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Abstract Recent advances in next-generation sequencing technologies and improvements in

bioinformatics have expanded the scope of microbiome analysis as a forensic tool. Microbiome

research is concerned with the study of the compositional profile and diversity of microbial flora

as well as the interactions between microbes, hosts, and the environment. It has opened up many

new possibilities for forensic analysis. In this review, we discuss various applications of microbiome

in forensics, including identification of individuals, geolocation inference, and post-mortem interval

(PMI) estimation.
Introduction

Microorganisms are microscopic or submicroscopic organisms
such as bacteria, fungi, viruses, algae, and some small protozoa

[1]. The microbiome consists of the microorganisms and their
habitats together with their genomes [2]. In recent years,
next-generation sequencing (NGS) technology and bioinfor-

matics have made great strides in expanding our knowledge
of microbiomes. Human health, energy production, agricul-
ture, and the environment are all influenced by the microbiome

[3]. Numerous large-scale programs have produced massive
amounts of data over the past 15 years to characterize micro-
biomes in niches across the globe, such as the Human Micro-
biome Project (HMP) [4,5] and the Earth Microbiome Project
(EMP) [6]. The HMP was launched in October 2007 [4] with

the aim of exploring the composition and distribution of
microbial communities in different regions of the human body
and building a database of microbial genome sequences. It also

aimed to clarify how microbiology interacts with human
health. EMP was launched in August 2010 [6] to build a global
database of microbial diversity with a culture-independent

approach. Successive large-scale projects have spurred the
development of microbiome research into a new era of rapid
progress.

The current study on the human microbiome and its envi-
ronmental influences is also of interest to forensic scientists.
This is because each individual has a unique microbial commu-
nity that differs from that of other individuals, and this partic-

ular microbial community can persist over long periods of time
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[7]. Moreover, different parts of the body also have different
microbial communities [8]. For instance, it is commonly
believed that the microbial communities in the oral cavity,

skin, and gut are more diverse than in other parts of the body
[9]. When it comes to the microbiome in the environment, cur-
rent evidence does not support the hypothesis that ‘‘everything

is everywhere”, but that microbial communities exhibit a bio-
geographic pattern. There are marked variations in the struc-
ture of microbial communities between different geographic

regions [10]. The ubiquity, heterogeneity, and transferability
of the environmental microbiome can provide valuable geo-
graphic information [11]. There is no doubt that these com-
pelling and interesting findings prove that forensic scientists

can analyze microbiomes to solve a variety of problems in
forensics.

Indeed, microbes have been used as forensic evidence since

the late 19th century [12]. Early applications of microbial
forensics focused mainly on the study of the pathogenicity
and lethality of microbes. Microbial forensics emerged as a

new discipline because letters containing anthrax spores were
used as biological weapons in late 2001 [13]. Thereafter, the
term microbial forensics was defined as ‘‘the discipline of

applying scientific methods to the analysis of evidence of a
bioterrorism attack, biocrime, hoax, or inadvertent release of
a biological agent or toxin with the goal of attribution” [14].
The main objective of this discipline is to detect and identify

microorganisms used in biometrics and trace their sources.
Such investigations can provide rapid and accurate informa-
tion on bioterrorism to better predict and prevent related

crimes.
Prior to the advent of NGS technology, forensic scientists

could not work with microbes because the sequencing tech-

niques required to characterize the microbiota were either
too slow and costly or required culture-dependent techniques.
With NGS technology, scientists can now accurately, rapidly,

and comprehensively determine the DNA sequences of all
microorganisms in a sample [15,16], and avoid experimental
contamination and data deviation caused by microbial cul-
tures, which has proven useful in forensics [17]. The original

definition of microbial forensics, which focused only on bioter-
rorism, has simply become too narrow in light of these enor-
mous potential applications in forensics [18]. It is now

generally accepted that microbial forensics encompasses ‘‘the
discipline of characterizing microbiological evidence to
develop investigative leads in criminal and civil cases” [14,19].

Recent developments in microbiome technology have intro-
duced new approaches to forensics. For instance, the micro-
biome is being used in legal practice to rule out suspects and
solve criminal cases [11]. Here, we discuss recent advances in

the application of the microbiome in forensics.

Methods in microbiome research

Data generation

Amplicon sequencing and shotgun metagenomic sequencing
are currently the two main methods for characterizing the
microbiome. Amplicon sequencing, which targets marker

genes or regions of interest, is the most popular NGS technol-
ogy for forensic microbiome analysis. Amplicon sequencing
of prokaryotic 16S ribosomal RNA (rRNA) genes and
eukaryotic internal transcribed spacer (ITS) regions or 18S
rRNA genes is the predominant method for profiling microor-
ganisms [20]. It is characterized by high efficiency and low cost

through amplification of the 16/18S rRNA genes and the ITS
regions. It can be applied to low-biomass specimens without
affecting host DNA. The Illumina MiSeq is the most widely

used platform for microbiome analysis [21]. Due to the limited
sequencing length, this sequencing platform employs region-
specific primers, such as the V4 region of 16S rDNA and the

V2 region of 18S rDNA. Therefore, this technique has limited
resolution at the genus level and is susceptible to the number of
polymerase chain reaction (PCR) cycles and primers chosen.
In contrast, long-read sequencing platforms, such as Oxford

Nanopore Technologies (ONT) and Pacific Biosciences
(PacBio), provide solutions for full-length sequencing of
hypervariable regions [22,23]. However, exiting databases need

to keep up with the latest technological advances. Therefore,
forensic scientists have employed targeted sequencing based
on microbial single nucleotide polymorphisms (SNPs) to char-

acterize microbiomes [24]. Shotgun metagenomic datasets have
been used to identify SNP markers. In contrast, shotgun
metagenomic sequencing provides functional gene information

and strain-level resolution, rather than just taxonomic compo-
sition as determined by amplicon sequencing [25]. The disad-
vantage, however, is that the method is more expensive and
performs poorly on specimens with low biomass or heavily

contaminated by host genomes. Therefore, shotgun metage-
nomic sequencing is limited in its application to forensics.
Data analysis

A pipeline for forensic microbiome analysis is still not avail-
able. As shown in Figure 1, pipelines comparable with those

used in other disciplines are used for forensic microbiome
analysis.

In this review, we have discussed the pipelines for amplicon

sequencing analysis that are applicable to Illumina sequencing
platforms. In amplicon analysis, defining and identifying a
unique sequence is challenging. This is because the sequences
of hypervariable regions vary widely within the same taxon

and even within a single cell. Selecting a sequence that is rep-
resentative of thousands of sequences in a species has been
adopted to solve this problem [2]. Two major categories of

methods for selecting representative sequences are clustering
into operational taxonomic units (OTUs) and denoising into
amplicon sequence variants (ASVs). Clustering of sequences

into OTUs is based on a threshold of divergence with 97%
or 99% similarity [26]. In general, denoising methods are pre-
ferred over clustering methods for amplicon analysis. This is
because the ASVs generated by the denoising algorithm are

more exactly representative sequences compared to OTUs
[27]. Denoising algorithms mainly include DADA2, Deblur,
and UNOISE3 [27]. The clustering and denoising algorithms

can be performed by several standard amplicon analysis pack-
ages, such as Mothur [28], QIIME [29], QIIME2 [30],
USEARCH [31], and VSEARCH [32].

The use of representative sequences allows us to analyze
amplicon sequencing data without taxonomic information.
However, the use of a feature table (OTU/ASV table) without

taxonomic information is unfavorable for cross-sectional com-
parisons of different studies in most cases, because a clustering



Figure 1 Graphic summary illustrating the analysis pipelines for amplicon sequencing and shotgun metagenomic sequencing

OTU, operational taxonomic unit; ASV, amplicon sequence variant.
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or denoising process has to be repeated with every addition of
new data. Forensic applications or database references are
excluded from this mode. The feature table with associated

taxonomic information (e.g., kingdom, phylum, class, order,
family, genus, and species) is more convenient to use. There
are public databases that you can access for taxonomic refer-
ences, e.g., SILVA [33], Greengenes [34], and UNITE [35].

Shotgun metagenomic sequencing can provide functional
information and higher-resolution taxonomic annotation. An
increase in the amount of data means that more computational

resources and bioinformatics capacity are required. This limits
the application of metagenomic sequencing in forensics to
some extent. Shotgun metagenomic sequencing can identify

all DNA fragments in a sample, including microbial DNA
and host DNA [36]. Quality control and removal of contami-
nants from the raw data are essential steps before taxonomic
and functional analyses. The tools KneadData [37], Trimmo-

matic [38], and BBTools (http://sourceforge.net/projects/
bbmap) are commonly used for quality control and host con-
tamination removal. Taxonomic and functional analyses can

be performed in two ways: by aligning clean sequences with
databases (read-based methods) and by assembling reads into
contigs (assembly-based methods) [39]. The tools MetaPh-
lAn2 [40], Kraken 2 [41], HUMAnN3 [42], and MEGAN [43]
are commonly used for taxonomic and functional profiling

with the read-based methods. The reads can be assembled into
contigs using MEGAHIT [44] or metaSPAdes [45]. Subse-
quently, the assembled contigs are identified using MetaGene-
Mark [46] or Prokka [47]. Indeed, metagenomic studies using

assembly-based methods are remarkably rare in forensics.
Moreover, forensic scientists seem to be more interested in tax-
onomic information than functional information.

Application in forensics

A major breakthrough in microbiome research methods, par-
ticularly NGS-based technology, has resulted in the increased
significance of the microbiome analysis for forensic applica-
tions [48,49]. Analysis of microbiome data, including amplicon

and metagenome sequencing data, can aid in many aspects of
forensics, including individual identification, geolocation
inference, post-mortem interval (PMI) estimation, and more

(Figure 2; Table 1).

http://sourceforge.net/projects/bbmap
http://sourceforge.net/projects/bbmap


Figure 2 Forensic analysis by metagenomics

Compared with Sanger sequencing, NGS technology has dramatically reduced the cost of sequencing and increased the throughput and

read length, ushering forensic science into a new stage of development. Microbiome may influence many aspects of forensics, including

personal identification, geolocation inference, and PMI estimation. In addition to the applications listed, microbiome may facilitate a

breakthrough in forensic pathology, toxicology, and tests for substance abuse. Therefore, advances in metagenomics will provide new

insights into the field of application forensics. NGS, next-generation sequencing; PMI, post-mortem interval.

Table 1 Overview of the application of microbiome in individual identification, geolocation inference, and PMI estimation

Application Application foundation Classification Refs.

Individual identification Strong variations in community

membership between individuals,

some of these variations are

stable over time

Main tissue origins: skin, oral, gut, and

vaginal hair

[7,55,57,59,62–64,66–68]

The transfer of microbiomes:

cohabitating individuals, direct and

indirect transfer, sexual contact, single

computer keys and mice, and smartphone

[7,57–60]

New markers: clade-specific markers and

CRISPR spacers

[62–64,66]

Influencing factors: decay of microbiota

traces with time and diurnal patterns of

microbiota

[67,68]

Geolocation inference Microbial communities exhibit a

biogeographic pattern

Molecular technologies: TRFLP, DGGE,

RISA, and NGS (16S rRNA gene, 18S

rRNA gene, metabarcoding, and shotgun

metagenomics)

[72–80]

Sample types: soil, shoe, dust, skin and

body fluids, and gut

[60,72–79,81–85]

PMI estimation The microbiomes that drive

mammalian decomposition are

somewhat similar and repeatable

across different hosts and

environments

Animal models: mice, rat, and swine [20,88–91,93]

Human cadaver [20,94]

Sample types: abdomen, skin, scalp, gut,

bone, and gravesoil

[20,88–91,93]

External environments: aboveground,

burial cadavers, freshwater, indoor,

different seasons, and different sites

[20,84,85,88,90,91,93,94]

Note: PMI, post-mortem interval; CRISPR, clustered regularly interspaced short palindromic repeat; TRFLP, terminal restriction fragment length

polymorphism; DGGE, denaturing gel electrophoresis; RISA, ribosomal intergenic spacer analysis; NGS, next-generation sequencing.
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Individual identification

Genotyping of short tandem repeats (STRs) by PCR and cap-
illary electrophoresis (CE) is the mainstay of forensic DNA
analysis and is widely used for individual identification and

paternity testing [50,51]. Forensic casework is often hampered
by degraded or inadequate DNA samples that make further
analysis impossible. However, microorganisms can provide
clues that help investigators. According to a recent study, the

number of microbial cells in the human body is 1.3 times the
total number of human cells [52]. A human microbiota con-
tains more than one million genes, which is about 500 times

more than the number of genes in the human genome [53,54].
In addition, the composition of microbial communities within
an individual is influenced by genetic factors, the living envi-

ronment, and the lifestyle of the host [4]. In theory, each indi-
vidual carries a unique set of microorganisms that can be
identified through microbiome analysis.

Researchers at Harvard University [55] analyzed the micro-
biomes of saliva, skin, feces, and other body parts of 242 vol-
unteers who participated in the HMP to test the uniqueness
and stability of the microbiome in identifying individuals.

The result showed that strain-level microbial features associ-
ated with humans were sufficient to uniquely identify individ-
uals. A gene-level feature also exhibited more stability over

time compared to a taxon-level feature. About 30% of individ-
uals could still be identified after 30–300 days by gene-level
analyses of a typical body part, and there were few false-

positive matches. The observations from this study suggest
that microbiomes in faeces are the most stable (over 80% of
individuals could still be clearly identified after one year) and
that microbiomes in skin and vaginal areas tend to be more

susceptible to interference.
However, microbiomes on body surfaces (e.g., skin and

hair) could play a more important role in forensics, as individ-

uals readily transmit their microbiota to other individuals or to
the surface of an object when they touch it [56]. Individuals can
greatly alter the microbial community in their living environ-

ment. Cohabitating individuals had converging skin micro-
biomes due to direct and frequent contact between
individuals and shared surfaces in the household [57]. The

transfer of skin microbiomes between individuals who do not
cohabit can also be considered a trace evidence [58]. The study
by Williams and Gibson [59] showed that it is possible to
detect sexual contact using the microbiome from the pubic

mound area, as the pubic microbiome can distinguish one indi-
vidual from another. In women who were sexually assaulted,
over 10% of their pubic microbiome was derived from the

assailant. If we know who the assailant is, we can determine
if sexual contact has occurred. The human microbiome is
not only transmitted from person to person, but also persists

on touched objects. Researchers have studied the bacteria on
people’s hands compared to those on their personal objects,
such as computers [7] and smartphones [60]. A relavant corre-
lation was found between the composition of the microbial

community on people’s hands and that on the surfaces of their
computers and smartphones. Inanimate objects can harbor
these bacteria for more than two weeks. Individual activity

can also considerably alter the microbial community in their
living environment. For instance, the microbiota on a kitchen
counter can be matched to the owner shortly after moving into
a new house. Each person can contribute to a personal ‘‘micro-
bial cloud” by releasing microbes through the air. Most of the
individuals can be identified through metagenomic analysis of

this ‘‘microbial cloud” [61]. Overall, it is possible to identify an
individual by analyzing the environmental microbiome.

In the studies which analyze the body surface microbiome

for individual identification, the microbiomes are mainly char-
acterized by amplicon sequencing of the 16S rRNA genes.
However, this method has limited resolution of species and

strains. In a study by Schmedes et al. [62], nucleotide diversity
of shotgun metagenomes of skin microbiomes (samples were
collected from 12 individuals and 17 skin body sites at three
time points over a period of > 2.5 years) was identified as a

marker for individual identification. They then introduced
hidSkinPlex, a targeted sequencing panel that uses clade-
specific markers from skin microbiomes to identify individuals.

Skin microbiome profiles generated from the foot, hand, and
manubrium could be assigned to the individual host with up
to 92%–100% accuracy [62,63]. They also improved the mar-

ker set (hidSkinPlex+), which contains 365 SNPs from 135
markers. The improved marker set is smaller and more robust
than the original and can still be used to accurately identify

individuals (the Matthews correlation coefficient was
0.949) [64].

Furthermore, the history of bacterial infections can be
traced using clustered regularly interspaced short palindromic

repeats (CRISPRs) [65]. Targeted sequencing of bacterial
CRISPR spacers can provide higher resolution of phylogenetic
information than other makers. In the study by Toyomane

et al. [66], 24 putative CRISPR arrays were used to character-
ize individuality by analyzing a shotgun metagenome dataset
of human skin. The results showed that CRISPR spacers have

high polymorphism in the skin microbiome. CRISPR typing
achieved higher accuracy (95.2%) than 16S rRNA gene
sequencing (52.6%). However, further studies are needed to

characterize the individuality of the body surface microbiome
at the gene level.

Identifying individuals from the body surface microbiome
is still fraught with challenges in forensics. Wilkins et al. [67]

collected skin and household surface microbiota over four sea-
sons to investigate the accuracy of matching individuals to
their households over long periods of time. They found that

accuracy decreased with the time interval between skin and
household surface samples. Most OTUs remained on skin or
household surfaces for less than a season. Another study

showed that diurnal variation in the human skin microbiome
can also reduce the accuracy of identifying individuals from
the microbiome [68]. For a total of 160 species, there was a
remarkable change in relative abundance between morning

and evening at all sampling sites. These results suggest that
the temporal decay of microbiota traces and diurnal patterns
of microbiota should be considered in the development of

the skin microbiome as a potential forensic method for identi-
fying individuals.

Geolocation inference

As part of a forensic investigation, environmental samples
such as soil, water, and even plants can provide valuable

clues [69]. A soil investigation can provide vital evidence for
identifying suspects and crime scenes, and it can also provide
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direction and scope for solving cases [70,71]. Studies on envi-
ronmental microbiology have shown that there are a variety
of microbes that are common in water and soil. Species and

strains vary from region to region. Location-specific microbio-
logical information may indicate that a person has recently
moved to a new geolocation. With the rapid development of

molecular biology and metagenomic technology, our under-
standing of microbial biogeographical patterns has steadily
deepened and the application of microbiome-based inference

to location has also been promoted.
Forensic geolocation has already been explored using ter-

minal restriction fragment length polymorphism (TRFLP) [72]
and denaturing gel electrophoresis (DGGE) [73]. In recent

years, Habtom et al. [74] have used TRFLP to characterize soil
microbial DNA profiles at local to regional scales (2 m–
260 km) and have found that soil microbial DNA profiles

allow conclusions to be drawn about the geographic location
of a sample on a scale of at least 25 m.

In microbiology, various molecular techniques were used to

identify geolocation, including TRFLP, ribosomal intergenic
spacer analysis (RISA), microarrays, and NGS (Roche 454,
Ion Torrent, and Illumina MiSeq), as well as n-alkanes and

fatty alcohol profiles. The result showed that TRFLP and Illu-
mina MiSeq performed best for 16S rRNA gene sequencing
and RISA [75]. Demanèche et al. [76] performed a blinded test
to determine whether bacterial communities in soil samples are

reliable for forensic analysis. Two biological methods were
employed to evaluate the ability to distinguish soil bacterial
communities: RISA and 16S rRNA gene sequencing. Both

methods were effective in identifying a single soil source. How-
ever, characterizing mixed-source soil sample required the
combination of both methods. In a study, Yang et al. [77]

sequenced the 16S rRNA genes to analyze soil bacterial com-
munities in 529 samples from 61 districts of 10 major cities in
China. Random soil samples were assigned to specific districts

and cities based on bacterial communities with 66.7% and
90% accuracy, respectively. This research has shown that soil
microbes can provide clues to the source of unknown samples
and allow comparison of samples taken from suspects or crime

scenes.
Most of the publications on geolocation inference have

dealt with the bacterial community in soil. Indeed, soil con-

tains a diverse microflora with bacteria, fungi, protozoa, viral
flora, and so on. Lilje et al. [78] studied various microbial flora
to develop criteria for managing soil metagenomic data and

database retrieval for forensic applications. Sequencing data
in the study included the 18S rRNA genes of fungi as well as
the small subunit ribosomal RNA (SSU rRNA) regions of
arbuscular mycorrhizal fungi (AMF), and the 16S rRNA genes

of bacteria. For data management, different approaches were
used to filter the data. Comparison of the data shows that cre-
ating and using a filtered 18S rRNA database would provide

much greater computational efficiency and flexibility.
Giampaoli et al. [79] used a metabarcoding method to success-
fully, accurately, and sensitively analyze the biological DNA

composition of specific soils, including microflora, plant, meta-
zoan, and protozoan DNA. DNA metabarcoding is a useful
method for identifying microbial components in samples that

are geologically similar but from different environments. Shot-
gun metagenomic sequencing allows the simultaneous detec-
tion of the entire microflora including bacteria, fungi,
viruses, etc., in a sample. Therefore, metagenomics is a poten-
tial tool for making inferences about geolocation in the context
of forensic identification. Danko et al. [80] presented a global
atlas of 4758 metagenomic samples collected over three years

in 60 cities worldwide. They found that city-specific microbial
taxonomic signatures can be used to predict the geolocation of
samples with 78.9% accuracy. Based on their findings, success-

ful geolocation of samples based on city-specific taxa could
facilitate future forensic biogeographic capacity.

The study by Lax et al. [60] showed that the microbial com-

munities associated with sole from shoes are also associated
with the microbiota of the ground on which people walk.
Bayesian methodology was used to determine the origin of a
shoe sample based on its similarity to a particular ground sam-

ple. At a given time point, the composition of the microbial
community on the ground had a strong and direct influence
on the microbial population living on the corresponding sole.

However, the test samples from these studies were generally
only compared with several reference samples collected from
suspected crime scenes. This limited broader forensic applica-

tion of geolocation inferences based on the biogeography of
the soil microbiome. The establishment of soil microbiome
databases and the development of machine learning algorithms

could provide available reference databases. Grantham
et al. [81] applied the DeepSpace algorithm to a database con-
taining more than 1300 dust microbiome samples in America.
The result showed that most geolocation predictions made

using this method were less than 100 km from actual locations
and that dust-associated fungi alone predicted the location of a
sample with nearly 90% accuracy.

In addition to the environmental microbiome, the human-
associated microbiome can also provide geographic informa-
tion. This is because the human-associated microbiome is

partly influenced by many factors such as diet, geographic fac-
tors, and the degree of urbanization [82]. These specific micro-
biomes may contain geographic information about the host.

He et al. [83] characterized the gut microbial communities of
7009 individuals from 14 districts within one province in China
and found that host location was most strongly associated with
microbial community variation. The proportion of Firmicutes

and Bacteroidetes in the gut microbiota differed with latitude.
This could allow conclusions to be drawn about whether a per-
son is from the northern or southern hemisphere [84]. Singh

et al. [85] used the Forensic Microbiome Database (FMD), a
database of microbiome data from human skin, vaginal fluid,
saliva, and stool from 35 countries, and they found that the

distribution of the human microbiome varied depending on
the geographical location of the host.

PMI estimation

PMI estimation has always been an important tool in the fight
against crime. Traditional physical, histomorphological, and
biochemical techniques have been used to estimate PMI. How-

ever, traditional methods are compromised by the preservation
of the material and the time limit of the degradation of endoge-
nous substances. Beyond this time limit, accuracy decreases

sharply. Metagenomics could provide another solution to this
problem. After death, the cadaver gradually decomposes under
the action of microorganisms. In the meantime, spoilage prod-

ucts also gradually accumulate in the tissue. The amount of
spoilage microorganisms and spoilage products changes
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according to certain patterns as the prolongation of the death
time. Therefore, PMI estimation can be derived from the law
of microbial community succession. Recently, metagenomic

analysis has become increasingly important in PMI
estimation [86].

The microbiomes that drive mammalian decomposition are

somewhat similar and repeatable in different hosts and envi-
ronments [87]. This ecological hypothesis underpins the
microbiome-based method of PMI estimation. Most tightly

controlled experiments have been performed on animal models
rather than human bodies. Metcalf et al. [88] collected samples
of abdomen, body skin, scalp, and soil in a mouse cadaver
decomposition system to characterize the bacterial and micro-

bial eukaryotic ecology associated with cadaver decomposi-
tion. Their study provided a PMI estimate with a mean
absolute error of about 3 days over 48 days. The lowest error

was obtained with scalp data. The study suggests that cadaver
microbiome data can be considered as a potential forensic tool
for PMI estimation.

Subsequently, further research has been published on the
cadaver microbiome in different animals, on different body
sites, and in different environments. Guo et al. [89] investigated

the bacterial communities that were degraded in the remains of
rats under natural conditions or conditions that excluded
pests. The relative abundance of the dominant phyla (Pro-
teobacteria, Firmicutes, Bacteroidetes, and Actinobacteria)

changed significantly during disintegration of the body; the
predominant bacterial type shifted from aerobic to anaerobic
and the community composition became more similar between

body parts. In forensics, cadavers can also be buried in soil and
submerged in water. Zhang et al. [90] characterized the bacte-
rial communities from the soil, cecum, and skin of buried

cadavers during decomposition to predict PMI in a SD rat
model system. The prediction model yielded a mean absolute
error of 1.82, 2.06, and 2.13 days, respectively, within 60 days

of decomposition. Cartozzo et al. [91] predicted the post-
mortem submersion interval (PMSI) of porcine skeletal
remains in a freshwater lake based on the microbiome and
obtained a mean absolute error of 37–57 days within 579 days

of the experiment. Most studies estimating PMI based on the
microbiome of the cadavers have used random forest algo-
rithm to determine the predicted value. The study by Liu

et al. [92] showed that an artificial neural network (ANN)
model could improve the prediction accuracy of PMI, so that
PMI could be predicted within about 1.5 h over 24 h and

14.5 h over 15 days of decomposition. This research suggests
that cadaveric microbial communities change in predictable
successional processes.

Microbial variations in cadavers are closely related to exter-

nal environmental factors. Carter et al. [93] studied the succes-
sion of microbial communities in soil under porcine cadavers
in summer and winter, respectively. The authors found that

the season of decomposition had a considerable effect on the
composition of microbial communities (including bacteria,
archaea, and eukaryotes). Metcalf et al. [20] studied the micro-

biome of mice cadaver in soil from three different sites (desert,
short grass, and forest) based on 16S rRNA, 18S rRNA, and
ITS gene sequencing methods. The result confirmed that

microbial succession was predictable regardless of soil type,
seasons, or the presence of other scavengers.

However, it is important to include human cadavers in the
study for the method to be applicable in forensics. Metcalf
et al. [20] observed reproducible succession of microbiota
within the season and accurate PMI estimation in the experi-
ment with human cadavers. Furthermore, the study by

DeBruyn and Hauther [94] showed that changes in human
microbial communities can become forensic tools for PMI esti-
mation. The researchers continuously collected samples from

the cecum of a cadaver during the bloat stage of decomposi-
tion (under natural conditions), and then determined the pat-
tern of succession in the intestinal bacterial community after

human death by sequencing the 16S rRNA gene amplicon.
The sequencing results showed that the abundance of Bac-
teroidales decreased over time. In contrast, the abundance of
Clostridiales and fly-associated Gammaproteobacteria

increased. The absolute abundance of bacteria increased signif-
icantly, whereas bacterial alpha diversity decreased. The appli-
cation of the method in forensic cases is limited mainly by the

lack of a predictive model based on a sufficient number of
human cadaver samples. However, there is enormous potential
for developing cadaveric microbiomes as a ‘‘clock” for estimat-

ing human PMI.

Other applications

The human-associated microbiome could provide various clues
to solve crimes, such as the origin of tissue samples, the time
since body fluids were deposited, ethnicity, and possible living
conditions. Different organisms or body fluids carry different

types of bacteria that can be identified in this way. For
instance, vaginal discharge often contains Lactobacillus crispa-
tus, Lactobacillus jensenii, and Atopobium vaginae [95,96]. Sal-

iva often contains Streptococcus salivarius and Streptococcus
mutans [97,98]. Hanssen et al. [99] used saliva deposited on
the skin as a study model using 16S rRNA gene sequencing

to prove the recognition ability of the human-associated
microbiome for body fluid prediction. The microbial composi-
tion features can be used to distinguish saliva from skin, and

the cross-validation accuracy was 94%. López et al. [100] col-
lected 16S rRNA gene sequencing data from the HMP of 1636
skin, vaginal, and oral samples and then trained 50 taxonomy-
independent deep learning networks to classify the origin of

the tissue. The result showed that the accuracy of tissue origin
classification was very high. The area under curve (AUC) val-
ues for skin reached 0.99, for oral secretions reached 0.99, and

for vaginal secretion reached 1.00. Furthermore, Dobay
et al. [101] collected fluid/tissue samples from six different
human body sites. They then exposed these samples to indoor

conditions. These samples could still be accurately matched to
the corresponding body sites after 30 days of exposure. These
results illustrate the potential of microbial diversity profiling as
a new forensic tool for identifying body fluids.

Similar to PMI estimation, the microbiome can also pro-
vide an available method for estimating the deposition time
of body fluid stains. López et al. [102] first use the microbiome

of human salivary stains to confirm the feasibility of the
method. They identified 15 abundant species using publicly
available 16S rRNA gene sequencing data from 1848 saliva

samples. They also characterized salivary stains from two indi-
viduals exposed to indoor conditions over one year. Fusobac-
terium periodonticum, Haemophilus parainfluenzae, Veillonella

dispar, and Veillonella parvula were selected as those whose
abundance showed significant time-dependent changes. They
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then analyzed the salivary stains of 15 individuals exposed to
indoor conditions for up to 1 month using the aforementioned
markers. The mean absolute error ranged from 3.3 to 7.8 days.

To date, there are few studies that estimate the deposition time
of other stains in body fluids other than saliva.

Metagenomic analysis of microbial communities could also

provide information about an individual’s race and ethnicity.
For instance, Yanomomi natives in Venezuela have never
had contact with Westerners and have never been exposed to

commercial antibiotics; the bacterial diversity and function
of their skin is twice that of Americans [103]. However, differ-
ences in the human microbiome between ethnic groups are
partly mediated by diet, lifestyle, and geographic environment.

Deschasaux et al. [104] showed that individuals of different
ethnicities living in the same city tended to have similar gut
microbiota characteristics. Borrello et al. [105] found that

overall diet quality and dietary intake components can signif-
icantly explain ethnic variations in gut bacterial composition.
Moreover, body site is a more important determinant factor

than ethnic diversity in the human skin microbiota [106]. These
findings suggest that classification by race and ethnicity based
on the human-associated microbiome should be used with

caution.

Challenges and perspectives

The application of metagenomics in forensics is just beginning.
As far as we know, microbiomes are not yet approved as evi-
dence for individual identification, geolocation inference, and

PMI estimation. First, there are not yet any standardized oper-
ating principles and specifications for the extraction, packag-
ing, transport, and preservation of microbial evidence.

Second, the reliability of microbiome tools for forensics needs
to be improved. Compared to human DNA markers, the speci-
ficity and stability of individual microbes need to be further
validated. The reliability of the microbiome for forensic appli-

cations needs to be better studied, and reliable error rates need
to be established. The problem should be addressed by suffi-
ciently large sample size and quantitative machine learning

methods. There are well-tested algorithms for both classifica-
tion and regression that have been applied in forensics based
on the microbiome, including (but not limited to) K-nearest

neighbors models [104], random forest model [90,107], and
neural networks [81,92,108]. Machine learning methods
showed an obvious advantage in managing multidimensional

data such as microbiome data [109]. However, quantitative
computation of relevant forensic parameters is required. The
current evaluation criteria for explaining microbiome evidence
differ from the traditional likelihood calculation for human

DNA. The evaluation criteria need further research to be
accepted by the forensic science community. On the other
hand, a sufficient sample size is required for machine learning

methods to perform adequately. Therefore, the establishment
of microbiome databases is necessary for the application of
the method. The establishment of forensic DNA databases

has helped the police to identify or exclude persons associated
with a crime. It has also enabled the identification of serial
offenders by linking multiple cases, which has greatly
improved the evidential value of forensic data. Although var-

ious microbiome databases such as HMP and EMP have been
launched successively, the fragmented state of the publicly
available databases has limited the application of microbiome
as a forensic tool. Singh et al. [85] reported that they intro-

duced the FMD by collecting 16S rRNA gene sequencing data
from publicly available databases to make inferences about the
site of discovery. More databases are needed for various foren-

sic purposes. Finally, creating awareness is an essential step in
making forensic science permissible. Training and equipment
for sequencing microbiome cost a lot. Advances in sequencing

technology and computer power will reduce costs. Overall,
these issues are critical to the forensic practice of microbiomes
and will be overcome as research progresses.

Beyond the applications listed here, metagenomics could

bring breakthroughs in forensic pathology, toxicology, and
drug abuse testing. In short, the development of metagenomics
in forensics will provide a new perspective and new solutions

for forensic identification.
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