPDC1B-overexpressed cancer cells, the
knockdown of SHC1 could abolish the promotion effects



Figure 2 t-SNE visualization of top 50 predicted cancer/non-cancer driver genes with high neighbor discrete entropy

A. Visualization of 50 cancer/non-cancer driver genes by concatenating ZF, Zin, and Zout from DGCN. B. Visualization of 50 cancer/non-

cancer driver genes by concatenating ZF, Zin, and Zout from DGCN and ZMLP from MLP. t-SNE, t-distributed stochastic neighbor

embedding.

Figure 3 Statistical results of KCGs, CCGs, NPCGs, and other genes interacting with KCGs

A. Percentage of KCGs, CCGs, NPCGs, and other genes interacting with KCGs. B. Degree of KCGs, CCGs, NPCGs, and other

genes interacting with KCGs. Mann-Whitney U test was carried out to test the difference significance of each comparison. The P values

between the two methods are marked on their connecting lines. KCG, known cancer driver gene; CCG, candidate cancer driver gene;

NPCG, newly predicted cancer driver gene.
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caused by DEPDC1B [53]. In addition, we also compared the
degrees of genes in NPCGs, KCGs, and CCGs with the

degrees of other genes that neither belong to NPCGs nor
KCGs and CCGs. As shown in Figure 3B, we can see that
the degrees of genes in NPCGs, KCGs, and CCGs are signif-

icantly larger than those in other gene sets, indicating that the
greater the network degree of a gene, the more likely it is to be
as a cancer driver gene.

Secondly, we analyzed the multi-omics gene features of
NPCGs, KCGs, CCGs, and other genes by calculating the
average frequency of SNVs, average CNA rate, average
DNA methylation change, and average gene differential

expression across 16 cancer types. The mutation types contain
both truncating and gain-of-function mutations, and all SNVs
have the potential to affect cell growth.

As shown in Figure 4, we found that there are significant
differences in SNVs (P = 2.1E–04), CNAs (P = 0.04), gene
differential expression (P = 4.3E–03) between NPCGs and

other genes, whereas there is no significant difference
(P = 0.2) between NPCGs and other genes for DNA methy-
lation. These results indicate that the omics gene features of
SNVs, CNAs, and gene differential expression are important
factors in distinguishing NPCGs from other genes. The
NPCGs identified by DGMP are more frequently mutated

across samples than other genes, indicating that DGMP can
effectively identify the cancer driver genes from highly mutated
genes. For example, EGF and ROCK1 are the high mutation

rate genes across different cancer types in NPCGs, which are
demonstrated to be correlated with cancers [54,55]. EGF
enhances the phosphorylation and acetylation of histone H3

to promote the DKK1 transcription in hepatocellular carci-
noma [54]; ROCK1 is overexpressed in human hepatocellular
carcinoma (HCC) cell lines and tissues, and knockdown of
ROCK1 or ROCK2 can inhibit the HCC cell growth [55]. In

addition, NPCGs also contain highly DNA methylation genes
and highly mRNA differential expressed genes, which rarely
mutate across cancers. For example, the ITGB3 gene has high

DNA methylation but with relatively low SNV frequency,
whose high expression is correlated with overall survival and
worse progression-free survival of multiple myeloma patients

[56]; the TFAP2A gene is highly overexpressed compared to
normal tissue in multiple cancer types, which modulates fer-
roptosis in gallbladder carcinoma cells through the Nrf2 sig-
naling axis [57]. These results show that our DGMP can not



Figure 4 Averaged SNVs, CNAs, DNA methylation change, gene differential expression across 16 cancer types for NPCGs, KCGs, CCGs,

and other genes

A. The average frequency of SNVs. B. The average CNA rate. C. The average DNA methylation change. D. The average gene differential

expression. Mann–Whitney U test was carried out to test the difference significance of each comparison, and the corresponding P values

between the two methods were marked on their connecting lines. The average DNA methylation change refers to the average of differences

of methylation signals between cancer and normal samples across all samples of a cancer type, and the average gene differential expression

refers to the log2 fold change between a gene’s expression values in normal and cancer samples and then averaged across all samples of a

cancer type.
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only identify the driver genes involved in GRN with other
known cancer genes, but also the highly mutated cancer driver

genes or driver genes harboring other kinds of alterations (e.g.,
differential expression and aberrant DNA methylation).

Conclusion

In this work, we presented a novel method of DGMP to iden-
tify cancer driver genes by integrating multi-omics genomic

data and jointing the DGCN and MLP. DGMP uses DGCN
to learn the multi-omics features of genes as well as the topo-
logical structure features of GRN and employs MLP to learn

the gene features from multi-omics genomic data. Three
embedding feature vectors from DGCN and one embedding
feature vector from MLP are concatenated to feed into a fully

connected neural network to output the probability that one
gene is a cancer-driver gene. The results on three networks
of DawnNet, KEGG, and RegNetwork show that DGMP is

superior to other existing state-of-the-art methods in identify-
ing the cancer driver genes. The ablation experimental results
indicate that introducing MLP into DGCN can offset the per-
formance degradation of DGCN, and considering the direc-

tionality of regulation edges has a trend to improve the
performance of GCN. Jointing MLP and DGCN can effec-
tively improve the performance of identifying cancer driver

genes. The analysis results of the top 100 predicted cancer dri-
ver genes demonstrate that DGMP not only identifies more
KCGs, but also can effectively predict the highly mutated can-

cer driver genes, and the driver genes harboring other kinds of
alterations (e.g., differential expression and aberrant DNA
methylation), or genes involved in GRN with other cancer

genes. The t-SNE visualization distribution of 50 cancer/non-
cancer driver genes with high neighbor discrete entropy shows
that concatenating the embedding feature vectors of DGCN
and MLP can improve the aggregation of cancer/non-cancer

driver genes, that is, MLP indeed mitigates the bias toward
the graph topological features in DGCN learning process. In
addition, DGMP can also be used to successfully identify dri-

ver genes of specific cancers, such as breast cancer and thyroid
cancer (Figure S8).

There are two potential reasons which are responsible for

the remarkable performance of DGMP. The first aspect is that
DGMP makes full use of the regulation information among
genes by adopting the DGCN model. The second aspect is that
DGMP introduces MLP to weight more on gene features for

mitigating the bias toward the graph topological structure
features in DGCN learning process, which offsets the
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performance degradation of DGCN caused by the convolu-
tional operation of GCN on the neighbor genes with dissimilar
features.

Although DGMP has achieved good performance in pan-
cancer driver gene prediction, it can be improved from the fol-
lowing two aspects. First, DGMP averages the SNVs, CNAs,

DNA methylation, and gene expression of all samples to
obtain 4-omics features to represent the genes for each cancer,
which will ignore the specific characteristics of individual can-

cer patients. Second, DGMP just simply concatenated three
embedding feature vectors from DGCN and one embedding
feature vector from MLP, whereas the contributions of these
four feature vectors may be different. Thus, we can consider

using the weighted fusion way to improve the performance
of DGMP.
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