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Abstract Identification of B-cell epitopes (BCEs) plays an essential role in the development of pep-

tide vaccines and immuno-diagnostic reagents, as well as antibody design and production. In this

work, we generated a large benchmark dataset comprising 124,879 experimentally supported linear

epitope-containing regions in 3567 protein clusters from over 1.3 million B cell assays. Analysis of

this curated dataset showed large pathogen diversity covering 176 different families. The accuracy

in linear BCE prediction was found to strongly vary with different features, while all sequence-

derived and structural features were informative. To search more efficient and interpretive feature

representations, a ten-layer deep learning framework for linear BCE prediction, namely NetBCE,

was developed. NetBCE achieved high accuracy and robust performance with the average area

under the curve (AUC) value of 0.8455 in five-fold cross-validation through automatically learning

the informative classification features. NetBCE substantially outperformed the conventional ma-

chine learning algorithms and other tools, with more than 22.06% improvement of AUC value com-

pared to other tools using an independent dataset. Through investigating the output of important

network modules in NetBCE, epitopes and non-epitopes tended to be presented in distinct regions

with efficient feature representation along the network layer hierarchy. The NetBCE is freely avail-

able at https://github.com/bsml320/NetBCE.
tion and
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Introduction

B-cell epitopes (BCEs) represent the regions on antigen sur-
faces where designated antibodies recognize, bind to, and sub-

sequently induce the immune response in humoral immunity
[1,2]. Identification of BCEs is a crucial step in immunological
studies and medical applications, including peptide-based vac-

cine development, antibody production, and disease preven-
tion [3]. BCEs are commonly classified into two types: linear
epitopes and conformational epitopes. Linear epitopes are
composed of a linear sequence of residues from an antigenic

sequence, while conformational epitopes refer to atoms on sur-
face residues that come together via protein folding [4]. Many
experimental approaches have been developed for BCE identi-

fication, including peptide microarrays, X-ray crystallography,
and enzyme-linked immunosorbent assay (ELISA) [5]. How-
ever, these approaches are expensive and resource intensive.

On the other hand, computational approaches have demon-
strated promise for predicting linear BCEs. So far, many com-
putational approaches have been published for linear BCE

prediction from proteins’ primary sequences or antigens’ 3D
structures (Table S1) [6].

These initially developed methods such as Antigenic [7],
PREDITOP [8], PEOPLE [9], BEPITOPE [10], and BcePred

[11] typically used and characterized single or a subset of
amino acid physicochemical properties, such as hydrophobic-
ity [12], surface accessibility, flexibility [13], and antigenicity

[14]. Recently, due to the booming of generation of BCE data,
the next-generation approaches have attempted to apply some
machine learning (ML) algorithms for BCE prediction. One of

the most representative and reliable methods was BepiPred-1.0
[15], combining a hidden Markov model (HMM) with an
amino acid propensity scale. Moreover, other ML algorithms
were adopted in tools developed afterward, including the

Naı̈ve Bayes algorithm in Epitopia [16], neural networks in
ABCpred [17] and GFSMLP [18], and support vector machine
(SVM) in the vast majority of predictors including BCPred

[19], COBEpro [20], AAPPred [20], SVMTriP [21], BEEPro
[22], LBtope [23], LBEEP [24], APCpred [25], and BCEPS
[26]. The differences of these methods include the dataset con-

struction, feature encoding and selection, and the hyperparam-
eter optimization of the SVM, among others. More feature
encoding strategies based on sequence-derived and structural

information were utilized, including amino acid composition
(AAC), BLOSUM62 scoring matrix, accessible surface area
(ASA), secondary structure (SS), and backbone torsion angles
(BTAs) [27,28]. Using the multiple linear regression, a new

method, named EPMLR [29], was developed for epitope clas-
sification. Additionally, different types of deep neural network
(DNN) have also been implemented in the task of BCE predic-

tion, such as deep maxout networks in DMN-LBE, deep ridge
neural network in DRREP [30], and bidirectional long short-
term memory (BLSTM) in a recent method named EpiDope

[31]. In 2017, BepiPred-2.0 [15] was released, which was trained
only on crystal structure information using a random forest
(RF) algorithm. Ensemble learning framework combining
multifeature and model was also used in methods such as

iBCE-EL [32] and iLBE [33]. However, which features are
the most informative for BCE prediction remains unclear.
Most of these methods have been developed using conven-

tional ML algorithms, which may be less powerful in feature
representation than deep learning algorithms [34–37].
Recently, several hundred thousand high-quality linear BCE
assay datasets have been stored in the Immune Epitope Data-

base (IEDB) [38]. This large collection provides a unique
opportunity to further develop computational approaches for
identification of potential linear BCEs from protein sequences.

In this work, we first collected and curated over 1.3 million
B cell assays from the IEDB database. Through quality control
procedures, we compiled an experimentally well-characterized

dataset, containing more than 124,000 experimentally linear
epitope-containing regions from 3567 protein clusters. The
curated dataset covered 176 different families, indicating
strong pathogen diversity. After homology clearance, we care-

fully evaluated five types of sequence-derived features [39], six
clusters of physicochemical properties [40,41], as well as three
types of structural features [42] using six conventional ML

algorithms on the curated dataset. The results show that differ-
ent types of features displayed various accuracies for linear
BCE prediction and all features were informative. With a suf-

ficient training dataset of B cell assays, the deep neural net-
work can automatically learn informative classification
features, making it very appropriate for linear BCE prediction

[43]. Therefore, we developed NetBCE, a ten-layer deep learn-
ing framework, and implemented it into tool. The epitope
sequences were encoded and taken as input for subsequent fea-
ture extraction and representation in the convolution–pooling

module. A BLSTM layer was added to retaining features over
a long duration and to facilitate the model catching the com-
binations or dependencies among residues at different posi-

tions. Lastly, an attention layer was joined to link the
BLSTM layer and the output layer. NetBCE outperformed
conventional ML methods by an improvement of the area

under curve (AUC) value in a range of 8.77%–21.58% using
the same training dataset. Moreover, in our comparison of
NetBCE with other existing tools using an independent data-

set, NetBCE achieved performance with the AUC value of
0.8400, and had AUC value improvement by over 22.06%
for the linear BCE prediction when compared to other tools.
To elucidate the capability of hierarchical representation by

NetBCE, we visualized the epitopes and non-epitopes using
Uniform Manifold Approximation and Projection (UMAP)
[44] based on the feature representation at various network

layers. We found that feature representation became more dis-
criminative further along the network layer hierarchy. More
specifically, the feature representations for epitope and

non-epitope sites were mixed at the input layer. As the model
continued to train, epitopes and non-epitopes tended to be pre-
sented in distinct regions with efficient feature representation.
The NetBCE tool, which is available at https://github.com/

bsml320/NetBCE, allows the user to explore the data and pre-
diction results in an easily readable and interpretable manner.

Method

Data collection and processing

To establish a reliable model, an experimentally supported
dataset was compiled as follows (Figure 1). First, we down-

loaded over 1.3 million B cell assays from the IEDB (https://
www.iedb.org/), the most comprehensive database holding
the largest number of experimentally identified epitopes and

https://github.com/bsml320/NetBCE
https://github.com/bsml320/NetBCE
https://www.iedb.org/
https://www.iedb.org/


Figure 1 Benchmark data preparation and evaluation

A. The experimentally identified epitope-containing regions were collected from the IEDB database. B. Identical protein sequences were

integrated and the verified epitope regions were aggregated. C. Sequence redundancy was cleaned for the similar proteins by CD-HIT. D.

Proteins with the largest number of epitope-containing regions were retained. The curated dataset was divided into epitopes and non-

epitopes according to epitope assay information. We defined all epitope-containing regions that were tested by at least two PAs as epitopes

to avoid possible chance of a single test result. Moreover, all epitope-containing regions that were tested in at least two assays but not

tested as positive in any assay were stored as non-epitopes. All other epitope-containing regions with inconsistent test responses that did

not meet both criteria were excluded. E. The length distribution of epitopes. F. The length distribution of non-epitopes. G. Taxonomic

distribution in super-kingdoms and families at the protein level. H. Taxonomic distribution in super-kingdoms and families at the verified

epitope level. PA, positive assay.
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non-epitopes. Each entry contained an antigen protein
sequence with a marked region (hereafter termed ‘‘epitope-

containing region”) that was an experimentally verified epitope
or non-epitope. Protein sequences were retrieved from the
National Center for Biotechnology Information (NCBI) [45]

and the Universal Protein Resource (UniProt) database [46]
based on the antigen protein IDs provided in the epitope entry.
We preprocessed and filtered the dataset by several criteria

(Figure 1). First, identical protein sequences were integrated,
and all related information about epitope-containing regions
was aggregated. Second, sequence redundancy for those pro-
teins of non-identical but highly similar was cleared. Using

CD-HIT program [47], all proteins were clustered with a
threshold of 90% sequence similarity. For each cluster, only
the protein having the largest number of epitope-containing
regions was retained. To ensure high confidence of the dataset,
each epitope assay was carefully explored and regarded as a

positive hit only when it has been tested as positive in two or
more different B cell assays, whereas those regions that were
tested in at least two assays but all were not positive were con-

sidered as non-epitopes. In addition, we excluded 1900 candi-
date epitopes that had less than 5 or more than 25 amino acid
residues from the dataset (changed 126,779 to 124,879). The

number of such epitopes accounted for only a small portion
(approximately 1%), but an inclusion of them may result in
outliers during model development. Overall, the final non-
redundant dataset for training and testing contained 27,095

positive and 97,784 negative epitope-containing regions from
3567 protein sequence clusters, respectively. The compiled
dataset was divided into the training dataset (90% of the total
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epitope-containing regions) (Table S2) and the independent
dataset (10% of the remaining epitope-containing regions)
(Table S3).

Feature encoding

One main goal is to benchmark the ability of various feature

encoding strategies implemented in previous tools to correctly
predict linear BCEs. Based on our curated benchmark dataset,
14 types of features were encoded from the epitope-containing

regions of both the positive and negative datasets. These data-
sets included five types of sequence-derived features, six clus-
ters of physicochemical properties, and three structural

features. We classified these 14 feature types as follows. 1)
AAC, which counts the frequencies of 20 types of typical
amino acids in epitope-containing regions. 2) Binary, which
denotes position-specific composition of the amino acids.

The 20 types of amino acids were alphabetically sorted and
each amino acid was transformed into a binary vector. 3)
Composition of K-spaced amino acid pairs (CKSAAP), which

calculates the composition of amino acid pairs that are sepa-
rated by k other residues within epitope-containing regions.
4) Physicochemical properties, which represent amino acid

indices of various physicochemical properties. Numerous stud-
ies have indicated strong correlations between physicochemical
properties of amino acids and BCEs. In this study, we
employed and encoded six categories of properties. They are

a and turn propensities (AAindexClusterA), b propensity
Figure 2 Deep learning framework of NetBCE

NetBCE is built on a ten-layer deep learning framework. The epitope s

CNN module was used for feature extraction and representation. The

results, where positive values remain unchanged and any negative valu

long duration to capture the combinations or dependencies among re

integrate the variables’ output from the attention layer and learn the

sigmoid neuron for calculating a prediction score for a given peptide

because its domain is defined as the set of all real numbers, and its ran

linear unit; BLSTM, bidirectional long short-term memory; L, layer; C
(AAindexClusterB), AAC features (AAindexClusterC),
hydrophobicity (AAindexClusterH), physicochemical proper-
ties (AAindexClusterP), and other properties that do not

belong to the aforementioned five clusters (AAindexClusterO).
5) Enhanced AAC (EAAC), which represents the local AAC
for the fixed-length sequence window that continuously slides

from the 50 to 30 terminus of each protein sequence. 6) BLO-
SUM62 scoring matrix, which is commonly used to score the
alignments between evolutionarily divergent protein

sequences. 7) ASA, which indicates the exposed area of an
amino acid residue to solvent. The SPIDER2 tool [42] com-
putes a potential ASA value for each amino acid in epitope-
containing regions. 8) SS, which represents three types of

structural elements, including a-helix, b-strand, and coil. 9)
BTA, which measures continuous angle information of the
local conformation of proteins, including the BTAs u and W,

the angle between Cai-1-Cai-Cai+1 (h), and the dihedral angle
rotated about the Cai-Cai+1 bond (s). More detailed feature
description and classification are summarized in Table S4.

NetBCE model construction

As shown in Figure 2 and Figure S1, a ten-layer deep learning

framework, named NetBCE, was implemented to predict
BCEs using amino acid sequences as input. Each layer con-
tained a number of computational units called neurons, which
constitutes an internal feature representation. We applied one-

hot encoding to convert the epitope sequences to a L � 20 bin-
equences were encoded as binary matrix and taken as input. Then,

activation function is the ReLU being applied to the convolution

es are set 0. BLSTM layer was added for retaining features from a

sidues at different positions. A fully connected layer was used to

nonlinear relationship. The output layer was composed of one

. The sigmoid function is also referred to a squashing function,

ge is (0, 1). CNN, convolutional neural network; ReLU, rectified

, convolution.



1006 Genomics Proteomics Bioinformatics 20 (2022) 1002–1012
ary matrix, where L represents the length of the epitope
sequence. Then, the binary matrix was entered to a convolu-
tion layer [48] to catch sequence sub-motifs. Convolutional

kernels act as the crucial components of the convolution layer,
which was widely used for sequence motif recognition, regard-
less of their position in the sequence. A number of studies have

used kernels in the convolutional layer to catch sequence pat-
terns from massive sequence data. In the NetBCE, representa-
tive patterns were first detected by numerous convolution

kernels from the input epitope sequences. The convolutional
layer was followed by a maxpooling layer to calculate the max-
imum activation spots over spatially adjacent regions, and then
to summarize the most activated pattern in the sequences.

Down sampling strategy in maxpooling downsizes the feature
dimension and thus strengthens the deep learning model
robustness. To further extract the extensive dependencies of

long-range sequence among detected patterns from both for-
ward and backward directions, we added a BLSTM layer
[49] in NetBCE. The rationale for adding a BLSTM is that

the binding between BCE and B cell receptor (BCR) may be
regulated by multiple spaced amino acids. The power of
BLSTM for retaining features from a long duration facilitates

the model to capture the combinations or dependencies among
residues at different positions. The unit in BLSTM contains
four parts: three gates (input, forget, and output) and a single
cell remembering features over arbitrary intervals. Specifically,

considering an epitope sequence with length L as input fxpgLp¼1

in BLSTM, and for every position p, denote the input gate as
Ip, forget gate as Fp, output gate as Op, hidden state as Hp, and
cell state as Cp. The process of BLSTM training is as follows:

Fp ¼ rðWf � xp;Hp � 1
� �þ bpÞ ð1Þ

Ip ¼ rðWI � xp; hp � 1
� �þ bIÞ ð2Þ

Cp ¼ Fp � Cp�1 � IP � tanh WC � xp; hp � 1
� �þ bC

� � ð3Þ

Op ¼ rðWO � xp; hp � 1
� �þ bOÞ ð4Þ

Hp ¼ Op � tanhðCpÞ ð5Þ
To further recognize the most representative sequence pat-

terns in NetBCE, an attention layer [50] was added following
the BLSTM layer. Because the most distinct patterns may be

located somewhere of the epitope, the attention layer was thus
adopted to find more informative features by learning the
whole hidden states of the BLSTM layer and distribute higher

weights to the important locus. Mathematically, by obtaining

the hidden variables fBpgLp¼1 from BLSTM layer as inputs,

the attention layer returns the output vector A as shown below:

ap ¼ expðwðBpÞÞPL
i¼1expðwðBiÞÞ

ð6Þ

A ¼
XL

p¼1

apBp ð7Þ

where w represents a fully connected neural network that com-
putes a scalar weight.

Finally, we utilized a fully connected layer to integrate the
variables output from the attention layer and learn the nonlin-
ear relationships. The output layer was composed of one sig-
moid neuron calculating a SBCE score for a given peptide y,
as defined as:

SBCE yð Þ ¼ sigmoid yð Þ ¼ 1

1þ e�y
ð8Þ

The SBCE value, ranging from 0 to 1, represents the proba-
bility of peptide to be a real BCE.

Model training and evaluation

We trained the NetBCE using the Adam optimizer with mini-
batch algorithm. The deep learning model was trained to min-

imize the loss of binary cross-entropy, which catches the differ-
ence between the target and predicted label. After each epoch
of training, the model was evaluated on the validation dataset,

and the corresponding loss and accuracy values were recorded.
We introduced an early stop mechanism during training to
avoid model overfitting. Specifically, the model was constantly
learned until the validation accuracy stopped to increase for

twenty epochs. After model training was completed, we evalu-
ated the performance using a test dataset and several metrics
were calculated, including accuracy (Acc), sensitivity (Sn),

specificity (Sp), and the area under the receiver operating char-
acteristic (ROC) curve (AUC).

The hyperparameters of NetBCE model were optimized to

achieve optimal performance using Hyperopt tool [51] via
Bayesian mechanism from a list of multiple parameters,
including the number of convolutional filters, kernel size, the
learning rate, degree of momentum, mini-batch size, strength

of parameter regularization, and dropout probability. Hyper-
opt optimizes the hyperparameter space by creating a classifi-
cation model upon the metric of the objective function. The

probability model was updated after each evaluation of the
objective function by incorporating new results. Specifically,
100 evaluations were executed using separate training (inner

loop) and validation sets (outer loop). The performance of
each set of parameters was evaluated and the corresponding
AUC values were calculated. We selected the group of param-

eters with the highest AUC values as the final parameters of
the model. NVIDIA Tensor Cores with four Tesla V100 were
used. The Keras version 2.3, a highly useful neural network
Application Programming Interface (API), and the

TensorFlow-GPU 1.15 version were adopted for a rapid paral-
lel computing.

Conventional ML classifiers

In this study, we implemented 84 classical ML models for pre-
diction of BCEs based on 14 features using six algorithms:

AdaBoost (AB), decision trees (DT), Stochastic Gradient Des-
cent (SGD), k-nearest neighbors (KNN), logistic regression
(LR), and RF. Five-fold cross-validation (CV) was performed

for each classifier to evaluate the predictive capacity. The ROC
curves were illustrated for Sn vs. 1 � Sp scores and the AUC
values were subsequently calculated. For accurate estimation
of the performance, the five-fold CV was independently per-

formed by 10 times and the average AUC value was calculated
for each model setting. To determine the best parameters for
each model, we tested dozens or hundreds of different
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parameter combinations for each model, and selected the opti-
mal parameters through multiple CV evaluations.

Results

The curated dataset contains large pathogen diversity

From the IEDB database, we extracted over 1.3 million B cell

assays with experimentally verified epitope-containing infor-
mation (Figure 1A). After merging all the identical protein
sequences, we obtained 8339 proteins preserving 213,700 veri-
fied epitope-containing regions (Figure 1B). After removing

the redundancy by CD-HIT software, 3567 protein sequence
clusters were identified. This procedure reduced the number
of epitope-containing regions by 40.67% (from 213,700 to

126,779; Figure 1C). By applying our quality control proce-
dures, the final filtered dataset contained 3567 proteins with
27,095 epitopes and 97,784 non-epitopes for model construc-

tion (Figure 1D). More specifically, the subset of epitopes
had an average length of 15.45 amino acids, while the subset
of non-epitopes had an average length of 13.97 amino acids.

Among all the epitopes, the peptides with lengths of 16, 15,
and 12 amino acids accounted for the largest proportion,
i.e., 24.99%, 23.72%, and 17.72%, respectively (Figure 1E
and F). We then analyzed the taxonomic origin of the protein

sequences, as provided by the filtered dataset, and visualized
the distribution of species (Figure 1G and H). At the protein
level, the curated dataset contained 176 different families.

The 21 families with the largest number of epitopes are shown
in Figure 1G. The numbers of epitopes in Bacteria, Eukaryota,
and Viruses accounted for 16.65%, 65.59%, and 17.76% of all

the proteins, respectively, in the curated dataset. At the
epitope-containing region level, the proportions showed differ-
ently from the protein level. For example, the proportion of
Viruses was 59.41%, higher than those of Bacteria (9.17%)

and Eukaryota (31.42%). Overall, the curated dataset had a
strong degree of taxonomic diversity.

Performance of ML methods on benchmarking dataset

So far, numerous tools have been developed for linear BCE
prediction. In those tools, a series of sequence or structural fea-

tures have been adopted. We explored six different conven-
tional ML algorithms, including AB, DT, SGD, KNN, LR,
and RF, using 14 different encoding schemes. For each fea-

ture, each algorithm was implemented and optimized using
five-fold CV on the training dataset. We repeated five-fold
CV ten times by randomly portioning the training dataset.
The performances of these 84 ML methods in terms of AUC

are shown in Figure 3A and Table S5. The average AUC val-
ues of five-fold CV of six ML algorithms ranged from 0.695
(DT) to 0.777 (RF). RF, AB, and LR performed better than

other ML-based methods (SGD, KNN, and DT), Next, we
studied the average performance for each feature among the
six ML methods. The AUC values of five-fold CV ranged from

0.666 (BTA) to 0.768 (AAindexClusterP). Thus, different types
of features displayed various accuracies for BCE prediction
and all the sequence-derived features, physicochemical fea-

tures, and structural features were informative. We further
found that the sequence-derived features performed better
compared to structural features. Due to the limitation of pro-
tein structure information, three types of structural features
were calculated through computational prediction from pro-

tein sequences in this study, and thus, the predicted features
might lead to a lower prediction accuracy.

NetBCE for accurate prediction of linear BCEs in proteins

Deep learning has been recently demonstrated to have power-
ful capability for mining large but complex biomedical data,

including image and sequence information extraction and nat-
ural language processing. With sufficient B cell assays, the deep
neural network can automatically learn informative classifica-

tion features, making it very appropriate for linear BCE pre-
diction. In this study, a deep learning-based predictor was
introduced, called NetBCE, for BCE prediction in the pro-
teins. The NetBCE was implemented with five components:

the input layer, convolution–pooling modules, BLSTM layer,
attention layer, and the output layer. To evaluate the predic-
tion performance of NetBCE, the five-fold CV was performed

on the training dataset. The ROC curves were drawn and the
corresponding AUC values were calculated. We found that
NetBCE had high performance with the average AUC value

of 0.8455 by five-fold CV, with a range from 0.8379 to
0.8528 (Figure 3B). Since the numbers of epitopes and non-
epitopes were not balanced in the training dataset, we also per-
formed precision–recall (PR) analysis and calculated the corre-

sponding AUC values. The PR curve indicates the trade-off
between the amount of false positive predictions compared
to the amount of false negative predictions. NetBCE achieved

an average PR AUC value of 0.6165 (Figure 3C), suggesting
that our model had great potential in predicting functional epi-
topes with the high precision.

As above, we drew a conclusion that NetBCE was both
faithful and robust for the prediction of linear BCEs, which
might be partly attributed to its deep neural network architec-

ture. NetBCE utilized several excellent deep learning modules,
e.g., CNN, BLSTM, and attention, to learn a more efficient
and interpretive representation of the epitope sequence hierar-
chically. To elucidate the capability of hierarchical representa-

tion by NetBCE, we visualized the epitopes and non-epitopes
using UMAP method based on the feature representation at
varied network layers. We found that the feature representa-

tion displayed more discriminative along the network layer
hierarchy (Figure 3D–I). More specifically, the feature repre-
sentations for epitope and non-epitope sites were mixed at

the input layer. As the model continued to train, epitopes
and non-epitopes tend to occur in very distinct regions with
efficient feature representation.

Performance evaluation and comparison

To demonstrate the superiority of NetBCE, we first compared
the performance of NetBCE with other six ML-based methods

(AB, DT, SGD, KNN, LR, and RF) by AUC value measure.
We observed that the performance of NetBCE was generally
better than other six ML-based methods, resulting in the

AUC value improvements from 8.77% to 21.58%. We further
compared NetBCE to four previously developed and available
linear BCE predictors, including LBtope, iBCE-EL, BepiPred,



Figure 3 Performance of NetBCE and other ML methods

A. Performances of 84 ML models for the 14 types of features. The AUC values were calculated by five-fold CV. B. ROC curves for

NetBCE by different fold CV. C. PR curves for NetBCE by different fold CV. D. Feature representation of the epitopes and non-epitopes

using the UMAP method in the input layer of NetBCE. E. Feature representation of the epitopes and non-epitopes in the CNN layer. F.

Feature representation of the epitopes and non-epitopes in the BLSTM layer. G. Feature representation of the epitopes and non-epitopes

in the attention layer. H. Feature representation of the epitopes and non-epitopes in the fully connected layer. I. Feature representation of

the epitopes and non-epitopes in the final classification layer. ML, machine learning; CV, cross-validation; AAC, amino acid composition;

CKSAAP, composition of K-spaced amino acid pairs; EAAC, enhanced amino acid composition; ASA, accessible surface area; SS,

secondary structure; BTA, backbone torsion angle; AB, AdaBoost; DT, decision trees; KNN, k-nearest neighbors; LR, logistic regression;

RF, random forest; SGD, stochastic gradient descent; AUC, area under the receiver operating characteristic curve; ROC, receiver

operating characteristic; PR, precision–recall; UMAP, Uniform Manifold Approximation and Projection.
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and EpiDope. Since these four tools did not offer the function
for customizing prediction models on other B cell assays, the
curated independent dataset was straightly entered to each ser-

vice to calculate the performance and compare with the predic-
tion result by NetBCE. NetBCE had high performance with
the AUC value of 0.8400 on the independent dataset (Fig-
ure 4A). For BepiPred [15], LBtope [23], iBCE-EL [32], and

EpiDope [31] that provide prediction scores for all input, we
drew the ROC curves and corresponding AUC values were
calculated as 0.6882, 0.6565, 0.5040, and 0.6335, respectively.
When compared with the second-best tool BepiPred [15],
NetBCE reached an 22.06% AUC value improvement (Fig-
ure 4A). Moreover, NetBCE reached PR AUC of 0.6062 on

the independent dataset (Figure 4B), which was superior to
other existing tools. To elucidate the underlying mechanism
of NetBCE leading to superior performance in the independent
dataset, we applied NetBCE to predict the output of important

network modules in the model and used UMAP to visualize
the predicted feature representation at varied network layers
(Figure 4C–F). We found that predicted features became more



Figure 4 Performance comparison between NetBCE and other tools and the display interface of NetBCE software

A. Comparison of NetBCE with other predictors, including BepiPred, LBtope, iBCE-EL, and EpiDope on the independent dataset

regarding the ROC curves. B. Comparison of NetBCE with other predictors regarding the PR curves. C. Feature representation of the

epitopes and non-epitopes in the independent dataset using the UMAP method in the input layer of NetBCE. D. Feature representation of

the epitopes and non-epitopes (independent dataset) in the BLSTM layer. E. Feature representation of the epitopes and non-epitopes

(independent dataset) in the fully connected layer. F. Feature representation of the epitopes and non-epitopes (independent dataset) in the

final classification layer. G. The display interface of NetBCE software. NetBCE provides and visualizes the prediction results in an

interactive HTML file using the Python, PHP, JavaScript, and Bootstrap package in an easily readable and interpretable manner.
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and more distinguishable with the training of the model. Epi-

topes and non-epitopes in the independent dataset were mixed
at the input layer, culminating with a clear separation in the
output layer. In comparison, NetBCE implemented by the

interpretable deep learning architecture considerably outper-
formed other existing tools.
Case study and usage of NetBCE

Considering the severe and still ongoing SARS-CoV-2 pan-
demic, screening of immunogenic targets against the viral pro-

tein is urgently needed for the development of sensitive
diagnostic tools and vaccination strategies. Recent studies
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have well-characterized immunogenic T/B-cell epitopes of
SARS-CoV-2 spike protein using linear peptides [52]. In addi-
tion to spike protein, open reading frame 8 (ORF8) is a unique

protein expressed in SARS-CoV-2 that is also highly immuno-
genic as reported in COVID-19 patients at both early and late
stages of disease [53]. So far, the BCEs of the ORF8 protein

remain largely unknown. Here, we used NetBCE to predict
candidate BCEs on the ORF8 protein. The sequence that
was used for the identification of linear peptides of the

ORF8 protein of SARS-CoV-2 was obtained under NCBI Ref-
erence Sequence: YP_009724396.1. We set NetBCE to segment
and scan a large peptide library consisting of 15-mer peptides
overlapping by 14 amino acids spanning the ORF8 sequence.

As a result, a total of 107 epitopes were screened (Table S6).
These predicted linear BCEs may provide some insights into
the design of serological diagnostics and peptide-based vacci-

nation approach for fighting this COVID-19 pandemic.
In addition, we developed a tool to provide function for lin-

ear BCE prediction based on the NetBCE model. The NetBCE

tool is available at https://github.com/bsml320/NetBCE.
NetBCE provides and visualizes the prediction results in an
interactive HTML file using the Python, PHP, JavaScript,

and Bootstrap package in an easily readable and interpretable
manner. Users can input the candidate proteins in a FASTA
format. In addition, users need to select one or more peptide
lengths so that NetBCE can construct a library of candidate

epitope peptides. For an example of the output page in Fig-
ure 4G, NetBCE provides a probability score for each candi-
date peptide with its value in a range from 0 to 1. All

prediction results can be copied, printed, and downloaded in
three formats: ‘‘CVS”, ‘‘Excel”, and ‘‘PDF”. NetBCE also
provides another two interactive HTML plots to show the dis-

tribution of lengths and scores for all candidate peptides.

Discussion

In this study, we first compiled an experimentally well-
characterized dataset, containing more than 124,000 experi-
mentally linear epitope-containing regions from 3567 protein

clusters, through a widely used immunization database
(IEDB). Based on the curated benchmark dataset, 14 features
were encoded including five sequence-based features, six

physicochemical property-based features, and three structural
features. All features were evaluated by six conventional ML
algorithms, and the AUC values were calculated through

five-fold CV. Our result revealed that predictive power for lin-
ear BCE prediction varied greatly by different types of fea-
tures, and all the sequence-derived features, physicochemical
features, and structural features were informative. It should

be noted that when the structural information is very limited
and obtained by prediction in this study, we found that
sequence-derived features and physicochemical features per-

formed better, but structural features were also very important
for functional epitope prediction. This is because over 80%
known BCE residues recognized by antibodies are structural/-

conformational rather than sequential. Building on this large
data collection, a ten-layer deep learning framework, named
NetBCE, was implemented. NetBCE was built by five compo-
nents: the input layer, convolution–pooling modules, BLSTM

layer, attention layer, and the output layer. To assess the per-
formance of NetBCE, we performed the five-fold CV on the
training dataset. NetBCE had high performance with the aver-
age AUC value of 0.8455, with a range from 0.8379 to 0.8528,

by automatically learn informative classification features. In
comparison, NetBCE outperformed conventional ML meth-
ods by increasing the AUC value by a range of 8.77%–

21.58% in the same training dataset. Moreover, NetBCE had
high performance with the AUC value of 0.8400 on the inde-
pendent dataset, and achieved over 22.06% improvement of

AUC value for the linear BCE prediction compared to other
tools. Compared to the black box of training process in tradi-
tional ML, the interpretability of our model is also easier to
explore. To elucidate the capability of hierarchical representa-

tion by NetBCE, we visualized the epitopes and non-epitopes
based on the predicted feature representation at varied net-
work layers. We found the feature representation came to be

more discriminative along the network layer hierarchy,
demonstrating that our model has excellent classification
ability.

In the future, we will continuously strengthen NetBCE by
collecting more experimentally identified BCEs into the train-
ing dataset. Although the dataset included in the current data-

base is getting larger, a considerable number of BCEs might be
false positives that do not have sufficient positive test results.
The development of methods for data quality control currently
remains a great challenge to minimize the false positives caused

in various types of experimental assays. We indeed found a
number of epitope-containing regions with non-uniform test
results that had both positive and negative responses when

we processed the data. Thus, to build a high-quality dataset
of epitopes and non-epitopes, a strict criterion was adopted
in this study, like what was applied in BepiPred2 tool. Specif-

ically, we first obtained all test records for each epitope-
containing region. We defined all epitope-containing regions
that were tested positive by at least two assays as epitopes to

avoid possible chance of false positive from a single assay.
Moreover, all epitope-containing regions that tested in at least
two assays and were not tested as positive in any assay were
considered as non-epitopes. All other epitope-containing

regions with inconsistent test responses that did not meet both
criteria were excluded. This strategy can not only retain as
many high-quality epitopes as possible, but also eliminate as

much as possible the epitope-containing regions with contra-
dictory test responses.

Usually, a high epitope probability outputted by NetBCE

does not mean a strong immunity. Because NetBCE is a clas-
sification model, its training data are labeled as ‘‘yes” or ‘‘no”.
Therefore, to link the predicted probability and immunity, we
need to build a regression model. By doing so, it needs a train-

ing set with measurements of binding affinity as the label, but
this part of the data is not currently available. However,
regarding this potential application, we still have a way to

screen more immunogenic BCEs using NetBCE. It has been
noted that the BCEs with nearby CD4+ T-cell epitopes are
more likely to be truly immunogenic and to induce mature

BCRs and antibodies, a phenomenon known as T–B reciproc-
ity [54]. With this biological dependency, we can predict both
candidate BCEs and nearby CD4+ T-cell epitopes (e.g., using

netMHCIIpan software [55]), and combinations with high
scores for both have higher chances of being immunogenic.

https://github.com/bsml320/NetBCE
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Moreover, more useful features and advanced deep neural
network frameworks will be adopted for the development of
model for linear BCEs. For example, post-translational modi-

fications (PTMs), including glycosylation, phosphorylation,
and acetylation, can alter protein structure and further affect
the recognition of between epitopes and antibodies [56]. Inte-

grating PTM information can help improve the prediction of
functional epitopes. To do so, we may need to download
and integrate the experimentally validated PTM sites from

public databases, such as dbPTM [57], PhosphoSitePlus [58],
Eukaryotic Phosphorylation Sites Database (EPSD) [59], and
Protein Lysine Modifications Database (PLMD) [60]. Then,
BCEs and flanking sequences can be scanned to search the

known PTM sites. By counting the number of PTM sites that
are 10–20 positions away from the BCE boundaries and PTM
sites within the BCEs, we can construct multiple numerical fea-

tures for different PTM types. We thus can combine these
PTM features and representations obtained by deep learning
to further improve the prediction of functional BCEs. More-

over, we can obtain PTM-related amino acid indexes from
AAindex database and integrate these features to construct a
more comprehensive model. Taken together, this study

reported a novel and accurate approach for the prediction of
linear BCEs. We anticipate that the interpretable deep neural
network can be easily extended to other sequence-derived pre-
diction task to corroborate much better prediction.

Code availability

The source codes are implemented in Python and are freely
available at GitHub (https://github.com/bsml320/NetBCE)
and BioCode (https://ngdc.cncb.ac.cn/biocode/tools/

BT007321).
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