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Abstract Genomics, an interdisciplinary field of biology on the structure, function, and evolution

of genomes, has revolutionized many subdisciplines of life sciences, including my field of evolution-

ary biology, by supplying huge data, bringing high-throughput technologies, and offering a new

approach to biology. In this review, I describe what I have learned from genomics and highlight

the fundamental knowledge and mechanistic insights gained. I focus on three broad topics that

are central to evolutionary biology and beyond—variation, interaction, and selection—and use pri-

marily my own research and study subjects as examples. In the next decade or two, I expect that the

most important contributions of genomics to evolutionary biology will be to provide genome

sequences of nearly all known species on Earth, facilitate high-throughput phenotyping of natural

variants and systematically constructed mutants for mapping genotype–phenotype–fitness land-

scapes, and assist the determination of causality in evolutionary processes using experimental evo-

lution.
Introduction

I was completing my first year as a doctoral student in genetics

at Pennsylvania State University when the genome sequence of
the pathogenic bacterium Haemophilus influenzae—the first
from any free-living organism—was published in the summer
of 1995 [1]. I remember to this day the circular genome illus-

trated on the cover of Science and the excitement that genome
sequencing brought to us in the laboratory of Dr. Masatoshi
Nei. At the time, I was studying the evolution of animal
homeotic genes [2] that had been sequenced from diverse spe-
cies through laborious cloning. It was unimaginable then that,
in less than two decades, researchers would sequence the entire

animal genome to acquire the sequences of specific genes such
as homeotic genes for evolutionary studies [3]. This drastic
change in the approach to gene sequence acquisition in the
study of evolution is a testament of the enormous advance

and broad impact of genomics.
Although initially concentrating on genome sequencing,

genomics has expanded substantially in its scope. Hereinafter,

I use genomics to refer to an interdisciplinary field of biology
on the structure, function, and evolution of genomes. Hence, it
encompasses many subjects, including, for example, genome

sequencing and annotation, transcriptomics, proteomics, and
metabolomics. In my view, genomics has revolutionized life
ciences /
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sciences, including my field of evolutionary biology, by supply-
ing huge data, bringing high-throughput technologies, and
offering a new approach to biology. For example, before the

genomic era, phylogenetic relationships among species were
usually inferred based on one to a few genes [4]; nowadays,
phylogenies are typically inferred from dozens to hundreds

of genes, often encompassing all orthologous genes from the
relevant genomes or transcriptomes [5–8]. High-throughput
technologies developed by genome biologists such as ribosome

profiling and proteomics have helped answer long-standing
evolutionary questions such as the nature of the selections
influencing synonymous codon usage [9–12]. Speciation and
species divergence are now routinely studied by comparing

genomes of related species, revealing previously underappreci-
ated processes such as introgression [13].

As someone who has witnessed the continued impact of

genomics on evolutionary biology and whose research has ben-
efited greatly from genomics, here I review the most important
things that I have learned from nearly three decades of discov-

eries in genomics (Table 1). Evolutionary biology is a gigantic
field, so my experience and views by no means represent those
of all evolutionary biologists. For example, the interaction

between cancer genomics and evolutionary biology has created
the cancer evolution field that aims to understand both cancer
and the evolution of cells within an organism [14], but I will
not discuss it here. I hope that my review will help the further

infusion of genomics into evolutionary biology and stimulate
evolutionary thinking in genomic research.
Table 1 Main topics discussed

General topic

Variation Genome size and gene structure

RNA and protein production

Protein evolutionary rate

Interaction Protein interaction

Genetic interaction

G � E interaction

Selection Convergence

Gene expression noise

Mutation rate and spectrum

Note: E–R anticorrelation, the strong negative correlation between the

interaction, gene-by-environment interaction.
Realtors often tell customers that the three most important
things to consider when buying a house are ‘‘location, location,
location”. I will imitate this phrase to emphasize the themes of

the lessons I learned from genomics.
Variation, variation, variation

If general laws such as Newton’s three laws of motion charac-
terize physics, variation is probably the most prominent fea-

ture of the living world. Biology has laws, but no law seems
to be general. Take for example the three Mendelian laws of
inheritance: dominance, segregation, and independent
assortment. Complete dominance of one allele to another as

in the inheritance of round vs. wrinkled peas in Mendel’s
experiments is uncommon (see [15] for the molecular genetic
basis of the wrinkled pea phenotype). In most cases, domi-

nance of one allele to another is incomplete. Equal segrega-
tion of the two alleles is relatively general, but exceptions
are known in the form of segregation distortion in which

the two alleles at a locus are not inherited with the same prob-
ability [16]. Independent assortment applies only to genes
located on different chromosomes, so it is frequently violated.
Genomics has uncovered both degrees and types of variations

that were unknown to biologists and has helped decipher the
general principles governing the patterns of some of these
variations. To me, the most interesting examples are as

follows.
Specific topic

Variation in genome size; variation in intron density and size;

causes of these variations

Alternative transcriptional initiation; alternative splicing

including back-splicing; alternative polyadenylation; RNA

editing; alternative translation initiation; stop codon

readthrough; causes of these variations

Determinants of the protein evolutionary rate; E–R

anticorrelation and its multiple causes; meaning of functional

constraint

Evolutionary rate of protein interaction with and without gene

duplication; features of protein interaction networks (essential

nodes and edges, modularity); importance of protein

complexes

Intragenic epistasis; intergenic epistasis; pairwise vs. high-order

epistasis; idiosyncratic epistasis and consequences; offspring

fitness as a function of mating distance

G � E interaction and environmental pleiotropy; antagonistic

environmental pleiotropy; prevalence of G � E; adaptation in

a changing environment

Testing molecular convergence; phenotypic vs. molecular

convergence; echolocation and prestin

Deleterious expression noise; beneficial expression noise;

fitness noise; intrinsic vs. extrinsic expression noise; expression

noise and dose imbalance; mechanisms alleviating the

detriment of noise

Selections acting on the genomic mutation rate; mutation

spectrum seems to be subject to selection; no optimization of

gene-specific mutation rates

expression level of a gene and its protein evolutionary rate; G � E
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Genome size and gene structure

Although eukaryotes tend to have larger genomes than
prokaryotes, exceptions abound because of the huge variation
across prokaryotes as well as across eukaryotes. For instance,

Nasuia deltocephalinicola, an endosymbiotic bacterium of
insects, has a genome of only 112 kb [17], whereas the soil-
dwelling bacterium Sorangium cellulosum has a genome of
14.8 Mb [18]. The lower end of the eukaryotic genome size

variation is believed to be the microsporidian Encephalitozoon
intestinalis, an obligate intracellular opportunistic fungus with
a genome of 2.3 Mb, whereas the higher end includes the flow-

ering plant Paris japonica (149 Gb), fern Tmesipteris obliqua
(147 Gb), and lungfish Protopterus aethiopicus (130 Gb) [19].
The tiny genomes of endosymbionts are generally thought to

be consequences of losses of genes unnecessary for the
endosymbiotic life that is in a large part dependent on the host
[20]. The huge genomes of the eukaryotes mentioned are filled

with transposons, probably due to unusually high transposon
activities and/or a lack of sufficient selection suppressing/
removing the transposons [21]. Hence, compared with gen-
omes of intermediate sizes, the extremely small genomes have

reduced functions (evident from gene losses), but the extremely
large genomes do not seem to show increased functions.

In eukaryotes, the genome size variation is often accompa-

nied by gene structure variations, most notably in intron den-
sity and size. Although known to some extent before
eukaryotic genomes were sequenced, the magnitude of this

variation revealed by genome sequencing is astounding. For
example, over 90% of human genes have introns, but only
about 5% of budding yeast (Saccharomyces cerevisiae) genes
are intron-containing. Although the average length per intron

(6.9 kb) is 43 times that per exon (160 bp) in humans [22], they
are both around 450 bp in the fruit fly Drosophila melanogaster
[23]. Such variations across species have been explained by a

variation in effective population size, which determines the
intensity of purifying selection against slightly deleterious
mutations, and a variation in mutation bias [21].

RNA and protein production

The basic process of RNA and protein production through

transcription and translation was worked out by molecular
biologists long before the genomic era. However, genomics
has unveiled tremendous variations at virtually every step of
RNA/protein production. For example, unlike what we

learned from textbooks years ago that each gene has one tran-
scription start site, we now know that an average human gene
has four transcription start sites [24], such that a pool of tran-

scripts with heterogenous 50 ends are often synthesized from
each gene. In addition to the widely known alternative splicing
that can create multiple mRNA isoforms from a transcript,

alternative polyadenylation is also common—about 50% of
human genes have at least three polyadenylation sites per gene
[25]. Besides linear splicing, RNAs may also be back-spliced to

create circular RNAs, which are usually more stable than lin-
ear RNAs; over 50% of human protein-coding genes are
known to produce circular RNAs [26]. RNA editing, which
enzymatically alters the RNA sequence (excluding RNA pro-

cessing such as splicing, 50-capping, and 30-polyadenylation),
has been known since the 1980s [27]. However, it is genome
and transcriptome sequencing that has revealed both the diver-
sity and prevalence of RNA editing [28–30]. For instance, ade-
nosine (A)-to-inosine (I) editing occurs at about two thousand

coding sites [31] and millions of non-coding sites in the human
genome [32], and this is but one of over 160 different types of
RNA editing documented thus far [29]. In protein synthesis,

we now know that translational initiation could occur at one
of several positions that need not be occupied by ATG [33].
For example, on average 2.5 translation initiation sites per

gene have been observed in just one human cell line [34]. Even
at the supposed end of protein synthesis, ribosomes may occa-
sionally bypass the stop codon, creating an extended peptide.
This phenomenon of stop codon readthrough has been

observed for over 300 fruit fly genes [35].
These variations generate a huge diversity in the RNA and

protein products of a single gene, far beyond the notion that

one gene encodes one protein. These variations are both excit-
ing and puzzling. They are exciting because they could poten-
tially explain why complex organisms such as mammals need

only about 20,000 (annotated) protein-coding genes. They
are puzzling because many of the variations are not evolution-
arily conserved, suggesting the possibility that they are func-

tionally unimportant, a notion that is supported by a
number of features of these variations [36]. For example, these
variations tend to be greater in more weakly expressed genes
[36], resembling features of mistranscription [37] (i.e., incorpo-

ration of wrong nucleotides in transcription) and mistransla-
tion [11] (i.e., incorporation of wrong amino acids in
translation). There is generally no evidence that the lack of

evolutionary conservation of these variations reflects lineage-
specific adaptations. The emerging consensus is that most of
these variations likely reflect molecular errors in transcription,

RNA processing, and translation, much like mistranscription
and mistranslation, whereas only a minority may be adaptive
[36]. Here, evolutionary thinking and analysis can help differ-

entiate functional from nonfunctional variations in RNA/
protein production that are so abundantly unraveled by
powerful genomic technologies [36]. The widespread presence
of molecular errors in cellular processes as fundamental as

transcription and translation attests the imperfection of
cellular life and the limitation of natural selection.

Protein evolutionary rate

It has been known from the 1960s that different proteins
encoded in the same genome can have drastically different

rates of sequence evolution; this variation has been explained
primarily by a variation in functional constraint across pro-
teins [38]. Exactly what factors determine the functional con-
straint, however, has been elusive. At the turn of the

century, protein evolutionary rates were computed for large
numbers of genes. Surprisingly, despite the large data size,
the evolutionary rate of a protein was found to be barely cor-

related with its functional importance assessed by the pheno-
typic or fitness effects of gene deletion [39,40]. Instead, in all
three domains of life, the mRNA level of a gene seems to be

the major determinant of the rate of protein sequence evolu-
tion, although many minor determinants exist [41,42]. A series
of hypotheses have been proposed to explain the strong nega-

tive correlation between the expression level of a gene and its
protein evolutionary rate (i.e., the E–R anticorrelation) [42].
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For example, the protein misfolding avoidance hypothesis
posits that the anticorrelation results from selection against
protein misfolding. Specifically, under the assumption that

proteins occasionally misfold and that misfolded proteins are
cytotoxic, one can infer that selection for a lower protein mis-
folding probability is stronger on highly expressed genes than

on lowly expressed ones, because the same misfolding proba-
bility corresponds to more misfolded molecules for highly
expressed than lowly expressed genes [43,44]. Another hypoth-

esis posits that the selection arises from protein misinteraction
avoidance [45]. More recently, we found that coding mutations
in highly expressed genes are more likely to reduce the mRNA
level of the gene than those in lowly expressed genes, and

because reducing the mRNA level of a gene is often deleteri-
ous, highly expressed genes are selectively constrained relative
to lowly expressed ones [46]. Empirical evidence for each of

these hypotheses exists, suggesting that they all contribute to
the E–R anticorrelation. This said, it is unclear which of the
proposed mechanisms makes the greatest contribution to the

E–R anticorrelation and whether all causes of the anticorrela-
tion have been accounted for. Regardless, this line of research
has greatly improved our understanding of ‘‘functional con-

straint” in protein evolution. Apparently, the word ‘‘function”
in ‘‘functional constraint” includes not only physiological
function but also toxicity or negative function. This model of
protein evolution considerably broadens the standard model

that has been around for approximately a half century. These
findings on the causes of the huge variation in evolutionary
rate among proteins would not have been possible without

genome sequences, genome-scale gene expression measures,
and various functional genomic data.

Interaction, interaction, interaction

Although variation is likely the most prominent feature of the
living world, interactions among various components of a bio-

logical system undoubtedly play a critical role in the function-
ing of the system. Yet, interactions among genes or proteins,
necessary for the functioning of cells and organisms, were

rarely studied in a systematic fashion prior to the genomic
era. Genomics brought tools and resources necessary for inves-
tigating such interactions at a grand scale and was largely

responsible for the birth of systems biology, which in my view
is a study of interactions.

Protein interactions refer to physical interactions between

proteins, whereas genetic interactions (also known as epistasis)
refer to the phenomenon that the phenotypic effect of a muta-
tion depends on the presence or absence of another mutation.
Genome-scale protein interaction data provide unprecedented

opportunities for systematically studying protein function evo-
lution. Large data of epistasis allow testing many evolutionary
models that involve epistasis. For example, the Dobzhansky–

Muller model of reproductive isolation and speciation requires
negative epistasis between two genes one from each of the two
species concerned [47], and the mutational deterministic

hypothesis of the evolution of sexual reproduction relies on
negative epistasis between deleterious mutations [48]. In addi-
tion, genomics has stimulated the study of gene-by-
environment (G � E) interactions, which play multiple impor-

tant roles in evolutionary biology. Below I discuss patterns of
protein interactions, genetic interactions, and G � E
interactions revealed by genomics and their evolutionary
implications.

Protein interactions

Although the evolutionary rate of a protein can be easily mea-
sured at the level of protein sequence and then compared

among different proteins, it is difficult to do the same at the
level of protein function, primarily because different proteins
have different functions that are not easily comparable quanti-

tatively. Nonetheless, most proteins interact with at least one
other protein, so one could determine protein interactions in
a high-throughput fashion and compare these interactions

among proteins. This is, however, easier said than done,
because there are many experimental systems for determining
protein interactions and because different systems (or different
laboratories using the same system) often yield different results

[49,50]. A functional genomics laboratory is typically inter-
ested in measuring protein interactions in only one species,
so it is difficult to compare data from different species that

are usually generated by different laboratories that often use
different experimental systems. More than a decade ago, my
group used a low-throughput approach to measure protein

interactions for a set of orthologous genes from two yeast spe-
cies in order to estimate the evolutionary rate of protein inter-
actions [51]. We found that protein interactions are extremely
conserved, with an evolutionary rate of 2.6 � 10�10 per protein

interaction per year, three orders of magnitude lower than the
rate of protein sequence evolution measured by the number of
amino acid substitutions per protein per year. That is, most

amino acid substitutions do not alter protein interaction
partners.

Protein interactions presumably evolve more rapidly after

gene duplication than without duplication, because paralogous
genes present in a genome and created by past gene duplication
events often exhibit somewhat different functions including

protein interactions [52,53]. Although we initially planned to
compare the evolutionary rate of protein interactions in the
presence and absence of gene duplication, the aforementioned
low-throughput experiment was exhausting, forcing us to

abandon the plan. To my knowledge, such a comparison has
not been done to this day. Instead, we compared duplicate
genes of different evolutionary ages identified from the same

genome, an analysis that required protein interaction data
from only one species [53]. Interestingly, the shared number
of protein interactions between a pair of paralogs typically

drops quickly with evolutionary time since duplication,
whereas the total number of distinct interactions for the gene
pair gradually rises and eventually approaches that for two sin-
gleton genes. These temporal patterns suggest rapid

subfunctionalization—partition of ancestral functions—after
gene duplication, as well as gradual neofunctionalization—
gain of new function. Notably, the amount of neofunctional-

ization is substantial, because a pair of paralogs start with
the number of protein interactions of one gene but eventually
possess almost the total number of interactions of two genes.

Notwithstanding, there are old paralogous genes that still
share functions and interaction partners, a phenomenon that
has been explained by expression reductions [54] and

structural/functional entanglements [55] that hinder the func-
tional divergence between paralogs.
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The accumulation of protein interaction data quickly led to
the study of protein interaction networks in which each protein
is represented by a node and two proteins are connected by an

edge if they interact with each other. Important features of
protein networks were characterized under the influence of
the burgeoning network theory. For example, it was discov-

ered that proteins with more interactions are more likely to
be essential (i.e., deleting the protein-coding gene is lethal)
[56]. Although the essentiality of a protein could be caused

by the joint effect of all of its interactions, my group proposed
and provided evidence that a protein is essential because it has
at least one essential interaction, expanding the concept of
essential nodes to essential edges [57]. Another interesting net-

work feature is modularity, meaning that the network can be
divided into modules or communities and links within modules
are much denser than those across modules. Protein networks

are highly modular, but modules could arise as a byproduct of
the network growth via gene duplication so do not necessarily
represent functional units [58].

Members of a stable protein complex are usually considered
to interact physically with one another either directly or indi-
rectly. These interactions seem to be particularly important

because many analyses have found them to be evolutionarily
constrained and the interacting partners to coevolve. For
example, whether a gene is essential or not is dependent on
the genetic background (i.e., other genes in the genome), and

the essentiality of a gene can vary among different strains of
a species. Interestingly, this variation is often coordinated
among members of the same protein complex [59]. Another

example is that genes encoding members of the same protein
complex tend to be correlated in their duplication history
(i.e., they either all duplicate or all resist duplication), presum-

ably reflecting a requirement for dose balance among protein
complex members [60,61]. Similarly, such dose balance is man-
ifested in the dosage compensation of genes encoding members

of stable protein complexes (but rarely other genes) in the ori-
gin of the X chromosome of placental and marsupial mammals
[62]. In the same vein, genes encoding components of the same
protein complex tend to have reduced intrinsic expression

noise [63] and be chromosomally linked, likely resulting from
natural selection for intracellular among-component dose bal-
ance [64] (see below).
Genetic interactions

There are many examples of genetic interaction or epistasis in

the classic Mendelian genetics literature in which one mutation
suppresses or enhances the phenotypic effect of another muta-
tion. Metabolic pathways and networks known from biochem-
istry also suggest the prevalence of epistasis. That many

proteins interact physically and many residues within a protein
interact physically further suggests the abundance of epistasis.
Formally, epistasis is usually measured by e = fAB � fA � fB,

where fA and fB are the phenotypic values of a trait relative to
that of the wild type for mutants A and B, respectively, and fAB

is the phenotypic value of the corresponding double mutant.

Although the trait of concern can vary, evolutionary biologists
are most interested in fitness or proxies of fitness. Epistasis is
said to be positive when e > 0 and negative when e < 0. If fit-

ness is the trait of concern, positive epistasis means that the
double mutant is fitter than expected from the two constituent
mutations combined under no epistasis, whereas negative epis-
tasis means that the double mutant is less fit than the expecta-
tion. For convenience, I will separately discuss epistasis within

genes (intragenic epistasis) and that between genes (intergenic
epistasis), because the methods for probing them are often
different.

Intragenic epistasis is typically probed by creating many
mutants of a gene, each containing one to a few mutations, fol-
lowed by phenotyping of these mutants. Next-generation

sequencing of barcodes associated with different mutants
(bar-seq) offers an efficient way to measure the frequencies
of many genotypes in a population. Bar-seq of the population
before and after the competition among genotypes (mutants

and the wild type) provides estimates of mutant fitness relative
to the wild type, which could then be used to estimate epistasis.
The gene or gene segment of interest can even serve as the bar-

code if it is short enough to be covered by a sequencing read.
For example, using this approach, my lab measured the fitness
of over 65,000 mutants of a yeast tRNA gene (72 nt) under a

stressful laboratory condition [65]. We measured epistasis for
12,985 pairs of mutations and found 42% of them to be statis-
tically significant. Interestingly, epistasis in the tRNA gene is

negatively biased, with 86% of the significant epistasis values
negative. With negative epistasis, each mutation tends to be
more detrimental (or less beneficial) in the presence than
absence of another mutation. Furthermore, because most

mutations are deleterious, accumulation of a few random
mutations in the wild type could drastically lower the fitness.
Although a negative bias in intragenic epistasis has also been

observed from another RNA gene [66] and several protein-
coding genes [67–69], more data are needed to confirm that this
is general.

Thus far, systematic surveys of intergenic epistasis have
almost exclusively used null mutations. In other words, our
systematic knowledge about intergenic epistasis largely comes

from that between a null mutation of one gene and a null
mutation of another gene. For example, such intergenic epista-
sis has been mapped for 23 million (of a total of 36 million)
gene pairs in budding yeast [70]. What does intergenic epistasis

tell us about the functional relationship between genes? If two
genes are functionally redundant or overlapping (e.g., encod-
ing enzymes in alternative pathways for synthesizing the same

product), deleting either gene would have a much smaller func-
tional effect than deleting both genes, creating negative epista-
sis. Hence, negative epistasis between two genes suggests their

functional redundancy. By contrast, if two genes are interde-
pendent in performing a function (e.g., encoding two indis-
pensable components of a protein complex, or two enzymes
in a linear metabolic pathway), deleting either gene would have

a similar functional effect as deleting both, creating positive
epistasis. Hence, positive epistasis between two genes suggests
that they make distinct, interdependent contributions to a

function. Additionally, epistasis between any gene and an
essential gene is positive, regardless of their functional rela-
tionship, because deleting both genes does not lower fitness

more than deleting the essential gene. The simple logic in the
scenarios above has been modeled using flux balance analysis
of metabolism to allow quantitative predictions of epistasis

between metabolic genes, which have subsequently been vali-
dated experimentally [71]. Because intergenic epistasis is com-
monly assessed by deleting the two genes of interest
individually and jointly, it is unclear whether a different level
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or even different sign of intergenic epistasis will occur between
non-null mutations. If the sign of intergenic epistasis depends
on the specific mutations examined, one wonders what the sign

of intergenic epistasis between non-null mutations tells us
about the functional relationship of the two genes (or muta-
tions). The genomic technology is now available for addressing

this fundamental question.
Although our discussion has focused on epistasis between

two mutations, epistasis can also occur among three or more

mutations (i.e., high-order epistasis). Empirical data of
high-order epistasis (e.g., see [55]) are scarce for two reasons.
First, the space for nth-order epistasis among M mutations

(i.e., number of n-mutation combinations) is M
n

� �
, which is

huge for large M and n; hence high-order epistasis is difficult
to map systematically. Second, one must phenotype 2n geno-

types in order to estimate nth-order epistasis [72]. For example,
23 = 8 genotypes (three single mutants, three double mutants,
one triple mutant, and the wild type) must be phenotyped to

estimate the 3rd-order epistasis among three mutations. As n
increases, both the labor for phenotyping 2n genotypes and
the estimation error of the nth-order epistasis become unbear-

ably high.
Analysis of several (intragenic and intergenic) phenotypic or

fitness landscapes found that epistasis is highly idiosyncratic,

meaning that the same mutation can have drastically different
phenotypic/fitness effects when occurring in different genotypes
[72]. This idiosyncrasy is responsible for a number of evolution-
ary phenomena that sometimes look contradictory to one

another [72]. For example, under idiosyncratic epistasis, a bene-
ficial mutation tends to have a smaller benefit when occurring in
a fitter genotype than in a less fit genotype, creating the so-called

diminishing returns epistasis, which is negative epistasis, in
adaptations. Idiosyncratic epistasis also makes a deleterious
mutation on average less deleterious when occurring in a less

fit genotype than in a fitter genotype, creating positive epistasis
between deleteriousmutations inmutation accumulation exper-
iments. Theory shows that the aforementioned different impres-
sions from experimental evolution (i.e., adaptation) and

mutation accumulation about the patternof epistasis donot nec-
essarily tell us about the shape of the fitness landscape or the rel-
ative abundance of positive vs. negative epistasis but can both be

consequences of the idiosyncrasy of epistasis [72].
An important implication of negative epistasis between nat-

ural genetic variants is that it could lead to genetic incompatibil-

ity, causing reduced fitness of the hybrid compared with
homozygous parents. The presence of such negative epistasis
within a species can be assessed by studying the hybrid fitness

as a function of the mating distance—sequence divergence
between its parental genomes. We observed from plant, animal,
and fungalmodel organisms that the hybrid fitness is an inverted
U-shaped function of the mating distance and peaks when the

mating distance is slightly greater than the mean divergence
between conspecifics [73]. This finding confirms the existence
of intraspecific genetic incompatibility and shows that the bene-

fit of heterosis (i.e., hybrid vigor) is at least partially offset by the
harm of genetic incompatibility even within species.
G � E interactions

G � E interactions refer to the phenomenon that a mutation
has different phenotypic effects under different environments.
The fact that no organism outcompetes all other organisms in
all environments is presumably due to G � E interactions,
which lead to environment-specific fitness ranks among geno-

types. G � E interactions are related to the concept of pleio-
tropy, which is the phenomenon that one mutation
influences multiple traits [74]. Because a trait such as the

growth rate depends on the environment, it is conventional
at least among those studying microbes to treat a trait in mul-
tiple environments as multiple traits. Hence, if a mutation

influences the growth rate in more than one environment,
the mutation is said to show (environmental) pleiotropy, and
if the mutational effect varies among environments, the muta-
tion is said to exhibit G � E interaction. If the effects of a

mutation in two environments are in opposite directions, the
mutation is said to show antagonistic pleiotropy, which is also
G � E interaction. Genomic tools have allowed creating large

numbers of mutants and phenotyping them in multiple envi-
ronments, which have considerably improved our understand-
ing of the prevalence and evolutionary consequences of G � E

interactions and environmental pleiotropy.
Although deleting a gene typically lowers the organismal

fitness, my lab found in a screen of all nonessential yeast genes

in six different environments that, in each environment, several
hundred genes increase the fitness when deleted [75]. The fact
that these genes exist in the yeast genome suggests that deleting
them may be detrimental in other environments. Indeed, delet-

ing them tends to lower the fitness in one or more of the other
environments examined [75]. If the presence of a gene is detri-
mental in an environment, natural selection should suppress its

expression in the environment if appropriate regulatory muta-
tions are available. As predicted, we found evidence for such
regulatory evolution in strains that have been in the environ-

ment of interest for a sufficiently long time [75]; nevertheless,
the gene is still intact in these strains, probably because these
strains additionally experience environments in which the gene

function is beneficial.
Studies of fitness effects of point mutations in multiple envi-

ronments also revealed the prevalence of G � E interactions.
For example, depending on the pair of environments com-

pared, 18%–66% of point mutations in a yeast tRNA gene
show significant G � E interactions [76]. From the fitness
effects of thousands of nonsynonymous mutations in 21 yeast

genes under four different environments, it was found that
among those mutations that are significantly beneficial in at
least one environment, 70.3% are significantly deleterious in

at least one other environment [46].
G � E interactions are also abundantly observed among

natural polymorphisms. For example, using 1005 segregates
generated from a cross between two yeast strains, we mapped

quantitative trait loci (QTLs) for growth rates in 47 different
environments. On average, 58% of QTLs identified in two
environments exhibit G � E interactions between the two envi-

ronments [77]. Most G � E interactions show concordant
effects between environments, but, as the effect size of a
QTL in one environment enlarges, the probability of antago-

nism in the other environment increases [77]. In a more sophis-
ticated study, we mapped QTLs that simultaneously impact
two important parameters of yeast population growth: maxi-

mum growth rate r (growth rate when the population is very
small) and carrying capacity K (maximum population size that
can be sustained in the environment) [78]. We found that,
depending on the environment, a QTL may concordantly or
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antagonistically impact r and K. Furthermore, the antagonism
becomes more common as the quality of the environment mea-
sured by the average r of all genotypes rises. Consequently, r

and K tend to show tradeoffs in relatively rich environments
but tradeups in relatively poor environments. These contrast-
ing trends are probably generated by the relative impacts of

two factors—the tradeoff between the speed and efficiency of
ATP production and the energetic cost of cell maintenance rel-
ative to reproduction [78].

An important implication of G � E interactions is that,
because the natural environment changes frequently, the fit-
ness effect of a mutation may vary greatly in its lifetime (i.e.,
from its appearance in a population to its fixation or loss).

Under antagonistic pleiotropy, beneficial mutations in one
environment contribute to the adaptation to that environment
but may never get fixed if they soon become deleterious in the

next environment. Consequently, antagonistic pleiotropy can
conceal adaptations in changing environments. My laboratory
performed experimental evolution of yeast in changing envi-

ronments as well as corresponding constant environments
and found supporting evidence for the hypothesis above [79].

Selection, selection, selection

Ever since Darwin, selection has been a central topic of evolu-
tionary biology. Before we go on, however, it is important to

clarify two types of selection: positive and negative. Positive
selection promotes the spread and fixation of beneficial muta-
tions, whereas negative (or purifying) selection prevents the

spread and fixation of deleterious mutations [80]. In the field
of molecular evolution, the advent of the neutral theory [38]
in the late 1960s and the neutralist–selectionist debate that fol-

lowed made neutrality-testing and (positive) selection-
detection popular subjects of investigation. Prior to the geno-
mic era, statistical evidence for positive selection acting on one
gene was often sufficient for a publication. The availability of

genome sequences from related species stimulated genome-
wide searches of positive selection signals (e.g., [81]). Although
the fraction of genes in a genome found to have been positively

selected is usually small, the absolute number of positively
selected genes reported per genome is often quite large.
Although the state of the neutral theory as an accurate descrip-

tion of gene and genome evolution is debated [82,83] and prob-
ably will remain controversial for the foreseeable future, below
I briefly discuss three selection-related subjects that have seen

substantial developments thanks to genomics.

Convergence

Convergence refers to the phenomenon that a particular state

originates in more than one evolutionary lineage. Convergence
may be classified into convergent evolution and parallel evolu-
tion; they differ in that the ancestral states in different lineages

are the same in parallel evolution but different in convergent
evolution [84]. Evolutionary biologists are interested in conver-
gence because the probability of origination of a complex trait

multiple times without a common selection is presumably
extremely low; hence, convergence suggests a common selec-
tion in multiple lineages [85]. Furthermore, convergence sug-
gests a limited number of solutions to a problem [85]. At the

protein sequence level, however, convergence may not be too
rare even without common selections because each position
in the sequence has only 20 choices. For this reason, a statisti-
cal test of protein sequence convergence that computes the

chance probability of the observed convergence was developed
[84]. This test was later revised by considering the amino acid
composition variation across sites, because this variation

increases the false-positive rate if not taken into account [86].
Many proteins have now been reported to show levels of
sequence convergence beyond the chance expectation. A strik-

ing example is the mammalian hearing protein prestin, which
provides the electromobility of cochlear outer hair cells that
is responsible for cochlear amplification, an active process that
confers sensitivity and frequency selectivity to the mammalian

auditory system. Sequence convergence in prestin is so strong
that a phylogeny reconstructed using the prestin sequences
clusters echolocating bats with echolocating whales in exclu-

sion of nonecholocating bats [87,88]. Subsequent experiments
confirmed the functional importance of the parallel amino acid
substitutions in prestin [89]. Such experimental demonstrations

of the importance of convergent/parallel amino acid substitu-
tions to the functional convergence of the proteins involved
are, however, uncommon [90], and most studies of sequence

convergence end after identifying sequence convergence.
Some authors have reported sequence convergence at the

proteome scale between lineages that show certain morpholog-
ical or physiological convergences [91], but because sequence

convergence is possible by chance, there may not be causality
between sequence and phenotype convergences. Indeed, the
proteome-level sequence convergence is lower between echolo-

cating bats and bottlenose dolphins (which echolocate) than
that between echolocating bats and cows (which are relatively
closely related to dolphins but do not echolocate) [92,93].

Another complication is that the expected level of sequence
convergence tends to decline with the divergence of the lin-
eages compared, because due to epistasis the same amino acid

at a position is less likely to have the same functional effect in
more divergent lineages [86,94]. Furthermore, discordance
between gene trees and species trees caused by either incom-
plete lineage sorting or introgressive hybridization can cause

mis-identification of sequence convergence [95]. Hence,
although comparative genomics allows identifying sequence
convergence at the proteome scale for many lineages [96],

interpretations can be difficult.
Gene expression noise

Gene expression noise refers to the variation in the expression
level of a gene among isogenic cells in the same environment. I
single out this trait for discussion because it is a variance trait
whereas most phenotypic traits studied by biologists are mean

traits such as the average body weight instead of the variance
of the body weight of a species. Gene expression noise is
caused by stochastic variations in molecular and cellular pro-

cesses, although the magnitude of the noise is genetically deter-
mined. Gene expression noise, or more precisely protein
concentration noise, has been measured at the genome scale

in yeast [97] and Escherichia coli [98] thanks to genomics and
high-through biology. To an evolutionary biologist, the fore-
most questions are whether expression noise is subject to nat-

ural selection and how expression noise evolves and affects
evolution. These questions have been addressed in a series of
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studies. First, gene expression noise leads to imprecise cellular
behaviors so is expected to be generally detrimental. For exam-
ple, it may ruin the stoichiometric relationship among func-

tionally related proteins such as members of a protein
complex and may disrupt cellular homeostasis. Using flux bal-
ance analysis of metabolism, we predicted that expression

noise reduces the mean fitness of a cell by at least 25% and that
this reduction cannot be substantially alleviated by gene over-
expression [99]. We also found that higher sensitivity of fitness

to the expression fluctuations of essential genes than nonessen-
tial genes creates stronger selection against expression noise for
essential genes [99], explaining why essential genes tend to be
less noisy than nonessential ones [100]. The expression noise

of a gene may be reduced by relocating the gene from a noisy
to a quiet genomic region; indeed, essential genes are concen-
trated in genomic regions with inherently low expression noises

(assessed using reporter genes) [101]. Second, theory predicts
that elevated expression noise can be beneficial when the mean
expression level is suboptimal and fitness is a convex function

of the expression level [102]. Indeed, we found one and only
one functional group of yeast proteins with unexpectedly high
expression noise—plasma-membrane transporters; the high

noise presumably reflects a bet-hedging strategy to deal with
unpredictable environmental fluctuations. Third, gene expres-
sion noise generates fitness noise, which generally lowers the
efficacy of natural selection similar to the effect of population

shrinkage [99]. Fourth, gene expression noise can be separated
into two components: extrinsic and intrinsic. The extrinsic
noise arises from the among-cell variation in cell state such

as the cell cycle stage or the concentrations of various tran-
scription factors, whereas the intrinsic noise is due to the
stochastic process of gene expression even under a given cell

state such as the stochastic binding of a promoter to RNA
polymerase. Using single-cell RNA sequencing data from
hybrids of two mouse strains, we dissected the expression noise

into extrinsic and intrinsic components for thousands of genes
[63]. Gene function-associated noise trends suggest different
selections on intrinsic and extrinsic noises. For instance,
because dose balance is important for protein complex mem-

bers as mentioned earlier and because extrinsic noise does
not create dose imbalance as long as members of the same pro-
tein complex are co-regulated in expression, protein complex

members should have reduced intrinsic noise but not necessar-
ily reduced extrinsic noise. These predictions have been empir-
ically validated [63]. Genes controlling the cell cycle should

express differently at different cell cycle stages. However,
within a cell that is at a particular cellular stage, cell cycle
genes should preferably show consistent expression. Indeed,
compared with other genes, cell cycle genes exhibit signifi-

cantly lower intrinsic noise but significantly higher extrinsic
noise [63]. Fifth, one may already sense from the discussion
of members of the same protein complex that they ideally

should have not only low intrinsic noise but also coordinated
expression fluctuations to attain dose balance. We found that
genes located on the same chromosome tend to co-fluctuate

in expression when compared with unlinked genes [64]. Inter-
estingly, genes encoding components of the same protein com-
plex tend to be chromosomally linked, likely resulting from

natural selection for intracellular among-component dose bal-
ance [64]. More strikingly, functionally related genes (e.g.,
those encoding enzymes in the same metabolic pathway) tend
to be chromosomally clustered in eukaryotic genomes even
after the exclusion of tandem duplicates [103]. Because the
stochastic expression fluctuations of neighboring genes may
be synchronized by shared chromatin dynamics, protein prod-

ucts are presumably better dose balanced when the genes are
adjacent than when they are far apart on the same chromo-
some. We hypothesized that this could be the reason why func-

tionally related genes tend to be neighbors on a chromosome
[104]. Indeed, our manipulative experiments on three chromo-
somally adjacent genes encoding enzymes catalyzing consecu-

tive reactions in yeast galactose catabolism unequivocally
support this hypothesis [104]. Intriguingly, in this case, disor-
der in one biological phenomenon—gene expression noise—
prompted the emergence of order in another—genome organi-

zation, by selection.
Mutation

Because mutation and selection are commonly considered sep-
arate evolutionary forces, it may seem odd to discuss mutation
in a section on selection. However, as a phenotypic trait, muta-

tion rate is influenced by both the genotype [105] and the envi-
ronment [106] so is potentially subject to natural selection.
Genome sequencing has drastically improved our knowledge

about the mutation rate as well as the molecular spectrum of
mutation (i.e., the relative frequencies of mutations among
the four nucleotides). Three selections can act on mutation rate
through promoting the fixations of mutation rate modifiers,

which are mutations that affect the mutation rate (e.g., muta-
tions in genes controlling DNA repair). First, because of dele-
terious mutations, selection promotes the fixation of mutation

rate modifiers that lower the mutation rate. Note that this is a
second-order selection, because the modifiers do not directly
affect the fitness of the organisms carrying the modifiers but

affect the number of mutations in and hence the fitness of their
offspring. Second, because of advantageous mutations, selec-
tion promotes the fixation of modifiers that increase the muta-

tion rate. This is again a second-order selection, because the
modifiers only affect the number of mutations in and hence
the fitness of their offspring. Third, reducing the mutation rate
may be associated with a fitness cost arising from the energy

and time spent on proofreading, repair, and related biological
processes. In other words, there may be a cost of fidelity that
creates a first-order selection for modifiers that increase the

mutation rate. Furthermore, like any trait, mutation rate is
also subject to mutation bias and genetic drift. It is likely that
the observed mutation rate reflects a balance among mutation

bias, drift, and the three selections mentioned above. The
availability of mutation rate estimates for many species allows
evaluating the relative importance of these forces. For
instance, the drift-barrier hypothesis proposes that the muta-

tion rate is determined by mutation bias, drift, and the
second-order selection for lower mutation rates, but ignores
the first-order and second-order selections for higher mutation

rates [107]. By contrast, my group found in yeast that the
mutation rate is subject to stabilizing selection—both increas-
ing and decreasing the mutation rate from the observed value

are selectively disfavored [108], suggesting that selections for
higher mutation rates are non-negligible. Additionally, across
prokaryotes and eukaryotes, mutation rates are often orders

of magnitude higher than those predicted by the drift-barrier
hypothesis [108].
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It is commonly assumed that the molecular spectrum of
mutation simply reflects biochemical properties of DNA and
is not influenced by selection. We generated yeast mutants that

exhibit substantial variations in mutation spectrum, suggesting
that mutation spectrum is genetically determined [108]. For
example, there are more mutations from G/C to A/T than

from A/T to G/C in all species examined [109], yet this is
not the case in one of our mutants, in which the opposite is
true [108]. This finding suggests that the universal AT muta-

tion bias is likely a result of selection. The selective agent of
the mutation spectrum, however, remains unclear.

A number of authors have reported mutation rate variation
among genes in the same genome. For example, my group

found that genes with higher expression levels tend to have
higher mutation rates presumably due to transcription-
associated mutagenesis, because the R-loop formed by the

binding of the nascent RNA with its DNA template exposes
the non-template DNA strand to mutagens and primes
unscheduled error-prone DNA synthesis [110–112]. We further

found that strong folding of nascent RNA can weaken R-loops
and hence decrease transcription-associated mutagenesis [113].
Are such variations in mutation rate across genes results of

natural selection optimizing gene-specific mutation rates?
Specifically, it has been proposed that genes that are function-
ally more important or constrained have lower mutation rates
as a result of stronger second-order selection against mutagen-

esis [114–116]. However, none of such claims have stood scru-
tiny [112,117,118]. Even if functionally more
important/constrained genes have lower mutation rates, this

trend would be more likely a byproduct of some other pro-
cesses [119] than selective optimization of gene-specific muta-
tion rates, because such selections would be generally too

weak to have an effect [112,117,118]. In summary, there is
good evidence for selection shaping the genomic mutation rate
but no unambiguous evidence for selection shaping gene-

specific mutation rates.

Outlook

Where in evolutionary biology do I expect genomics to make
the biggest impact in the next decade or two? I will name three
areas. First, genome sequencing of all species on Earth will

drastically improve our knowledge about the living world.
For example, the Earth BioGenome Project, which started in
2018, aims to sequence the genomes of all 1.8 million known

eukaryotic species in 10 years [120,121]. Although many more
prokaryotic genomes (> 150,000) than eukaryotic genomes
(� 6000) have been sequenced to date, a recent estimate
showed that nearly 98% of prokaryotic taxa have yet to be

sequenced [122]. Sequencing genomes of every species will
provide unprecedented information allowing systematically
analyzing relationships between genomic features and other

features of life, generating numerous novel hypotheses for
further testing. Second, genomic tools allow high-throughput
measurements of many traits such as gene and protein

expression levels, post-transcriptional modifications, post-
translational modifications, cell morphologies, cell physiolo-
gies, and fitness. Such information from natural variants and
systematically constructed mutants will help map the

genotype–phenotype–fitness landscape, test the relative roles
of chance and necessity in the variations and evolution of
various traits, and understand and predict evolution. Last
but not least, experimental evolution coupled with genomics
will be a particularly powerful approach to evolutionary mech-

anisms. Experimental evolution uses laboratory or controlled
field manipulations to investigate evolutionary processes
[123]. Because of their short generation times and small body

sizes, microbes are the favored subjects of experimental evolu-
tion, although animals and plants have also been used occa-
sionally in experimental evolution [123]. It is not an

exaggeration that experimental evolution elevates evolutionary
biology from an observational science to an experimental
science that enables directly testing causality in evolutionary
processes. Genome sequencing of strains derived from experi-

mental evolution has already offered new insights into some
evolutionary processes [79,124–126], but genomic tools can
do more than genome sequencing (e.g., phenotyping molecular

traits). Well-designed experimental evolution, coupled with
genotyping and phenotyping of ancestral and evolved strains,
will likely play an even more important role in the future devel-

opment of evolutionary biology.
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