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Abstract Transcriptional phenotypic drug discovery has achieved great success, and various com-

pound perturbation-based data resources, such as connectivity map (CMap) and library of inte-

grated network-based cellular signatures (LINCS), have been presented. Computational

strategies fully mining these resources for phenotypic drug discovery have been proposed. Among

them, the fundamental issue is to define the proper similarity between transcriptional profiles. Tra-

ditionally, such similarity has been defined in an unsupervised way. However, due to the high

dimensionality and the existence of high noise in high-throughput data, similarity defined in the tra-

ditional way lacks robustness and has limited performance. To this end, we present DrSim, which is

a learning-based framework that automatically infers similarity rather than defining it. We evalu-

ated DrSim on publicly available in vitro and in vivo datasets in drug annotation and repositioning.

The results indicated that DrSim outperforms the existing methods. In conclusion, by learning tran-

scriptional similarity, DrSim facilitates the broad utility of high-throughput transcriptional pertur-

bation data for phenotypic drug discovery. The source code and manual of DrSim are available at

https://github.com/bm2-lab/DrSim/.
Introduction

Compound perturbation-based transcriptional profiles in con-
nectivity map (CMap) and library of integrated network-based
cellular signatures (LINCS) have been successfully applied in
drug discovery, such as elucidating the mechanisms of action
ciences /
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(MOAs) for little-known compounds or suggesting new indica-
tions for existing drugs [1–3]. The process begins with a pheno-
type of interest to derive a query signature, i.e., a set of

differentially expressed genes. Then, the query signature is
used to calculate similarities with compound perturbation pro-
files (also referred to as reference signatures) to indicate

whether exposure to a specific compound is able to reverse
or induce the phenotype of interest. In this process, the funda-
mental issue is to define the proper similarity between the

query signature and the reference signature. Although various
similarity methods, including Cosine [6], Kolmogorov-
Smirnov statistic (KS) [4], Gene Set Enrichment analysis
(GSEA) [5,7], XSum [8], XCos [8], and statistically significant

connections’ map (sscMap) [9], have been proposed to this
end, a comprehensive study indicated that three issues remain.
1) All the existing methods are designed empirically in an unsu-

pervised way. Due to the high dimensionality and the existence
of high noise [10] in transcriptional signatures, it is difficult for
empirically designed methods to characterize the similarity

between transcriptional signatures, resulting in inherently lim-
ited performance. 2) Most of the existing similarity methods
except for GSEA were developed specifically for CMap [7].

Despite the fashionability of CMap, its small scale restricts
its application. Other resources, such as LINCS, which
extended the CMap transcriptome data to a thousandfold
scale-up, have been shown to be much more useful. However,

data in these resources are heterogeneous. For example, data
in LINCS are profiled by the L1000 array platform, which is
different from the microarray platform used by CMap [4,5].

This inconsistency may prevent existing empirically designed
methods from achieving generalizable satisfactory perfor-
mance. 3) The transcriptional profiles of cells responding to

a compound perturbation are affected by the cell type and
the duration of treatment [11]. However, none of the existing
methods consider this characteristic in a detailed and appropri-

ate way in performing similarity calculations between tran-
scriptional signatures, which may lead to incorrect analysis
results.

To this end, we present similarity learning for drug dis-

covery (DrSim), which is a learning-based framework that
automatically infers similarity rather than defining it. Basi-
cally, there are two main applications of such

perturbation-based transcriptional profiles for phenotypic
drug discovery: 1) drug annotation, i.e., elucidating MOAs
for less well-understood drugs, and 2) drug repositioning,

i.e., proposing new indications for existing drugs [1–3,12].
Therefore, in our benchmark, we evaluated DrSim on pub-
licly available in vitro and in vivo datasets in drug annota-
tion and repositioning. Our comprehensive test results

indicated that DrSim outperforms the existing methods.
Taken together, by learning transcriptional similarity, DrSim
facilitates the broad utility of high-throughput transcrip-

tional perturbation data for phenotypic drug discovery with
a conceptual improvement.

Method

The general framework of DrSim

DrSim comprises three main steps: data preprocessing, model
training, and similarity calculation (Figure 1).
Data preprocessing

In our current study, for illustration purposes, LINCS is used as
the data resource since it holds the largest-scale compound refer-
ence signatures [5], which presents millions of transcriptional

profiles by treating various cancer cell lines with different com-
pounds under different conditions. Nevertheless, the application
of DrSim is not restricted to LINCS, and it can be applied
directly to other compound perturbation-based datasets for phe-

notypic drug discovery. There are two steps in the data prepro-
cessing stage. 1) Quality control. Only transcriptional
signatures treated by compounds for 6 h or 24 h in the nine cancer

cell lines (MCF7, A375, PC3, HT29, A549, BT20, VCAP,
HCC515, and HEPG2) and two non-cancer cell lines (HA1E
and NPC) in LINCS are retained, because most experiments

were performed under these conditions. 2) Dataset splitting.
The compound transcriptional signature contains four attributes
(cell type, compound, time point, and dosage) since it was mea-

sured by treating a cell line with a compound under a certain con-
centration and at a particular time point. We evaluate the
influence of these four attributes on the transcriptional signa-
tures. As demonstrated in Figure S1A–D, the cell type, com-

pound, and time point substantially influence the distribution
of transcriptional signatures, while the compound dosage does
not. Therefore, to minimize the influence of the cell line and time

point in calculating the similarities between compound-induced
signatures, 1) the signatures in LINCS are split into 22 subsets
according to cell type and time point (Figure 1A; eleven kinds

of cell lines and two kinds of time points); and 2) the subset sig-
nature that has identical cell type and time point attributes to the
query is used as a reference when a query search is conducted.
Since the compound dosage slightly impacts the distribution of

transcriptional signatures, the signatures treated with identical
compounds at different dosages are considered replicates.

Model training

By adopting the linear discriminant analysis (LDA) metric
learning algorithm (Figure S2A and B) [13], DrSim automati-

cally infers a transcriptional similarity for query assignment
based on the reference signatures. In the current study, the
LDA algorithm was adopted since it achieves the best perfor-

mance among all the metric learning algorithms (File S1) [13].
In summary, 1) principal component analysis (PCA) [14] is
applied to the reference signatures to reduce dimensionality.
A transformation matrix P is obtained. 2) By applying LDA

to the dimensionality-reduced signatures, a transformation
matrix L is learned based on the signature labels indicating
similarities and dissimilarities between them. The label of a sig-

nature is the compound that induces the signature. The trans-
formation matrix L that fits the relationships between
signatures will project signatures into another space, in which

signatures belonging to the identical class stay close to each
other (intraclass similarity) while signatures belonging to dif-
ferent classes stay away from each other (interclass dissimilar-

ity). In summary, the basic conception of LDA is to learn an
optimal metric L that aims at maximizing intraclass similarity
and interclass dissimilarity. 3) The transformed references
(TRs) belonging to the identical compound are median cen-

tered to obtain the transformed median-centered reference
(TMR; Figure 1C).
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Figure 1 The computational workflow of DrSim

DrSim comprises three main steps: data preprocessing, model training, and similarity calculation. A. In the first step, only signatures

treated by compounds for 6 h or 24 h in the nine cancer cell lines and two non-cancer cell lines are retained, and the retained signatures are

split into subsets according to the cell type and time point attributes. B. In the second step, DrSim automatically infers a similarity for

query assignment based on the training reference signatures. First, PCA is applied to the reference signatures to reduce dimensionality. A

transformation matrix P is obtained. Second, by applying LDA to the dimensionality-reduced signatures, a transformation matrix L is

learned based on the signature labels indicating similarities and dissimilarities between them. The label of a signature is the compound that

induces the signature. Finally, the TRs belonging to the identical compound are median centered to derive the TMR. The TR is calculated

using Equation (1) defined in File S1. C denotes compound. C. In the third step, given a query signature, after transformation by P and L,

its similarities to TMRs are calculated by cosine similarity [Equation (3) defined in File S1]. PCA, principal component analysis; LDA,

linear discriminant analysis; TR, transformed reference; TMR, transformed median-centered reference; TQ, transformed query.
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Similarity calculation

For a query signature, after transformation by the P and L
matrices, its similarities to TMRs are calculated by cosine sim-

ilarity (File S1). The similarities are then ranked and can be
used for query assignments. In drug annotation applications,
the label of a query is assigned as the label of the reference that

is most similar to the query since a positive score indicates
compounds sharing a similar mechanism and activity [4,5].
In drug repositioning applications, the compound that has

the largest negative score for the query is suggested since a neg-
ative score indicates that exposure to a specific compound can
reverse the phenotype of interest [4,5].
Evaluating the rationale of DrSim

Before evaluating the performance of DrSim, we demon-
strated the rationale of the designed workflow to make sure

that it is appropriate for drug annotation and drug reposi-
tioning based on transcriptional data. First, we evaluate

whether the similarity learned by DrSim brings signatures
with the same label close together, while separating signatures
with different labels. More specifically, we employ t-
distributed stochastic neighbor embedding (t-SNE) to visual-

ize the distribution of query and reference signatures before
and after applying DrSim. The parameter n_components of
t-SNE is set to 2. Other parameters are set as default values.

For illustration purposes, only signatures having the most
replicates in MCF7 at 24 h are selected as an example. The
selected signatures are split into queries and references at a

ratio of 3:7, followed by applying DrSim. As shown in Fig-

ure 2A–D, after transformation by the learned matrix L, sig-
natures coming from the same category have a tendency to

cluster together, while signatures belonging to different
classes tend to stay away from each other. Furthermore, to
demonstrate that DrSim is still effective in a large-scale data-
set, we employed the normalized mutual information (NMI)

metric after applying DrSim to all the signatures having no
less than 10 replicates in the 22 subset datasets [15] (File
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S1). If a clustering achieves a higher NMI, it has higher intr-
aclass similarity and lower interclass similarity. As shown in
Figure 2E, after applying DrSim, the NMIs of the reference

and query signatures were significantly higher in the 22 subset
datasets (P < 0.05).

Second, we visualized the distribution of similarities

between reference signatures and query signatures before
and after applying DrSim. As shown in Figure 2F and G,
query signatures and reference signatures belonging to identi-

cal class become more similar, while query signatures and ref-
erence signatures belonging to different classes become more
dissimilar. In other words, DrSim maximizes the similarity
between signatures if they share a similar expression pattern.

The characteristics of DrSim make it inherently suitable for
drug annotation, since in drug annotation we assign a label
to a query by searching for the most similar reference. Note

that in drug repositioning, we intend to search for references
that are most dissimilar to (maximally reverse) the query. To
make the algorithm suitable for drug repositioning, we

reversed the references before applying DrSim. In this case,
Figure 2 The evaluation of the rationale of DrSim

A. Visualization of the clustering of reference signatures before transfo

of reference signatures after transformation by the learned matrix L. Si

signatures belonging to different classes tend to stay away from each o

transformation by the learned matrix L. D. Visualization of the cluster

L. Signatures belonging to the same class tend to cluster together, whi

each other. E. After transformation by the learned matrix L, the NMIs

22 subset datasets (P < 0.05). F. Heatmap of the similarities between

learned matrix L. G. Heatmap of the similarities between the reference

The query signatures and reference signatures belonging to the identi

classes become more dissimilar. NMI, normalized mutual information
DrSim maximizes the similarity between signatures if they
have opposite expression patterns.

Results

Evaluating the performance of DrSim in drug annotation and

drug repositioning

To demonstrate the advantage of DrSim, we compared it
against six other commonly used methods, including Cosine,
KS, GSEA, XSum, XCos, and sscMap. NFFinder [15] and
L1000CDS [16] are not compared here because their core algo-

rithms are KS and Cosine, respectively. The gene set size
parameter, i.e., the total number of bottom- and top-ranked
differentially expressed genes in the six methods, was set to

200 as commonly used [17,18]. Other parameters are set as
default values. Note that DrSim employs PCA to reduce data
dimensionality. Hence, to confirm that the performance

improvement of DrSim benefits from using LDA rather than
rmation by the learned matrix L. B. Visualization of the clustering

gnatures belonging to the same class tend to cluster together, while

ther. C. Visualization of the clustering of query signatures before

ing of query signatures after transformation by the learned matrix

le signatures belonging to different classes tend to stay away from

of the reference and query signatures are significantly higher in the

the reference and query signatures before transformation by the

and query signatures after transformation by the learned matrix L.

cal class become more similar, while those belonging to different

; t-SNE, t-distributed stochastic neighbor embedding.
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PCA, we also compare DrSim against a workflow that does
not use LDA (referred to as no-LDA in our figures). In this
study, DrSim was evaluated in two scenarios, i.e., drug anno-

tation and drug repositioning, based on publicly available
in vitro and in vivo transcriptional dataset.

Scenario 1: drug annotation

The MOA describes how a drug produces its effect on the
body. Compound perturbation-based transcriptional profiles
have often been applied for drug annotation to uncover MOAs

of less well-understood drugs. For example, the expression sig-
nature induced by thioridazine was found to have a strong sim-
ilarity to those induced by DNA inhibitors, demonstrating that

thioridazine exerts its anti-tumor activity by inhibiting DNA
replication [19]. In the drug annotation benchmark scenario,
the accuracy of predicting the MOAs of compounds was com-

pared (see ‘‘calculation of the accuracy of predicting the
MOAs of compounds” in File S1 for more details; Figure S3).
The gold-standard MOAs of compounds in CMap and LINCS
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of the other methods. In addition, DrSim outperformed the
no-LDA workflow, indicating that the performance improve-
ment of DrSim benefits from employing the similarity

learning-based strategy. In general, the training data size has
an impact on the supervised learning model [21]. Therefore,
we evaluated the impact of this factor on the accuracy of

DrSim. Not unexpectedly, as the training data size increases,
the accuracy of DrSim in predicting the MOAs of compounds
increases (Figure 3C; File S1).

Compound-induced profiles are usually heterogeneous. For

example, expression profiles in LINCS are measured by L1000
technology due to cost constraints [5], while most of the
expression profiles used by researchers to derive a query are
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signatures were used to predict the MOAs of compounds.
Specifically, signatures in LINCS were used to predict the
MOAs of compounds in CMap since the signatures in CMap

and LINCS are profiled by microarray and L1000 technology,
respectively. As illustrated in Figure 3D, although compared
with that in the homogeneous scenario, the accuracies of all

the methods drop in the heterogeneous scenario, DrSim still
surpasses all the methods. This result demonstrates DrSim is
tolerant of noisy data and heterogeneity (Figure 3B–D).

Scenario 2: drug repositioning

The suggestion of novel indications for existing drugs, i.e.,
drug repositioning or repurposing, is significant for pharma-

ceutical study and is evolving as a method to reduce the cost
of drug discovery [23]. Compound-induced transcriptional
profiles have been extensively applied in this area, reflecting

a paradigm shift in the pharmaceutical study, from the tradi-
tional seek of the magic bullet that targets a single pathogenic
gene to the novel phenotypic means that inspect drug-gene-
disease interactions from the system level. To comprehensively

demonstrate the advantages of DrSim in transcription-based
drug repositioning, we benchmarked it with existing methods
in three areas, i.e., in vitro datasets, in vivo datasets, and

in vivo datasets with real-world evidence. We investigated
whether DrSim can suggest effective compounds for query sig-
natures that are derived from the phenotype of interest in the

three datasets. The drug repositioning benchmark workflow
comprises three steps: calculation of disease query signature,
compound scoring, and calculation of precision (Figure 4A).

More specifically, 1) disease query signature was generated
by comparing disease expression profiles to normal expression
profiles, and compound reference signatures were downloaded
from LINCS. 2) Compounds were scored by computing the

similarities between the compound reference signatures and
the disease query signature with DrSim. 3) To determine
whether a compound is effective against the input disease sig-

nature, its P value was computed by comparing its score with
its background scores (see ‘‘calculation of the P value of a
compound” in File S1 for more details). If the P value of a

compound is less than 0.01, it was classified as effective, other-
wise ineffective. Finally, by collecting gold standard drug effi-
cacy information from public resources, the precision metric,
i.e., the proportion of real effective compounds among the pre-

dicted effective compounds, was calculated. Here, we focused
on the precision metric rather than other metrics such as accu-
racy and recall because, in real applications, it is only practical

to examine the few top indications. Therefore, we want the
predicted effective compounds among the top suggestions to
be truly effective as often as possible.

BenchmarkingDrSim in the in vitro datasets for drug repositioning

For the in vitro dataset, the performance of predicting effective

compounds against cancer cell lineswas compared.We analyzed
eight kinds of cancer cell lines in view of the availability of
compound-induced signatures and compound efficacy informa-
tion on these cancer cell lines (Table S2). Following the bench-

mark workflow described above in the ‘‘drug repositioning”
section, 1) query signatures were computed by comparing the
expression profiles of the cancer cell line in the cancer cell line

encyclopedia (CCLE) [24] to the expression profiles of corre-
sponding normal tissue in genotype-tissue expression (GTEx;
File S1) [25]. Tominimize the time point attribute effect, the sig-
natures profiled at 24 h in LINCS are used as the reference sig-

natures since drug efficacy in genomics of drug sensitivity in
cancer (GDSC), ChEMBL, and cancer therapeutics response
portal (CTRP) ismostlymeasured at 24hor 72h. 2)Compounds

were scored by computing the similarities between the com-
pound reference signatures and the disease query signature with
DrSim and other methods. 3) Compound was classified as effec-

tive or ineffective by comparing its score with its background
scores (Figure 4A; File S1). Compound efficacy data were col-
lected fromGDSC, ChEMBL, and CTRP, which are the largest
publicly available compound efficacy databases (File S1) [26–

28]. As a result, DrSim obtained the highest precision (Fig-
ure 4B). Most of the effective compounds predicted by DrSim
are truly effective.

BenchmarkingDrSim in the in vivo datasets for drug repositioning

For the in vivo dataset, the performance in predicting food and

drug administration (FDA)-approved drugs against diseases
was compared. Three kinds of cancer were analyzed, i.e., lung
adenocarcinoma (LUAD), breast invasive carcinoma (BRCA),

and prostate adenocarcinoma (PRAD), based on the availabil-
ity of FDA-approved drug reference signatures on these can-
cers (File S1). To further demonstrate the generalizability of
DrSim, we apply it to a non-cancer disease, i.e., Alzheimer’s

disease (AD). It should be noted that AD patient-derived cell
lines are not available in LINCS. Therefore, the signatures on
the nine cancer cell lines in LINCS were used as references.

Following the benchmark workflow described above in the
‘‘drug repositioning” section, 1) query signatures were col-
lected by comparing cancer and AD patient expression profiles

to the corresponding normal tissue expression profiles (File
S1), and compound reference signatures in LINCS are used
as the reference signatures; 2) compounds were scored by com-

puting the similarities between the compound reference signa-
tures and the disease query signature with DrSim and other
methods; 3) compound was classified as effective or ineffective
by comparing its score with its background scores (Figure 4A;

File S1). As depicted in Table S3, only DrSim is able to prop-
erly identify FDA-approved drugs in BRCA, LUAD, and AD
among all the tested methods, indicating its high sensitivity

(Table S4). To quantitatively compare the ranking result, the
normalized discounted cumulative gain (nDCG) was adopted
(File S1). DrSim achieved the highest nDCG score in BRCA

(MCF7), LUAD (HCC515 and A549), and AD (Figure 4C).
Although none of the methods, including DrSim, predicted
FDA-approved drugs in PRAD, several top-ranked effective
drugs predicted by DrSim were validated in vivo. For example,

calcitriol, the primary active metabolite of vitamin D, showed
an anti-neoplastic effect in preclinical models of PRAD
(Table S3) [29].

Benchmarking DrSim in the in vivo datasets with real-world

evidence for drug repositioning

For the in vivo dataset with real-world evidence, the perfor-
mance in predicting drug response was compared. In view of
the availability of drug response information in the cancer gen-

ome atlas (TCGA) and the reference signatures on those drugs,
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Figure 4 Benchmark of DrSim against existing methods in drug repositioning scenario

A. In drug repositioning, the benchmark workflow comprises three main steps: calculation of disease query signature, compound scoring,

and calculation of precision. 1) Disease query signature was generated by comparing disease expression profiles to normal expression

profiles. Compound reference signatures were downloaded from LINCS. 2) Compounds were scored by computing the similarities

between the compound reference signatures and the disease query signature with DrSim. 3) To determine whether a compound is effective

against the input disease signature, its P value was computed by comparing its score with its background scores. Finally, by collecting gold

standard drug efficacy information from public resources, the precision metric was calculated. B. DrSim surpasses all the existing methods

in the in vitro datasets of eight cancer cell lines, indicating its high sensitivity. C. DrSim achieves the highest nDCG score in the BRCA,

LUAD, and AD in vivo datasets, demonstrating its superiority. D. Of the BRCA and LUAD patients predicted by DrSim to respond to a

drug, nearly all patients responded to it. For BRCA, MCF7 signatures were used as references; for LUAD, HCC515 and A549 signatures

were used as references (File S1). BRCA, breast invasive carcinoma; LUAD, lung adenocarcinoma; AD, Alzheimer’s disease; nDCG,

normalized discounted cumulative gain.
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BRCA and LUAD patients were analyzed (File S1). Following
the benchmark workflow described above in the ‘‘drug reposi-

tioning” section, 1) we collected 248 and 101 query signatures
from BRCA and LUAD patients by comparing expression
profiles from tumors to expression profiles from adjacent nor-
mal tissues. For BRCA patients, signatures at 6 h and 24 h in

MCF7 were used as references. For LUAD patients, since two
cell lineages of LUAD (A549 and HCC515) were profiled in
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LINCS, signatures in A549 and HCC515 were used as refer-
ences. 2) Compounds were scored by computing the similari-
ties between the compound reference signatures and the

disease query signature with DrSim and other methods. 3)
Compound was classified as effective or ineffective by compar-
ing its score with its background scores (Figure 4A; File S1). If

the P value of a drug was less than 0.01, we predicted that the
patient would respond to the drug. The patients’ clinical out-
comes were classified as ‘‘response” or ‘‘non-response” (File

S1); as demonstrated in Figure 4D, DrSim outperformed the
other methods. Of the patients predicted by DrSim to respond
to a drug, nearly all the patients responded to it.

Discussion

In the current study, we present DrSim, which is a learning-

based framework for transcriptional phenotypic drug discov-
ery. The similarity between signatures in DrSim is learned
from data rather than being defined. Traditionally, such simi-

larity has been defined in an unsupervised way, and due to the
high dimensionality and the existence of high noise in these
high-throughput data, it lacks robustness with limited perfor-
mance. For example, in previous benchmark studies, XCos

and XSum performed best in drug annotation on the CMap
dataset [8], while GSEA and sscMap performed best on the
LINCS dataset [17]. The robustness and superiority of DrSim

on different platforms and data sources were demonstrated on
in vitro and in vivo datasets. Taken together, DrSim facilitates
the broad utility of high-throughput transcriptional perturba-

tion data for phenotypic drug discovery.
The cell response to a perturbation is affected by the cell

type as well as the duration of treatment (Figure S1A–D).

However, none of the existing methods consider this character-
istic in a detailed and appropriate way in performing similarity
calculations between transcriptional signatures, which may
lead to an incorrect analysis result. It is shown that the accu-

racy of predicting the MOAs of compounds drops if we do
not consider this characteristic (Figure S4). This may be
explained by the fact that although perturbations that show

similar activity across cell types exist, the activities of most per-
turbations are cell type and time point specific. These perturba-
tions usually target specialized proteins. For example,

glucocorticoid receptor agonists are the maximum in cell lines
in which the receptors of glucocorticoids are expressed [5]. In
conclusion, cell type and time point attributes should be taken

into consideration in calculating the similarity between tran-
scriptional signatures.

The performance of DrSim improves when the training
data size increases (Figure 3C). At present, nearly one-third

of the perturbation-based expression profiles in CMap and
LINCS have few replicates due to cost constraints [4,5]. With
the decreasing cost of high-throughput sequencing,

perturbation-based expression profiles are accumulating
rapidly. It is conceivable that the performance of DrSim can
be further improved with such an increased amount of data.

Future improvements of DrSim include 1) designing a more
efficient similarity-learning algorithm to characterize transcrip-
tional similarity, and 2) identifying more efficient signatures
through the genome-wide transcriptome. For example, using

key pathway signatures to characterize the causality of diseases
[30]. Then, such signatures could be incorporated into DrSim
for phenotypic drug discovery.

Code availability

Docker version of DrSim can be installed at https://hub.dock-

er.com/r/bm2lab/drsim/. The usage and manual of DrSim are
available at GitHub https://github.com/bm2-lab/DrSim/. The
usage and manual of DrSim are also available at BioCode at

National Genomics Data Center https://ngdc.cncb.ac.cn/bio-
code/tools/BT007273/.
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