
Genomics Proteomics Bioinformatics 21 (2023) 108–126
Genomics Proteomics Bioinformatics

www.elsevier.com/locate/gpb
www.sciencedirect.com
RESOURCE REVIEW
Computational Tools and Resources for

CRISPR/Cas Genome Editing
* Corresponding authors.
E-mail: lichao01@caas.cn (Li C), zhangb@ecu.edu (Zhang B).

Peer review under responsibility of Beijing Institute of Genomics,

Chinese Academy of Sciences / China National Center for Bioinfor-

mation and Genetics Society of China

https://doi.org/10.1016/j.gpb.2022.02.006
1672-0229 � 2023 The Authors. Published by Elsevier B.V. and Science Press on behalf of Beijing Institute of Genomics, Chinese Academy of S
China National Center for Bioinformation and Genetics Society of China.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Chao Li 1,*, Wen Chu 1,2, Rafaqat Ali Gill 1, Shifei Sang 1,2, Yuqin Shi 1,2,

Xuezhi Hu 1, Yuting Yang 1,2, Qamar U. Zaman 1,2, Baohong Zhang 3,*
1Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement
of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China

2Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
3Department of Biology, East Carolina University, Greenville, NC 27858, USA
Received 21 December 2020; revised 22 February 2022; accepted 28 February 2022

Available online 24 March 2022

Handled by Xiaole Shirley Liu
KEYWORDS

Genome editing;

Efficiency and specificity;

CRISPR/Cas9;

sgRNA;

Computational tool;

Algorithm
Abstract The past decade has witnessed a rapid evolution in identifying more versatile clustered

regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) nucle-

ases and their functional variants, as well as in developing precise CRISPR/Cas-derived genome

editors. The programmable and robust features of the genome editors provide an effective RNA-

guided platform for fundamental life science research and subsequent applications in diverse scenar-

ios, including biomedical innovation and targeted crop improvement. One of the most essential

principles is to guide alterations in genomic sequences or genes in the intended manner without

undesired off-target impacts, which strongly depends on the efficiency and specificity of single guide

RNA (sgRNA)-directed recognition of targeted DNA sequences. Recent advances in empirical scor-

ing algorithms and machine learning models have facilitated sgRNA design and off-target predic-

tion. In this review, we first briefly introduce the different features of CRISPR/Cas tools that

should be taken into consideration to achieve specific purposes. Secondly, we focus on the

computer-assisted tools and resources that are widely used in designing sgRNAs and analyzing

CRISPR/Cas-induced on- and off-target mutations. Thirdly, we provide insights into the limita-

tions of available computational tools that would help researchers of this field for further optimiza-

tion. Lastly, we suggest a simple but effective workflow for choosing and applying web-based

resources and tools for CRISPR/Cas genome editing.
Introduction

The clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein (Cas) system was dis-
covered from the adaptive immune system of bacteria and
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archaea, which employs � 20-bp RNA CRISPR arrays for
guiding Cas nucleases to specifically recognize and cleave the
invader’s nucleic acid sequences [1,2]. In the last decade, this

system was developed as a robust genome editing tool to gen-
erate sequence-specific mutagenesis at desired genomic sites in
a wide range of organisms including both plants and animals

[3–9]. Currently, the CRISPR/Cas genome editing tools have
been rapidly modified for further broadening their application
potentials [10] (Figure 1). After the Cas9 nuclease, the first dis-

covered Cas nuclease, was used for CRISPR genome editing,
other types of Cas nucleases and their orthologues were also
proved to have potentials for genome editing. Meanwhile, sci-
entists are also engineering and modifying the existing Cas

nucleases to enhance CRISPR/Cas applications. Currently, a
variety of CRISPR/Cas-derived genome editors, including
base editors and prime editors, provide more options for
Figure 1 Overview the brief history for developing the main CRISPR
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selecting genome editing tools [11,12] (Figure 1). Because
CRISPR/Cas-based genome editing is precise, robust, and
powerful, it has become a revolutionary approach for both

foundational and applied research, including clinical CRISPR
gene therapy and crop improvement [10,13,14].

Although different types of CRISPR/Cas systems exhibit

similarities in their genome editing patterns, the recognition
and cleavage methods and their underlying machineries are
different, which directly determine how to choose the optimal

CRISPR/Cas tools for individual experimental purposes. To
simplify and accelerate CRISPR/Cas-related research, many
laboratories have developed different computational tools
and resources for designing single guide RNAs (sgRNAs)

and analyzing the genome editing results, including both on-
and off-target effects. Currently, CRISPR/Cas tools are not
only restricted in genome modification, the high-efficiency
/Cas editors
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binding features of dead Cas9 (dCas9)/Cas9 nickase (nCas9)
and their variants allow them to be adapted rapidly for fusing
with other functional enzymes to achieve gene regulation,

including CRISPR/dCas-mediated gene transcriptional modu-
lation and epigenetic modifications [12,15–24]. In this review,
we comprehensively summarize our current knowledge of

CRISPR/Cas genome editing and the key parameters involved
in choosing suitable computational tools. In addition, we sys-
tematically summarize the features of several major web-

accessible tools for designing sgRNAs and analyzing post-
genome editing data; these tools are widely used in both ani-
mal and plant genome editing.

Workflow for performing genome editing experiments

Rapid evolution of CRISPR/Cas genome editing techniques

offers more diverse applications that are not just limited to
the targeted mutations in desired genomic DNA sequences
by inducing double strand breaks (DSBs). Basically, the pur-

pose of applying CRISPR/Cas genome tools is to target and
modify a genome sequence, which is subsequently used for
identifying gene functions and potential applications, such as
human therapeutic purposes and crop genetic improvement

[10,14,25]. To precisely edit a specific genome sequence by
CRISPR/Cas, several key procedures need to be taken into
consideration.

Different CRISPR/Cas genome editing techniques have dis-
tinct features for achieving certain types of experimental pur-
poses. The common purposes for using CRISPR/Cas tools

include: (1) impairing gene functions by creating targeted
mutagenesis in their functional domains, which can be
achieved by inducing high-frequency DSBs by using the tradi-

tional CRISPR/Cas genome editors; (2) remodeling gene roles
by precisely modifying specific nucleotide base sequences,
which preferably uses base editor and prime editor; and (3)
modulating gene expression, in which CRISPR/Cas-based

gene activation and repression approaches are usually
employed.

CRISPR/Cas genome editing experiments mainly consist of

three major steps (Figure 2): (1) designing sgRNAs to target a
gene of interest; (2) choosing an efficient transformation
method to deliver the CRISPR/Cas reagents into targeted

cells; and (3) screening mutations and analyzing genome edit-
ing events. These three steps are extremely important for
CRISPR/Cas genome editing. Designing sgRNAs provides a

complementary genome site for targeting a specific gene. An
ideal sgRNA not only binds to the target sequence with
high efficiency but also minimizes the possibility of recognizing
other sequence sites that causes off-target effects. Many

computational tools have now been developed to design
sgRNAs. These web-based computational tools and
databases provide a public platform for researchers to

identify perfect sgRNAs, and also to predict possible off-
target effects.

Delivery of CRISPR/Cas reagents into targeted cells is

always required. Without delivering CRISPR/Cas reagents, it
is impossible for a sgRNA to bind to the target site and allow
Cas enzyme to recognize and edit the specific sequences. There
are many transgenic approaches developed for delivering

CRISPR/Cas reagents into targeted cells with different
purposes. For plants, CRISPR/Cas constructs can be trans-
ferred into plant cells by Agrobacterium-mediated T-DNA
transgene methods, but exogenous fragments can be inte-

grated into plant genomes. CRISPR/Cas ribonucleoprotein
(RNP) complex can be used for delivery as well and have
been demonstrated in mammalian and plant cells. The

sgRNAs and Cas proteins would be degraded after generat-
ing mutagenesis, which is beneficial for reducing off-target
effects. Many excellent reviews have summarized transgene

techniques in detail [26,27].
After CRISPR/Cas targets the specific sequences, it is nec-

essary to screen the editing events and estimate the potential
off-target impacts. Thus, evaluation of the genome editing effi-

cacy is a crucial part of applying CRISPR/Cas genome editing
techniques. Successful genome editing should specifically mod-
ify the targeted genome sequences without off-target effects on

other genome locations. To identify mutation types, many
experiment-based methods and high-throughput screening
strategies have been developed.

Best practices for sgRNA design

Efficiency and specificity are two main criteria for CRISPR/

Cas genome editing. Efficiency demonstrates how well a
sgRNA targets the specific sequence and guides a Cas enzyme
to edit the targeted sequences; it is usually presented by the

percentage of cells that are edited. Specificity means the
CRISPR/Cas editing events are unique or not and whether
they cause off-target effects. There are many factors affecting

CRISPR/Cas genome editing efficiency and specificity that
have been integrated into sgRNA design [28]. The affinity
between the RNP complex and the targeted DNA sequences

depends on the hybridization of sgRNAs and DNA sequences
through sequence complementarity. Previous studies suggest
that different binding sites result in huge differences in cleav-
age efficiency and specificity among different organisms [29–

32]. Several web-accessible databases have been established
by collecting sgRNA data from large-scale CRISPR/Cas
experiments [33–37] (Table 1). Based on the analysis, these

databases not only provide practical resources for sgRNA
selection but also reveal the key factors that affect sgRNA effi-
cacy and specificity, which would facilitate the further opti-

mization of sgRNA design.
To systemically characterize the relationship between

sgRNA features and cleavage efficiency, Zhang and coworkers

assessed more than 700 sgRNA variants and over 100 potential
target sites in human cells [33]. Their results suggested that the
total number, position, and distribution of mismatched bases
were crucial to determine the cleavage activity of CRISPR/

Cas9 targets [33]. In addition, a mismatched single-base
located in the protospacer adjacent motif (PAM)-proximal
region is more sensitive than the PAM-distal counterparts

[33]. To refine sgRNA efficacy and its prediction, Labuhn
and colleagues employed fluorescent reporter knockout assays
to test the target efficacies of 430 sgRNAs; based on their

experimental results, they developed a linear model-based dis-
crete system, called CRISPRater, for predicting sgRNA effi-
ciency [36]. Currently, this algorithm has been integrated
with other sgRNA designing programs, such as CRISPOR

[38] and CCTop [39].



Figure 2 Example workflow for applying genome editing tools to modify genome sequences

Targeted genome modification has great potentials to be applied in human gene therapy and crop genetic improvement. To proceed a

CRISPR/Cas genome editing experiment, the initial step is to design an optimal sgRNA with high efficiency and specificity. On the basis

of large-scale empirical data, many algorithm/predictive models have been established and eventually integrated in several web-based

applications, such as those shown in upper panel with red color words. Those web-accessible computational tools are designed mainly

based on three sets of scoring system, sgRNA efficiency scores, sgRNA specificity scores, and output prediction scores. After performing

genome editing experiments, sequencing-based screening will be implemented to evaluate on-target outcomes and off-target effects. To

facilitate the efficiency of identifying desired CRISPR/Cas editing events, several web-based resources provide comprehensive

computational analysis strategies that meet the needs not only for small-scale genome editing experiments but also for large-scale pooled

CRISPR/Cas9 library screening, like those shown in the lower panel with black color words. In addition, many methods and tools have

been developed for analyzing outcome off-target effects as listed in Table 2. sgRNA, single guide RNA; NGS, next-generation sequencing;

RNP, ribonucleoprotein.
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Effect of nucleotide composition and location on sgRNA design

The nucleotide composition of a sgRNA, particularly GC con-
tent, is essential to determine its efficiency and specificity. One
of the most important applications of CRISPR/Cas tools is to

perform whole-genome screening for gene functional analysis
[31], which also provides important information for uncover-
ing nucleotide preference of sgRNAs. Based on analyzing the
data of 1841 sgRNAs designed for targeting endogenous

mouse and human genes, Doench and colleagues developed
a predictive model (named Rule Set 1, which is based on
sgRNA sequence features) to clarify general rules for designing
highly active sgRNAs [40]. After quantification of the sequence
features correlated with the activities of sgRNAs, they found

that the GC content of a sgRNA did not display a positive cor-
relation with the sgRNA activity in genome editing; both high
and low GC contents of sgRNAs led to less efficient genome

editing [40]. A similar rule was also identified in performing
genome-scale functional screens using human cells and zebra-
fish [31,41]. Additionally, several large-scale datasets suggest

that the type of nucleobase is important for sgRNA activity
[40,42]. The nucleotide at the position 20, located immediately



Table 1 Commonly used sgRNA design tools and databases

Name Organism Cas nuclease Major feature Database or web server Website Refs.

CRISPOR > 100 species > 30 Cas9 orthologues and

Cas variants

Designing, evaluating, and cloning guide

sequences for the CRISPR/Cas9 system;

providing primers for vector construction;

indicating mismatch number; and linking off-

target to genome browser

Web server https://crispor.tefor.net/ [38]

CHOPCHOP > 100 species Cas9, Cas12, Cas13, and

TALEN

Providing multiple predictive models; visualizing

genomic location of targets and genes; and

providing primers

Web server https://chopchop.cbu.uib.no/ [46,47]

CRISPR RGEN Tools > 100 species > 20 Cas9 orthologues and

Cas variants

Providing multiple predictive models;

downloadable and standalone; and predicting

potential off-target number via Cas-OFFinder,

and out-of-frame scores via Microhomology-

Predictor

Web server https://www.rgenome.

net/cas-designer/

[84,93]

E-CRISP > 50 species SpCas9 Feasibly creating genome-scale libraries;

downloadable; and frequently updated

Web server https://www.e-crisp.org/E-

CRISP/index.html

[49]

GUIDES Human and mouse SpCas9 Feasibly designing CRISPR knockout libraries;

downloadable; and step-by-step

Web server https://guides.sanjanalab.

org/ and https://github.com/

sanjanalab/GUIDES

[11]

CRISPRscan > 10 species Cas9 and Cas12 Designing sgRNAs for protein-coding genes;

ready-to-inject sgRNA sequence; tracks for

genome browser; and searching whole-genome

off-target impacts

Web server https://www.crisprscan.org/ [45]

CCTop > 100 species > 10 Cas9 orthologues and

Cas variants

Searching for single and multiple queries;

indicating mismatch number; predicting off-target

impacts; and predicting sgRNA efficiency using

CRISPRater with custom in vitro transcription

selection

Web server https://cctop.cos.uni-

heidelberg.de/

[39]

CRISTA > 100 species SpCas9 Providing machine learning framework, including

DNA/RNA bulge genomic context and RNA

thermodynamics; detecting off-targets; and

ranking targets

Web server https://crista.tau.ac.il/ [56]

DeepCRISPR Human SpCas9 Incorporating epigenetic information; and

predicting off-target impacts

Web server https://www.deepcrispr.net/ [57]

DRSC Find CRISPRs Drosophila SpCas9 Providing off-target stringency from 3 to 5

mismatches; and separating target region and

potential off-targets by different tracts

Web server https://www.flyrnai.org/

crispr/

https://www.flyrnai.org/

crispr3/web/

[72]

EuPaGDT Eukaryotic pathogens > 10 Cas9 orthologues and

Cas variants

Providing wide compatibility for eukaryotic

pathogen genomes

Web server https://grna.ctegd.uga.edu/ [73]

WU-CRISPR Human and mouse SpCas9 Providing machine learning algorithm trained by

experimental data; providing custom sequence

between 26 bp and 30,000 bp with one sequence

per time; and downloadable results

Web server https://crispr.wustl.edu/ [155,156]

GPP sgRNA

Designer

Human, mouse,

and rat

SpCas9, SaCas9, and AsCpf1 Inputting up to 200 transcript IDs or gene IDs;

maximizing on-target activity and minimizing off-

target activity; and scoring on-targeting efforts

Web server https://portals.

broadinstitute.org/gpp/

public/analysis-tools/sgrna-

design

[48]

(continued on next page)
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Table 1 (continued)

Name Organism Cas nuclease Major feature Datab e or web server Website Refs.

CRISPR-GE > 40 plant species SpCas9, FnCpf1, and

AsCpf1

Providing software toolkits, primer design for

vector construction, on-target amplification, and

PCR sequencing result analysis

Web s ver https://skl.scau.edu.cn/ [94]

CRISPR-P 49 plant species > 14 Cas9 and variants Supporting wide range of plant species; providing

on-target and off-target scoring; and providing

gRNA sequence analysis

Web s ver https://crispr.hzau.edu.cn/

CRISPR2/

[95,96]

CRISPR-PLANT

V2

7 plant species SpCas9 Supporting main model and crop plant species;

providing selection of chromosome and locations

with clear instruction

Web s ver https://www.genome.

arizona.edu/crispr2/

[157]

CRISPRz Zebrafish, human,

and mouse

SpCas9 Providing specific for a wide variety of cell lines

and organisms including zebrafish; and providing

validated sgRNA database

Web s ver https://research.nhgri.

nih.gov/CRISPRz/

[82]

CRISPRlnc 10 species SpCas9 Providing downloadable validated sgRNA

database for lncRNAs

Datab e https://www.crisprlnc.org/ [81]

FORECasT Human SpCas9 Predicting the mutational outcomes Web s ver https://partslab.sanger.ac.

uk/FORECasT

[87]

AsCRISPR Human and mouse SpCas9, AsCpf1, AaCas12b,

CasX, and variants

Designing sgRNAs for allele-specific genetic

elements

Web s ver https://www.genemed.tech/

ascrispr/ascrispr

[98]

SNP-CRISPR 9 plant and animal species NGG and NAG PAM Designing sgRNAs for targeting SNPs or Indel

variants

Web s ver https://www.flyrnai.

org/tools/snp_crispr/web/

[99]

SSC N/A Cas9 For both CRISPR knockout and CRISPRa/

CRISPRi

Web s ver https://cistrome.org/SSC/ [35]

DeepHF N/A SPCas9 and Cas9HF gRNA designer and efficiency prediction Web s ver and

datab e

https://www.DeepHF.com/ [158]

PnB Designer 6 species Cas9 Designing pegRNAs for prime editors and

sgRNAs for base editors

Web s ver https://fgcz-shiny.uzh.ch/

PnBDesigner/

[99,100]

inDelphi Human SpCas9 Predicting the mutational outcomes Web s ver https://www.crisprindelphi.

design/

[86]

Note: Cas, CRISPR-associated protein; CRISPR, clustered regularly interspaced short palindromic repeats; CRISPRa, CRISPR activati ; CRISPRi, CRISPR interference; gRNA, guide RNA;

lncRNA, long non-coding RNA; pegRNA; prime editing guide RNA; sgRNA, single guide RNA; TALEN, transcription activator-like ef ctor nuclease; N/A, not available.
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upstream of PAM, is a key determinant. Guanine was highly
favorable whereas cytosine was strongly unfavorable
[31,40,41]. In contrast, the position 16, the last nucleotide of

the seed region, preferred cytosine over guanine [40,42]. Theo-
retically, the transcription of sgRNAs relies on RNA poly-
merase III that recognizes uracil-rich sequences for

termination [43,44]. The uracil-rich sequence structure might
lead to early termination of sgRNAs and then impair expres-
sion [42]. Thus, sgRNA sequences with thymine-rich nucle-

obase are not favorable at their 30 end region. Additionally,
adenine is preferable in the middle of a sgRNA, whereas cyto-
sine has negative effects at the position 3 [31,40].

Zebrafish is an ideal model organism for performing large-

scale analysis of sgRNA activity. To dissect the sgRNA molec-
ular features affecting the efficacy of CRISPR/Cas9 in vivo, a
sgRNA pool was constructed by introducing 1280 sgRNAs

to target 128 genes in the zebrafish genome [45]. The research-
ers found that sgRNA stability in vivo plays a critical role in
determining sgRNA activity. The formation of a guanine-

quadruplex structure, which contains at least eight guanines,
can significantly increase sgRNA stability. Additionally, sev-
eral sequence features were identified by statistical analysis

of the most efficient sgRNAs, such as guanine enrichment in
the region of positions 1–14, cytosine enrichment between
the position 15 and the position 18, and overall depletion of
thymidine and adenine except the positions 9 and 10 [45].

Taken together, a linear regression-based predictive sgRNA-
scoring algorithm, named CRISPRscan (http://CRISPRscan.
org), was proposed for detecting the most active sgRNAs

in vivo [45]. The CRISPRscan model is also implemented in
other web-based sgRNA design tools, such as CHOPCHOP
[46,47] and CRISPOR [38].

Given the hypothesis that sgRNA activity could be influ-
enced by several other features, such as the position-
independent nucleotides, the location of the target sites in

the gene, and the thermodynamic property of a sgRNA, the
Rule Set 1 predictive model was further improved by integrat-
ing new prediction algorithms and generated ‘‘Rule Set 2”. It
employs the improved algorithms for on- and off-target activ-

ity prediction, and the gradient-boosted regression tree model
with the augmented feature set trained on the combined data-
set, which is used not only for sgRNA libraries for general gen-

ome editing purposes (gene knockout and knockin) but also
for CRISPR activation (CRISPRa) and CRISPR interference
(CRISPRi) [37]. The Rule Sets 1 and 2 were widely imple-

mented in many websites and computational tools for design-
ing sgRNAs, including CHOPCHOP [46,47], CRISPOR [38],
GPP sgRNA Designer [48], and E-CRISP [49].

Some other factors also affect Cas nuclease binding and

cleavage. It has been suggested that both sequence composi-
tion and locus accessibility are important to determine sgRNA
activity, which subsequently influence the sgRNA design tools,

such as sgRNAScorer [50,51]. Additionally, chromatin accessi-
bility [52–55] and asymmetric sgRNA–DNA interactions also
affect CRISPR/Cas cutting specificity [37,56]. Currently, many

groups have integrated these algorithms into their web-based
applications, such as DeepCRISPR, CRISTA [56,57], pre-
dictSGRNA [58], and uCRISPR [59]. GuidePro is a two-

layer ensemble predictor for sgRNA efficiency prediction that
enables the integration of multiple factors for the prioritization
of sgRNAs for gene knockout [60].
Designing prime editing guide RNAs for prime editing

Prime editing is a new application of CRISPR/Cas technology
in which a small-sized genetic sequence is altered without
requiring a donor DNA template. In prime editing system, a

prime editing guide RNA (pegRNA) is used to replace the tra-
ditional sgRNA, which contains a primer binding site (PBS)
and a reverse transcriptase (RT) template sequence. After
nCas9 cuts a target DNA sequence, the PBS sequence will be

elongated and inserted into the original DNA sequence for
DNA replacement [61]. Thus, prime editing can be used to
repair any nucleotide error without a DNA template. Due to

these advantages, prime editor has huge potentials for genome
editing. However, evaluation of prime editing efficiency is
time- and lab-intensive. To solve this problem, Kim and col-

leagues used deep learning to create a precise computational
model for measuring the efficiency of pegRNAs based on
high-throughput evaluation of 54,836 pegRNA–target pairs

in human cells [62]. More importantly, this computational tool
and resources can be found in their publicly available website
http://deepcrispr.info/DeepPE/.

Off-target consideration

One of the main concerns about sgRNA design is off-target
effects that are normally generated by unexpected cleavage at

genomic sites similar to the target sequences [33,63]. Thus, tra-
ditional short sequence alignment tools, such as Burrows-
Wheeler Alignment Tool (BWA) and Bowtie [64–66], have

been used to predict potential off-target sites [38,49]. Given
that BWA and Bowtie are originally designed for aligning
short DNA reads to large reference genomes [64,65], there
are several innate defects for predicting off-target effects. For

instance, CRISPR/Cas has been suggested to tolerate more
mismatches than traditional BWA or Bowtie alignment allows
[33,67,68]. Additionally, nucleotide positions are important for

target specificity, and atypical PAM could be recognized by
CRISPR/Cas9 as well [33,37]. To overcome these problems,
many improved off-target prediction tools have been reported.

For example, CCTop can predict potential off-target sites with
four mismatches differently distributed in the targeted genomic
sites [39], and Cas-OFFinder is not limited by the number of

mismatches and allows variations in PAM sequences [67].
To predict off-target sites more accurately, several compu-

tational models were built based on large amounts of experi-
mental data. After evaluating more than 100 predicted

genomic off-target loci in two human embryonic kidney cell
lines [33], several rules were proposed to minimize off-target
effects, including that (1) the potential off-target sequences

should not be followed by a PAM with either a 50-NGG or
50-NAG sequence, and (2) the minimum mismatches between
sgRNA and potential off-target sites should be limited to

3 nt and at least two mismatches are better in the proximal
PAM region. These rules have been implemented in their speci-
ficity score tool, termed MIT, which has subsequently been

implemented in web-accessible applications, such as CHOP-
CHOP [46,47] and CRISPOR [38]. Another commonly used
specificity score tool is Cutting Frequency Determination
(CFD), proposed by Doench and colleagues [37]. In addition

to mismatch position of sgRNA and atypical PAM effect,
the identities of mismatched nucleotides and insertion and

http://crisprscan.org/
http://crisprscan.org/
http://deepcrispr.info/DeepPE/
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deletion (indel) variants can significantly affect sgRNA activ-
ity. CFD has been shown to predict most off-target sites and
exhibit better performance than MIT and CCtop by using

GUIDE-seq, an unbiased experimental method for detection
of sgRNA off-target effects [69]. CFD has been implemented
in CRISPOR, GPP sgRNA Designer, GUIDES, and other

web-related tools.
Currently, there are many computational programs for

designing sgRNAs and predicting their genome editing effi-

ciency and specificity. To comprehensively benchmark these
techniques and tools, several available on-target design tools,
genome-wide off-target cleavage site (OTS) detection tech-
niques, and in silico genome-wide OTS prediction tools have

been systematically evaluated [70,71]. A one-stop platform,
named integrated Genome-Wide Off-target cleavage Search
platform (iGWOS), was constructed by integrating these avail-

able OTS prediction algorithms and datasets [70,71].

Web-based tools and resources available for designing

sgRNAs

The growing application of CRISPR/Cas techniques provides

more data to optimize computational analysis models. As
shown in Table 1, a large number of available sgRNA design
tools have been compared and the majority of them displayed

different features.
Because genetic and epigenetic features of the genome are

essential to sgRNA efficacy, many comprehensive sgRNA
design websites are constructed for diverse genomes, such as

CHOPCHOP, CRISPOR, CRISPR RGEN Tools, and E-
CRISP. Some are compatible with dozens or even hundreds
of organisms (Table 1). However, other tools are restricted

to a certain type of genome background. For instance,
CRISPR-PLANT, CRISPR-P, and CRISPR-GE are online
sgRNA design resources that mainly serve plant species.

DRSC Find CRISPRs was designed for genome editing of
Drosophila [72]. EuPaGDT is a tailored website tool for
eukaryotic pathogens [73]. In contrast to the comprehensive

websites that only offer sgRNA design services, these
organism-specialized tools usually provide empirical
CRISPR/Cas vectors and protocols that are very useful for
wet lab experiments. Moreover, CRISPy-web implements

sgRNA design with a user-provided microbial genome [74].
Thus, based on individual research objectives, the first step is
always to design an appropriate sgRNA by selecting a suitable

sgRNA design tool.
Selecting a genome editing system also depends on the

experimental purpose. Constructing genome-scale CRISPR/

Cas9 knockout libraries has been achieved in certain organ-
isms, such as human cells [31,34,75], mouse [76,77], zebrafish
[78], and rice [79,80]. To this end, Graphical User Interface
for DNA Editing Screens (GUIDES) provides a website appli-

cation for constructing genome-wide CRISPR/Cas-mediated
mutation libraries in human and mouse genomes [11]. Addi-
tionally, CRISPRlnc and CRISPRz web tools are established

by collecting experimentally validated sgRNAs generated from
large-scale mutagenesis data and published sources [81,82],
which can be directly chosen for subsequent experiments.

However, for small-scale genome editing experiments, PAM
requirements should be one of the most important limitations
for designing sgRNAs. Some websites only support SpCas9,
whereas others have many Cas nuclease options and relatively

broad ranges of PAM variants available for diverse experimen-
tal purposes. Additionally, certain tools, such as CHOP-
CHOP, provide an ‘‘Option” menu that can customize PAM

types.
As summarized in the aforementioned discussion, many

predictive models and scoring algorithms have been devel-

oped for predicting sgRNA specificity and efficiency, which
may have distinct predictive scoring system. CRISPOR and
CHOPCHOP integrate multiple scoring models into their
web tools. For example, ten efficiency scores and two speci-

ficity scores have been combined in CRISPOR tool; CHOP-
CHOP employs six efficiency scores and two specificity
scores.

Predicting CRISPR/Cas outcomes is a relatively new devel-
opment for increasing the accuracy of sgRNA design. Non-
homologous end-joining (NHEJ) is a central mechanism for

repairing CRISPR/Cas-generated DSBs. Since NHEJ simply
rejoins break ends together without using a homologous
sequence for guidance template, this error-prone repair

approach has been considered as the major method for induc-
ing indel mutations at the DSB sites. Previous studies have
demonstrated that NHEJ-mediated error-prone repair is non-
random and strongly biased by short and homologous

sequences around the DSBs, termed microhomology mediated
end joining (MMEJ) [83–85]. FORECasT and inDelphi are
two recommended CRISPR/Cas predictive tools that were

developed by training with large-scale experimental data
[86,87].

Because human therapeutic treatments and crop genetic

improvement are two main application areas of CRISPR/
Cas technology, several web-based tools, which are commonly
used in animal and plant genome editing, are recommend

below.
CRISPOR

CRISPOR provides multiple tools that include efficiency pre-

diction, specificity prediction, and a primer design tool for vec-
tor construction as well as on-target and off-target detection.
CRISPOR incorporates almost all empirical algorithms for

predicting efficiency, such as Rule Set 2 [37,40], CRISPRscan
[45], Wang et al. [31], Chari et al. [51], and Xu and coworkers
[35]. They also apply ‘‘deepCpf1” and ‘‘Najm et al.” to predict

Cas12a and SaCas9 efficiencies [88–90], respectively. The pre-
dicted results are well visualized by these models. For speci-
ficity prediction, CRISPOR includes MIT and CFD that are
two mainstream specificity prediction tools. CRISPOR also

integrates two CRISPR/Cas outcome predictive models, out-
of-frame score and frameshift ratio [84,85], to further reduce
cutting efficiency. In addition, several critical factors such as

the GC content and the type and number of mismatches
(0–4 nt) are labeled in the results. CRISPOR covers hundreds
of organisms. Different nucleases and PAM types are also

available for selection. These features allow the majority of
researchers to use CRISPOR for designing different
CRISPR/Cas genome editing experiments.
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CHOPCHOP

CHOPCHOP is also a comprehensive website for sgRNA
design. Both CRISPR/Cas and transcription activator-like
effector nuclease (TALEN) systems are supported by CHOP-

CHOP. Additionally, CHOPCHOP provides various targeting
systems, such as knockout, knock-in, gene activation, and gene
repression. Similar to CRISPOR, CHOPCHOP also provides
multiple predictive models, and the user can choose one of

them to predict cutting specificity and efficiency. In addition,
CHOPCHOP has a ‘‘Custom PAM” option that is convenient
for choosing different PAM sequences. It has been reported

that cell types may affect the DSB repair pathway and then
influence CRISPR/Cas genome editing outcomes [91,92]. Sev-
eral cell types, including mESC, U2OS, HEK293, HCT116,

and K562, are optional in the CHOPCHOP website for
accurate outcome prediction. It is also important that
CHOPCHOP is compatible with more than 200 genomes. It

allows researchers to design sgRNAs in a specific region of a
gene, such as 50 UTR, 30 UTR, promoter, or the coding
region.

CRISPR RGEN Tools

CRISPR RGEN Tools is a CRISIPR/Cas library platform
that contains multiple sgRNA design tools. For example,

CRISPR RGEN Tools employs Cas-designer for conventional
CRISPR/Cas nucleases, BE-Designer for CRISPR base edit-
ing, and PE-Designer for CRISPR prime editing [93]. In addi-

tion, PE-Designer only allows for SpCas9; both Cas-designer
and BE-Designer have wide PAM compatibility. More than
100 organisms are well organized in those three tools.
Microhomology-Predictor is an outcome-predictive tool that

introduces out-of-frame score algorithm to evaluate potential
in-frame deletions caused by the MMEJ repair approach
[84]. In addition to CRISPR/Cas, this tool also supports other

programmable nucleases, such as zinc finger nucleases (ZFNs)
and TALENs, and an out-of-frame score over 66 is recom-
mended. Thus, a user can utilize those tools to implement dif-

ferent experimental purposes; it is also helpful for designing
sgRNAs with high accuracy.

CRISPR-GE

CRISPR-GE is a web-based tool for designing sgRNAs in
plants [94]. CRISPR-GE covers 41 plant genomes, including
several agriculturally important crops, such as rice (Oryza

sativa japonica), corn (Zea mays), and grape (Vitis vinifera).
This tool also includes multiple Cas nucleases, such as SpCas9,
FnCas12a, and AsCas12a, for helping the users to design

sgRNAs for different CRISPR/Cas systems. Additionally,
CRISPR-GE provides a ‘‘User defined” option that allows
the users to customize PAM sequences (including 50 and 30

PAMs) and the length of target sites. CRISPR-GE provides
warning notes for indicating ‘‘bad site”, such as very low or
very high GC contents, poly-T site(s), and contiguous base-

pairing with a sgRNA. CRISPR-GE implements CFD model
to predict the specificity of a target site. CRISPR-GE also pro-
vides a primer design tool to assist vector construction and
mutant detection.
CRISPR-P

CRISPR-P is another web-based tool for designing sgRNAs
for plants [95,96], which covers 75 plant genomes and the
majority of them are important grain crops. Compared with

CRISPR-GE, there are more CRISPR/Cas PAM types avail-
able in CRISPR-P, which include NGG (SpCas9),
NNAGAAW (St1Cas9), N4GMTT (NmCas9), NNGRRT
(SaCas9), and NG (xCas9). Additionally, CRISPR-P allows

the users to choose U3 or U6 sgRNA promoter-driven expres-
sion cassettes for designing sgRNAs. The users can input gene
ID/name, position on scaffold and chromosome, and fasta for-

mat sequences for submitting data. CRISPR-P implements
Rule Set 1/2 and CFD to predict on-target and off-target
effects. The sgRNA predictive outputs are well visualized,

which includes sgRNA GC content, restriction endonuclease
site, secondary structure of sgRNA [97], and microhomology
score [84].

AsCRISPR

AsCRISPR is a comprehensive web tool for designing sgRNAs
for allele-specific genome elements, which can be used to dis-

criminate between alleles. This tool is specifically designed
for targeting dominant single nucleotide variants (SNVs)
retrieved from ClinVar and OMIM databases [98]. In this pub-

licly available web tool, several Cas enzymes, such as SpCas9,
AsCas12a, and Cas12v, as well as CasX and their variants, can
be selected. Currently, this web tool is only for targeting SNVs

in the human and mouse genomes.

SNP-CRISPR

SNP-CRISPR is a web-based computational program for
designing sgRNAs based on public variant datasets or user-
identified variants [99]. It can be used for both model species
and non-reference genomes as well as across varying genetic

backgrounds, particularly for SNP-containing alleles. SNP-
CRISPR also calculates the efficiency and specificity scores
for sgRNA designs targeting both the variants and the

reference.

PnB Designer

PnB Designer is a web-based tool for designing sgRNAs for
both prime and base editors, two newly developed CRISPR/
Cas genome editors [100]. PnB Designer design sgRNAs for
both single and multiple genome targets on several different

plant and animal species.

Sequence scan for CRISPR

Sequence scan for CRISPR (SSC; https://cistrome.org/SSC/) is
one online web server for scanning sgRNA spacer [35]. It is not
only for designing sgRNAs for CRISPR knockout but also for

CRISPR inhibition or activation with sgRNA efficiency
prediction.

In addition to academic-developed publicly available com-

putational tools, certain CRISPR companies have also devel-
oped several useful computational tools and resources for

https://cistrome.org/SSC/
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the public. These design tools include, but are not limited to:
IDT (https://www.idtdna.com/site/order/designtool/index/
CRISPR_CUSTOM), Horizon (https://horizondiscov-

ery.com/en/ordering-and-calculation-tools/crispr-design-tool),
and Synthego (https://www.synthego.com/products/bioinfor-
matics/crispr-design-tool).

Best practice for downstream analysis and tools/

resources available for performing downstream

analysis

To identify desired genome editing events after CRISPR/Cas

genome editing experiments, many experiment-based methods
and computational tools have been developed for detecting the
indels induced by genome editing enzymes in the targeted

sequences. In 1995, Mashal and colleagues developed a
method that frequently determines the level of activity for a
sgRNA in hetero-duplexed DNA (hdDNA) [101]. In this

assay, reagents are transfected into the cells; genomic DNA
surrounding the target locus is amplified by using polymerase
chain reaction (PCR). Then, the PCR products are denatured
and re-complexed under heating and then subsequent slow

cooling. If an aberrant NHEJ event occurred, a heteroduplex
forms between amplicons of different length in mutant and
wild-type amplicons. These amplicons lead to DNA distortion,

which is recognized and cleaved by T7 endonuclease I (T7E1).
This method has been widely adopted to test CRISPR/Cas9
genome editing events. However, the accuracy of the T7E1

enzyme is questioned due to the low dynamic range and the
requirement of hetero-duplex formation, which lead to incor-
rect prediction of sgRNA activity [102].

Decoding Sanger sequencing of on-target sites

To enable easy quantification of CRISPR/Cas9 genome edit-
ing products, several new methods have been developed by

directly decoding Sanger sequencing data (Table 2). For exam-
ple, tracking of indels by decomposition assesses (TIDE) is a
decomposition algorithm that is able to precisely determine

the indel spectrum and frequency of targeted mutations gener-
ated by CRISPR/Cas9 genome editing [103]. It is a very simple
and effective method to assess the efficiency of well-performing

sgRNAs. It only requires standard molecular biology reagents
and involves three steps, including a standard PCR reaction,
Sanger sequencing, and decoding raw sequencing data by the

TIDE web tool. The algorithms accurately reconstruct the
spectrum of indels from the sequence traces. The web tool
reports the identity of the detected indels and their frequencies
[104]. Moreover, it is highly effective to predict indels with all

sizes in sample clones as well as tracing indels in heterozygotes
[102]. TIDE has been further designed to decompose the
sequence data produced by template-directed CRISPR/Cas

genome editing experiments [105]. Since the majority of
CRISPR/Cas-induced mutations in plants are biallelic (two
distinct variations), homozygous (two identical mutations),

and heterozygous (wild-type/single mutation) [106], Liu and
colleagues established a web-based tool, termed DSDecode,
to automatically decoding the superimposed sequencing chro-
matograms of CRISPR/Cas PCR products [107].
Evaluation of targeted sequences by next-generation sequencing

With rapid adaptation of genome editing technology, mas-
sively parallel sequencing methods have been employed for
assessing CRISPR/Cas post-experimental data. Evaluation of

targeted sequences by next-generation sequencing (NGS)
strategies has been developed for deeper quantification of tar-
geted amplicon sequences. The CRISPR Genome Analyzer
(CRISPR-GA) evaluates the NGS dataset and quantifies and

characterizes the indels and homologous recombination events
[108]. NGS also provides information regarding the selected
locus, including quantification of edited-sites and other muta-

tions detected. After scanning the reads, locating indels, and
computing the allelic replacements, CRISPR-GA provides a
combined report-card to the user which includes all potential

information about genome editing events. Similarly,
CRISPResso2 and Cas-Analyzer also provide web-accessible
tools for evaluating deep sequencing outcomes of CRISPR/

Cas genome editing experiments [109,110]; CRISPResso2 also
provides specific optimizations on analyzing base editing out-
comes [110].

Current computation languages, such as Python and R,

play a significant role in efficiency enhancement of several
bioinformatic tools, which have been used to accurately
detect modifications in the edited genomes by the NGS

datasets. For example, ‘‘CRIS.py” is a simple and highly
versatile program, which analyzes NGS data, and identifies
knockout and multiple user-defined knock-in alterations

from one and up to thousands of CRISPR/Cas9-edited sam-
ples [111]. CrispRVariants provides an R-based toolkit that
is feasible to evaluate and visualize mutant allele types, loca-
tions, and frequency [112]. The repair outcomes of CRISPR/

Cas9-generated DSBs were recently extensively studied in
human primary T cells, in which Leenay and colleagues
sequenced the repair outcomes at 1656 on-target genomic

sites [113]; then, they used the sequencing data to develop
and train a machine learning model, termed CRISPR Repair
OUTcome (SPROUT). SPROUT incudes all the datasets

generated from the 1656 CRISPR on-target sites and can
be used to predict the length, probability, and sequences
of indels generated by CRISPR/Cas9 [113]. In another

study, Wang and colleagues collected 13 datasets obtained
from previously reported different CRISPR/Cas genome
editing experiments in six different species, including human,
mouse, zebrafish, Drosophila, Ciona intestinalis, and C. ele-

gans; after machine learning and featurization by eight dif-
ferent models, they developed an algorithm, called GNL-
Scorer, for predicting CRISPR target activities [114].

GNL-Scorer, both GNL and GNL-Human, is a computa-
tional model based on the Bayesian Ridge Regression
(BRR) model, which combines optimal datasets and features

to address the cross-species problem. Both SPROUT and
GNL-Scorer computational tools and resources will promote
CRISPR sgRNA design and enhance the application of the
CRISPR/Cas-based genome editing. BATCH-GE is another

easy-to-use computational tool for identifying CRISPR/Cas-
derived indel mutations and other precise genome editing
events, including both on- and off-target impacts by analyz-

ing huge data generated by deep sequencing technology
[115,116].

https://www.idtdna.com/site/order/designtool/index/CRISPR_CUSTOM
https://www.idtdna.com/site/order/designtool/index/CRISPR_CUSTOM
https://horizondiscovery.com/en/ordering-and-calculation-tools/crispr-design-tool
https://horizondiscovery.com/en/ordering-and-calculation-tools/crispr-design-tool
https://www.synthego.com/products/bioinformatics/crispr-design-tool
https://www.synthego.com/products/bioinformatics/crispr-design-tool


Table 2 List of CRISPR/Cas outcome analysis tools

Type Name Description Website Web server or

standalone tool

Ref.

Decoding Sanger

sequencing of on-

target sites

TIDE Quantifying non-templated CRISPR/Cas9 mutations https://tide.nki.nl Web server [103]

TIDER Quantifying the indels of templated CRISPR/Cas9 editing https://tide.nki.nl Web server [105]

EditR Quantifying base editing results https://baseeditr.com/ Standalone tool [159]

Poly peak parser Quantifying heterozygous indels http://yost.genetics.utah.edu/software.php Standalone tool [160]

DSDecode Automatically decoding the sequencing chromatograms http://skl.scau.edu.cn/dsdecode/ Standalone tool [107]

NGS evaluation of

targeted amplicon

sequences

BATCH-GE Detecting the on- and off-target impacts by analyzing deep sequencing

data and calculating mutagenesis efficiencies

https://github.com/WouterSteyaert/BATCH-

GE

Standalone tool [115]

CRISPR-GA Quantifying and characterizing indels and homologous recombination

events

https://crispr-ga.net Web server [108]

CRISPResso2 Enabling the users to analyze, visualize, and compare CRISPR outputs

from hundreds of experiments using batch functionality

https://crispresso.pinellolab.partners.

org/submission

Web server [110]

Cas-Analyzer Measuring the frequencies of mutations induced by CRISPR/Cas9 and

other programmable nucleases for NGS data analysis

http://www.rgenome.net/cas-analyzer/ Web server [109]

CRIS.py Providing a Python-based software to analyze NGS data for both

knockout and knock-in (multiple users specified) modifications from one

to thousands of samples at once

https://github.com/patrickc01/CRIS.py;

https://s.stjude.org/video/player.html?

videoId=6000021936001

Standalone tool [111]

CRISPRpic Providing precise mutation calling and ultrafast analysis of the sequencing

results

https://github.com/compbio/CRISPRpic Web server [161]

CRISPR-DAV Providing high-throughput analysis of amplicon-based NGS data https://github.com/pinetree1/crispr-dav Standalone tool [162]

GNL-Scorer Combining optimal datasets, models, and features, to address the cross-

species problem

https://github.com/TerminatorJ/GNL_Scorer Standalone tool [114]

CrispRVariants Quantifying Sanger sequencing and high-throughput amplicon sequencing https://www.bioconductor.org/packages/

CrispRVariants

Standalone tool [112]

NGS evaluation of

pooled CRISPR/

Cas9 libraries

CRISPRCloud2 Providing accurately mapping short reads to CRISPR library; statistically

aggregating the information across multiple sgRNAs targeting the same

gene; providing a user-friendly data visualization and query interface; easy

linking with other tools and bioinformatic resources for target preference

https://crispr.nrihub.org Web server [125]

CRISPRAnalyzeR Featuring with eight hit calling strategies including DESeq2, MAGeCK,

edgeR, sgRSEA, Z-Ratio, Mann-Whitney test, ScreenBEAM, and

BAGEL; exploring the pooled CRISR/Cas9 screens

https://www.crispr-analyzer.org; https://www.

github.com/boutroslab/CRISPRAnalyzeR

Standalone tool [123]

PinAPL-Py Providing a comprehensive workflow covering quality control, automated

sgRNA sequence extraction and alignment, sgRNA enrichment/depletion

analysis, and gene ranking

https://pinapl-py.ucsd.edu Web server [124]

MAGeCK Providing analysis of large-scale screens https://bitbucket.org/liulab/mageck/

src/master/

Standalone tool [117]

MAGeCK-VISPR Providing analysis of large-scale screens https://bitbucket.org/liulab/mageck-vispr Standalone tool [163]

BAGEL Providing analysis of large-scale screens https://bagel-for-knockout-

screens.sourceforge.net/

Standalone tool [121]

HiTSelect Providing analysis of large-scale screens https://github.com/diazlab/HiTSelect Standalone tool [119]

caRpools Providing analysis of large-scale screens https://github.com/boutroslab/caRpools Standalone tool [118]

CHANGE-seq Measuring the genome-wide activity of Cas9 Standalone tool [130]

ScreenBEAM Providing analysis of large-scale screens https://github.com/jyyu/ScreenBEAM Standalone tool [120]

CERES Providing CRISPR screen analysis https://depmap.org/ceres/ Standalone tool [164]

PBNPA Providing analysis of large-scale screens https://cran.r-project.org/web/packages/

PBNPA/

Standalone tool,

database

[122]

(continued on next page)

1
1
8

G
en
o
m
ics

P
ro
teo

m
ics

B
io
in
fo
rm

a
tics

2
1
(
2
0
2
3
)
1
0
8
–
1
2
6

http://weblogo.berkeley.edu
https://github.com/sydaileen/GOTI-seq
https://codeocean.com/capsule/9553651/tree/v1
https://www.crisprindelphi.design/
https://zou-group.github.io/SPROUT
https://github.com/WouterSteyaert/BATCH-GE
https://github.com/WouterSteyaert/BATCH-GE
https://crispr-ga.net
https://crispresso.pinellolab.partners.org/submission
https://crispresso.pinellolab.partners.org/submission
http://www.rgenome.net/cas-analyzer/
https://github.com/patrickc01/CRIS.py
https://s.stjude.org/video/player.html?videoId=6000021936001
https://s.stjude.org/video/player.html?videoId=6000021936001
https://github.com/compbio/CRISPRpic
https://github.com/pinetree1/crispr-dav
https://github.com/TerminatorJ/GNL_Scorer
https://www.bioconductor.org/packages/CrispRVariants
https://www.bioconductor.org/packages/CrispRVariants
https://crispr.nrihub.org
https://www.crispr-analyzer.org
https://www.github.com/boutroslab/CRISPRAnalyzeR
https://www.github.com/boutroslab/CRISPRAnalyzeR
https://pinapl-py.ucsd.edu
https://bitbucket.org/liulab/mageck/src/master/
https://bitbucket.org/liulab/mageck/src/master/
https://bitbucket.org/liulab/mageck-vispr
https://bagel-for-knockout-screens.sourceforge.net/
https://bagel-for-knockout-screens.sourceforge.net/
https://github.com/diazlab/HiTSelect
https://github.com/boutroslab/caRpools
https://github.com/jyyu/ScreenBEAM
https://depmap.org/ceres/
https://cran.r-project.org/web/packages/PBNPA/
https://cran.r-project.org/web/packages/PBNPA/


Table 2 (continued)

Type Name Description Website Web server or

standalone tool

Ref.

NGS evaluation of

off-target effects

DISCOVER-Seq Detecting unbiasedly off-targets by precise tracking of MRE11; exploring

molecular nature of Cas activity in cell with single-base resolution

N/A Standalone tool [129]

HTGTS Providing robust detection of DSBs generated by engineered nucleases

based on their translocation to other endogenous or ectopic DSBs

weblogo.berkeley.edu Standalone tool [165]

IDLVs Detecting off-target cleavages with a frequency as low as 1%; providing

frequent off-target sites up to 13 mismatches between the sgRNA and its

genomic target

N/A Standalone tool [127]

BLESS Mapping DNA DSBs at nucleotide resolution by detecting telomere ends,

Sce endonuclease-induced DSBs, and complex genome-wide DSB

landscapes

N/A Standalone tool

BLISS Measuring the location and frequency of DSBs in genome by direct

labeling of DSBs in fixed cells or tissues; quantifying DSBs through unique

molecular identifiers; low input requirement

N/A Standalone tool [166]

GUIDE-seq Providing unbiased and global detection of DSBs induced by CRISPR

RNA-guided nucleases

N/A Standalone tool [69]

GOTI Providing comparison of edited and non-edited cells distinguished by Cre-

loxP recombination system

https://github.com/sydaileen/GOTI-seq Standalone tool [167]

SITE-Seq Identifying off-targets in vitro by integrating biochemical assay to increase

the enrichment of CRISPR/Cas cleavage fragments

N/A Standalone tool [168]

Digenome-seq Providing deep sequencing of in vitro Cas9-digested genomes N/A Standalone tool [169]

CRISPR-net Quantifying CRISPR off-target activities with mismatches and indels https://codeocean.com/capsule/9553651/tree/

v1

Standalone tool [170]

CIRCLE-seq Providing a sensitive and unbiased in vitro genome-wide off-target

identification strategy optimized by using restriction enzyme for

circularization of randomly sheared genome DNA

N/A Standalone tool [128]

Evaluation and

prediction of repair

outcomes

inDelphi Predicting the mutational outcomes https://www.crisprindelphi.design/ Web server,

database

[86]

SPROUT Predicting the length, probability, and sequences of indels

caused by CRISPR/Cas gene editing

https://zou-group.github.io/SPROUT Web server [113]

Note: DSB, double strand break; NGS, next-generation sequencing.
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NGS evaluation of pooled CRISPR/Cas9 libraries

Given the size and diversity of data generated by pooled
CRISPR/Cas9 screens, the majority of conventional methods
are not sufficient to evaluate the huge datasets generated by

pooled CRISPR/Cas9 screens. To this end, several algorithms
have been specifically developed for interpreting raw sequenc-
ing outputs of CRISPR/Cas9 screens, such as Model-based
Analysis of Genome-wide CRISPR/Cas9 Knockout

(MAGeCK) [117], caRpools [118], HiTSelect [119], Screening
Bayesian Evaluation and Analysis Method (ScreenBEAM)
[120], Bayesian Analysis of Gene Essentiality (BAGEL), and

Permutation Based Non-Parametric Analysis of CRISPR/
Cas9 screen data (PBNPA) [121,122]. Since these analysis
methods were developed for persons skilled in bioinformatics,

it is difficult for many biologists or researchers with less pro-
gramming background to implement them. To simplify analy-
sis procedure, web-based interfaces have been developed to

enable the users to evaluate pooled CRISPR/Cas9 screening
data. CRISPRAnalyzeR is the first end-to-end analysis pipe-
line that integrates eight different algorithms for identification
of candidate genes. In addition, CRISPRAnalyzeR is con-

structed in R and can be easily installed locally [123].
PinAPL-Py workflow contains various statistical models, bet-
ter sequence quality checks, automated sgRNA-seq extraction,

precise sequence alignment, sgRNA enrichment or depletion
analysis, and gene ranking facility [124]. Its workflow can
deploy a variety of well-known sgRNA libraries as well as

easily upload-able custom libraries. Importantly, it can analyze
the multiple CRISPR/Cas-edited experiments. PinAPL-Py
ranks both sgRNAs and genes, and it provides ready-to-
publish plots. However, both CRISPRAnalyzeR and

PinAPL-Py have several rate-limiting steps, such as long time
for raw FASTQ file transfer and complicated parameter tuning
for alignment. CRISPRCloud2 employs Amazon Web Service

to decrease the covert time and satisfy data-
privacy requirements. Additionally, an adaptive hash-
mapping algorithm was introduced into CRISPRCloud2 to

increase alignment speed and accuracy [125].

NGS evaluation of off-target effects

Off-target impact is one of the major challenges for CRISPR/
Cas application in gene therapy and crop improvement as well
as other areas, such as gene function studies. To reduce poten-
tial off-target impacts, many strategies have been developed,

which include but are not limited to selecting high-affinity
Cas enzymes, designing better sgRNAs, and using the right
CRISPR/Cas reagent delivery system. However, identifying

all potential off-targets is still a challenge. Identifying and
quantifying unexpected genome targeting events are essential
to assess the fidelity of genome editing tools as well as to guar-

antee the safety of gene therapeutic applications. Currently,
NGS has been proved as a reliable technology to identify all
potential off-target impacts as well as targeted and cleaved

genome sites. However, NGS generates a vast number of read-
ing sequences that require special computational programs to
identify off-target sequences. To solve this problem, in the past
several years, several research laboratories have developed

computational tools that can highlight off-target activities
besides the edited DNA sequences in the genome by using
NGS (Table 2). Crosetto and colleagues presented a method
called ‘‘direct in situ breaks-labeling enrichment on strepta-
vidin and next-generation sequencing (BLESS)” that scans

the DSBs at the whole-genome level by using Instant-seq soft-
ware for Illumina sequencing data [126]. The efficiency of
BLESS was tested in human and mouse cells by using various

DSB-inducing reagents and sequencing platforms. The afore-
mentioned method can identify telomere ends, Sce
endonuclease-induced DSBs, and complex genome-wide

DSBs. In human cells, the identified mutations (> 2000) were
in the form of un-evenly distributed aphidicolin-sensitive-
regions (ASRs) that was the principal proof of utilization of
BLESS at the whole-genome level. Genome-wide unbiased

identification of DSBs enabled by sequencing (GUIDE-seq)
is an experimental approach for global detection of DNA
DSBs for identifying off-target cleavage generated by Cas

nucleases and potentially other nucleases, such as TALENs
[69]. During identifying off-target sequences by GUIDE-seq,
the authors customized a bin-consensus variant-calling algo-

rithm based on molecular index and SAMtools; this computa-
tional program distinguishes off-target sequences from the
reference sequences. This method can be used to detect off-

target cleavage activities that previous computational methods
or chromatin immunoprecipitation sequencing (ChIP-seq)
could not detect. GUIDE-seq also detects Cas-independent
genomic DSB hotspots. Giving that linear double-stranded

integrase-defective lentiviral vectors (IDLVs) possesses the
propensity of integrating preferentially into nuclease-induced
DSBs by NHEJ repairing pathway, it has been employed to

detect CRISPR/Cas-induced off-target cleavages with a very
low frequency of 1% [127]. IDLVs also shows that Cas9 pro-
tein induces frequent off-target cleavages at 1-bp bulge or up

to 13-bp mismatches between the sgRNA and its genomic
DNA target, which may help in refining sgRNA design [127].
Circularization for in vitro reporting of cleavage effects by se-

quencing (CIRCLE-seq) identities off-targets at the genome-
wide level by mapping the paired-end read sequences for
searching off-target sites using bwa mem and samtools mpileup.

This NGS and computational approach can be used not only

for organisms with reference genome sequences but also for
organisms without reference genomes [128]. However, off-
target discovery methods using purified genomic DNA/specific

cellular models are not capable of direct-in-vivo detection. To
overcome this issue, a recently developed universally applica-
ble approach called ‘‘discovery of in situ Cas off-targets and

verification by sequencing (DISCOVER-Seq)” can be used to
detect off-target effects in vivo [129]. This unbiased off-target
identification approach recruits the DNA repair factors both
in cells and organisms. By tracking these factors as

‘‘MRE11” [a subunit of the MRE11–RAD50–NBS1 (MRN)
complex, which is tightly distributed around the Cas9 cut site],
this program can detect off-target activities with single-base

resolution. Moreover, DISCOVER-Seq works with several
sgRNA formats and different types of Cas proteins that enable
the characterization of new genome editing tools. Based on

large-scale data analysis and a machine learning model,
Lazzarotto and colleagues developed a ‘‘circularization for
high-throughput analysis of nuclease genome-wide effects by

sequencing (CHANGE-seq)” method for measuring the
genome-wide activity of Cas9 in vitro, which includes both
genetic and epigenetic impacts as well as off-target effects.
Using this method, the authors identified 201,934 off-target



Li C et al / Tools and Resources for CRISPR/Cas Genome Editing 121
sites from 110 sgRNA targets across 13 therapeutically rele-
vant loci in human primary T cells [130]. From this study, they
also observed that CRISPR/Cas9-induced off-target impacts

were more likely to occur near active promoters, enhancers,
and transcribed regions. With the rapid development of these
NGS-based off-target detection approaches, more data can

be produced from living therapeutic cells, which will boost
the evolution of machine learning models and enhance align-
ment algorithms for identifying off-target impacts of

CRISPR/Cas at the whole-genome level.

Conclusion and perspectives

Given the versatility and robustness of CRISPR/Cas-based
genome editing, many interdisciplinary scientists have been
working to enhance this technology, including screening func-

tionally active CRISPR/Cas nucleases, clarifying key determi-
nants of sgRNA specificity, and reducing off-target potentials.
The rapid development of computational algorithm tools

accelerates greatly the quick application of CRISPR/Cas9 gen-
ome editing technology, particularly by designing optimal
sgRNAs and post-genome editing data analysis. Up to now,
many computational tools have been developed for designing

sgRNAs and analyzing the potential on- and off-target
impacts of different CRISPR/Cas genome editing systems.
Certain of these programs are publicly available and have

web servers for quick operation. To meet the new applications
of the CRISPR/Cas systems, new computational tools for per-
forming and analyzing CRISPR/Cas events have also been

recently developed, such as scMAGeCK [131], CRIS-
PRO [132], and ProTiler [133]. scMAGeCK links genotypes
with multiple phenotypes in single-cell CRISPR screens [131].

CRISPRO maps functional scores associated with guide
RNAs to genomes, transcripts, and protein coordinates and
structures, which can be used to predict improved sgRNA effi-
cacy [132]. ProTiler is used for the analysis and visualization of

CRISPR screens with a tiling-sgRNA design [133]. However,
there still exist several gaps in developing new sgRNA analysis
tools to meet the needs of rapidly evolving CRISPR/Cas gen-

ome editing techniques.
The parameters used for building sgRNA scoring algo-

rithms are mainly based on the data generated by CRISPR/

Cas9 and CRISPR/Cas12a genome editing systems
[37,40,89], which create targeted DNA mutagenesis via DSBs.
Currently, numerous precise genome editors, such as prime

editors and epigenetic editors, have been developed that are
capable of rewriting genome sequences without inducing DSBs
and donor DNA templates, which are especially promising
tools for executing high-throughput screening and modifying

base mutations [12,134]. Given that prime editors are capable
of achieving desired sequence insertions, deletions, and all 12
types of base conversions, they have been rapidly adapted in

many organisms. Unlike conventional sgRNAs, the binding
and sequence-specific conversion rely on an engineered multi-
functional pegRNA in prime editing [61]. In addition to the

common sgRNA features, pegRNAs have a programmable
30 end, which is composed of an RT template that functions
to guide DNA repair and a PBS that anneals to the nicked tar-
get DNA strand [61]. A previous study suggests that both PBS

length and RT template length are important for prime editing
efficiency. The suggested PBS length range is 8–15 nt, whereas
RT templates are always 10–20 nt in length [12,61]. In addi-
tion, GC content and RT template secondary structure may
affect editing efficiency as well. Due to the complex combina-

tion matrix of possible PBS and RT lengths, the best method
for designing pegRNAs still depends mainly on experience
[12,61]. Thus, a comprehensive study of the key determinants

of the prime editing efficiency based on large-scale experimen-
tal data would be an effective approach for constructing
pegRNA design tools. Additionally, as more Cas enzymes

have been discovered and refined, new sgRNA design pro-
grams are also needed to work on these newly developed
CRISPR/Cas systems.

Constructing sgRNA-directed mutation libraries is one of

the most effective strategies to identify gene function and reg-
ulatory gene interaction networks. Current commonly used
empirical algorithms are primarily derived from large-scale

sgRNA analysis on human cells and the zebrafish model, but
many studies demonstrate that genome editing efficiency and
specificity vary widely among different organisms. Indeed,

the probability of off-targets is always lower in plant species
compared with animals [68,135–139]. In addition to sequence
features, various other factors have been identified, which

affect sgRNA activity, such as chromatin accessibility, gene
position, nucleosomes, and epigenomic markers [55,140–142].
Chromatin accessibility has been demonstrated to play a dom-
inant role in determining genome-wide binding of dCas9-

sgRNA [42]. However, chromatin accessibility varies among
organisms [143,144]. Thus, comprehensive analysis of sgRNA
sequence features and chromatin data across organisms might

provide new insights into further optimizing scoring algo-
rithms and computational tools.

With the quick development of CRISPR/Cas-based gen-

ome editing, it is not only limited to create targeted mutagen-
esis at the protein-coding region. Genome editing of
upstream open reading frame (uORF) techniques provides a

new viewpoint to fine-tune gene translation by means of
endogenous regulatory elements. Although uORFs are found
widely in eukaryotic genomes, their roles remain to be eluci-
dated [145–148]. Additionally, small RNAs are an extensive

class of widespread gene regulators in eukaryotic organisms,
implicated in various regulatory processes [149–153]. Execu-
tion of high-throughput genome-wide functional identification

by genome editing of uORFs and small RNAs has a great
potential to dissect the mechanisms of gene regulation. Despite
the fact that a number of uORF and small RNA databases are

available for a wide range of eukaryotic organisms, they are
not integrated into sgRNA-designing platform. Currently
there are no computational tools for designing sgRNAs for
genome editing of small RNAs and uORFs. To quickly eluci-

date the roles of small RNAs, particularly microRNAs
(miRNAs), scientists from both wet- and dry-labs should work
together to develop a powerful strategy for designing sgRNAs

for small RNA genome editing based on the characteristics of
miRNAs, such as stem-loop structures and miRNA
biogenesis [153].

The active maintenance and optimization of current com-
putational tools is another main concern. Doench and cowork-
ers analyzed 26,000 website-based computational tools and

found that about 30% of them were inaccessible [154]. With
the clarification of the mechanism underlying CRISPR/Cas
binding and cleavage, the parameters on sgRNA scoring and
algorithms need to be updated continuously. With the growing
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accumulation of experiment-based data, the existing predictive
models will be further trained, which subsequently accelerates
the evolution of CRISPR/Cas applications. Frequent update

of currently available computational resources and tools will
enhance the application of CRISPR/Cas-based genome
editing.

Additionally, there are so many computational tools,
including sgRNA design databases and tools for CRISPR/
Cas genome editing efficiency prediction as well as on- and

off-target analyses. Different tools have different advantages
and disadvantages and usage for different organisms. Thus,
selecting the right tool for a specific CRISPR/Cas genome edit-
ing experiment is critical. When selecting a computational tool,

one first needs to know what species and even what cell types
they are working on and what Cas enzymes they are using. For
many cases, there are multiple computational tools that can be

used; different programs may perform differently due to the
fact that the different computational programs are designed
based on different datasets and criteria. It is also important

that further investigations uncover the causes of differences
among different tools. In a recent paper, Yan and colleagues
presented a way to choose a tool for designing on-target

sgRNAs, and they suggest that different computational tools
may be recommended in different scenarios [70]. Developing
a learning-based model and also incorporating other features,
such as sgRNA sequences and their structures, is the right

direction for designing a good sgRNA and predicting sgRNA
efficiency [70]. With the help of computational tools and
resources, CRISPR/Cas-based genome editing will move for-

ward more quickly than we thought.
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