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Abstract Prediction of the response of cancer patients to different treatments and identification of

biomarkers of drug response are two major goals of individualized medicine. Here, we developed a

deep learning framework called TINDL, completely trained on preclinical cancer cell lines (CCLs),

to predict the response of cancer patients to different treatments. TINDL utilizes a tissue-informed

normalization to account for the tissue type and cancer type of the tumors and to reduce the sta-

tistical discrepancies between CCLs and patient tumors. Moreover, by making the deep learning

black box interpretable, this model identifies a small set of genes whose expression levels are predic-

tive of drug response in the trained model, enabling identification of biomarkers of drug response.

Using data from two large databases of CCLs and cancer tumors, we showed that this model can

distinguish between sensitive and resistant tumors for 10 (out of 14) drugs, outperforming various

other machine learning models. In addition, our small interfering RNA (siRNA) knockdown

experiments on 10 genes identified by this model for one of the drugs (tamoxifen) confirmed that

tamoxifen sensitivity is substantially influenced by all of these genes in MCF7 cells, and seven of

these genes in T47D cells. Furthermore, genes implicated for multiple drugs pointed to

shared mechanism of action among drugs and suggested several important signaling pathways.
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In summary, this study provides a powerful deep learning framework for prediction of drug

response and identification of biomarkers of drug response in cancer. The code can be accessed

at https://github.com/ddhostallero/tindl.
Introduction

Cancer is one of the deadliest public health problems world-
wide, and cases are still rapidly growing. In 2020, it is esti-

mated that around 10 million people have died of cancer [1].
Individualized medicine is a promising concept, which aims
to improve the prognosis of patients by adapting the patient’s
treatment to their unique clinical and molecular characteris-

tics. One of the main goals of individualized medicine is the
prediction of the response of patients to different treatments,
and identification of biomarkers that enable such prediction.

High-throughput sequencing technologies along with major
initiatives such as The Cancer Genome Atlas (TCGA) [2] have
provided a unique opportunity for machine learning (ML)

algorithms to address these challenges. However, ML models
and particularly deep learning (DL) approaches require a large
number of samples with known drug response to train general-

izable models. However, data on clinical drug response (CDR)
of cancer patients, even in large databases such as TCGA, are
usually small for most drugs and do not lend themselves to the
training of DL models.

On the other hand, large databases of molecular profiles of
hundreds of in vitro cancer cell lines (CCLs) and their response
to hundreds of drugs [3–5] have enabled development of vari-

ous ML algorithms for prediction of drug response [6–8].
Unfortunately, these models, even though accurate in predict-
ing the drug response of held-out CCLs, usually do not gener-

alize well to predicting the CDR of real tumors from cancer
patients, and their prediction performance significantly deteri-
orates due to the major biological and statistical differences
between CCLs and tumors [9].

Recognizing these issues, some studies have adopted to uti-
lize tumor samples with known CDR in the training of their
models, either by fully training their models on data corre-

sponding to tumor samples [10–12], or using them in addition
to CCLs (e.g., using transfer learning [13]). However, as a
result of this strategy, these studies have only been able to

develop models on very few drugs due to the small sample sizes
of patient cohort data with known drug response. Another
strategy is to train ML models completely on preclinical CCLs

but use computational approaches to overcome the statistical
differences between CCLs and tumors. For example, multiple
approaches [9,14] have used batch removal methods such as
ComBat [15] to reduce the discrepancy between the training

CCLs and test tumors. One limitation of these methods is that
ComBat is used as a preprocessing step such that the gene
expression (GEx) profiles of both CCLs (training set) and

tumors (test set) are adjusted. As a result, prediction of
CDR of new cancer patients requires retraining of the model.

In this study, our goal was to develop a DL computational

pipeline, fully trained on the GEx profile and drug response of
preclinical CCLs, to (1) predict the CDR of cancer patients
and (2) identify biomarkers of drug response for a variety of

cancer drugs. Motivated by Huang et al. [9], who showed that
carefully incorporating information on the tissue (or cancer)
types of the test samples can improve the predictive power of
computational models, we developed a DL pipeline with

tissue-informed normalization (TINDL) to achieve these
goals. Unlike methods mentioned above, TINDL requires nor-
malization of only test samples, and as a result retraining of

the model is not necessary for new test samples.
The TINDL pipeline includes two phases. The first phase is

responsible for prediction of CDR of cancer patients, and the
second phase makes these predictions interpretable by identify-

ing a small number of genes that considerably contribute to the
predictive ability of the model. Focusing on drugs shared
between the Genomics of Drug Sensitivity in Cancer (GDSC)

[3] and TCGA [2], we showed that TINDL can distinguish
between the sensitive and resistant patients for 10 (out of 14)
drugs, considerably improving the performance of other meth-

ods, including our previous work, tissue-guided least absolute
shrinkage and selection operator (TG-LASSO) [9]. TINDL
utilizes a simple, yet effective, tissue-informed normalization

to reduce the statistical discrepancies between the GEx profiles
of the training and test samples. We showed that TINDL out-
performs other DL-based models that try to explicitly remove
these discrepancies using other techniques such as ComBat or

domain adaptation [16,17].
Focusing on tamoxifen, for which TINDL performed best,

we showed that only a small panel of genes identified by

TINDL can be used to predict the CDR of cancer patients.
Moreover, using small interfering RNA (siRNA) gene knock-
down of 10 genes identified by TINDL in two breast CCLs

(MCF7 and T47D), we showed that the knockdown of any
of these genes significantly changed the response to tamoxifen
in MCF7 and the knockdown of 7 of them significantly chan-

ged the response to this drug in T47D. These in vitro experi-
ments further validated the TINDL pipeline and its ability to
identify biomarkers of drug response.
Results

Prediction of CDR and identification of biomarkers of drug

response using cell line data

We developed TINDL to (1) predict the CDR of cancer
patients (test set) and (2) identify predictive biomarkers of
drug response based on models completely trained on preclin-
ical cell line data (training set). The pipeline has two major

phases: the modeling phase and the gene identification phase.
In the modeling phase(Figure 1A), a neural network is trained
using the GEx profiles of CCLs and their response to a drug

[i.e., normalized ln IC50 values in this study, where IC50
stands for half-maximal inhibitory concentration]. The trained
model was then used to predict the drug response of cancer

patients based on the carefully normalized GEx profiles of
their primary tumors. Details of the DL architecture are pro-
vided in Materials and methods.

We designed the normalization step of GEx profiles of

patient tumors to address two important issues. First, we
required this approach to remove the discrepancy between

https://github.com/ddhostallero/tindl


Figure 1 The pipeline used for prediction of drug responses and identification of important genes

A. In phase 1, the gene expression data of the CCLs and ln IC50 values were both z-score normalized, whereas the tumor gene expression

data (test data) were normalized using the tissue-informed normalizer. We then used this model to train a CDR predictor using the CCL

data. After training, the model predicted the drug response value for the tumors. B. In phase 2, the trained CDR predictor was used to

train a neural network explainer using the same training data. We used the trained explainer to give gene contribution scores for each

genes of the test samples. We aggregated the scores across samples and then selected the top genes by estimating the point of maximum

curvature. CCL, cancer cell line; CDR, cancer drug response; IC50, half-maximal inhibitory concentration.
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the statistical properties of GEx of CCLs and patient tumors,
originating from the technical differences in protocols for mea-
suring the data and the biological differences between preclin-

ical CCLs and clinical tumors. Second, we required this
approach to incorporate information on the tissues of origin
(or cancer types) of tumors in the prediction task. In a previous

study [9], we showed that information on the tissues of origin
of samples plays an important role in improving prediction
performance; however, most commonly used methods for this

task are not capable of appropriately incorporating this infor-
mation. For this purpose and given a drug, we first identified
the set of tissues (henceforth referred to as ‘‘target tissues”)
of the clinical samples to which the drug was administered.

Then, we collected additional GEx profile of samples from
the same target tissues, independent of what drug was used
for their treatment. The GEx profile of each test sample was

then normalized against this additional set of ‘‘unlabeled” data
(see Materials and methods for details).

This simple, yet effective, normalization approach used in

our pipeline removes the statistical discrepancy between the
test and training datasets by mapping the expression of each
gene in each dataset to a distribution with unit variance and

zero mean. However, because the test samples are normalized
while considering the GEx of a much larger unlabeled set of
samples, this normalization will not be negatively affected if
the size of the test set is small (e.g., if we want to predict the
drug response of a single sample), which is superior compared
with methods that perform the normalization using only the
test samples. In addition, because the normalization is done

independently for the training and test sets, one does not need
to retrain the DL model every time in which the drug response
of a new test sample is to be predicted (a shortcoming of our

previous approach [9]).
The second phase of the pipeline seeks to assign a contribu-

tion score to each gene based on its contribution to the trained

predictive model to enable interpretability of the model (Fig-
ure 1B). In this phase, we first used CXPlain [18] to assign a
sample-specific score to each gene. These scores were then
averaged over all samples (separately for each gene) and nor-

malized to provide a final contribution score. Additionally,
we used the distribution of these scores to systematically iden-
tify the critical point that the contribution of the genes dimin-

ishes, enabling us to narrow down the top ranked list of genes
for follow-up analysis (pathway enrichment analysis, gene
knockdown experiments, etc.). The details of this phase are

provided in Materials and methods.

TINDL distinguishes between sensitive and resistant patients for

the majority of the evaluated drugs

In order to assess the performance of TINDL in predicting
CDR of cancer patients, we obtained GEx profiles of primary
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cancer tumors from the TCGA database [2]. We used the data
corresponding to Response Evaluation Criteria in Solid
Tumors (RECIST) CDR of TCGA patients, collected and pro-

cessed in a previous study [10], and identified 14 drugs that sat-
isfied two conditions: (1) there were at least 20 patients with
known CDR values for each drug in TCGA database and

(2) the ln IC50 drug response values of these drugs were mea-
sured in the GDSC database. Similar to previous studies [9,14],
we transformed the CDR of these tumors into a Boolean label

in which ‘‘resistant” referred to patients with CDR of ‘‘stable
disease” or ‘‘progressive disease” and ‘‘sensitive” referred to
patients with CDR of ‘‘complete response” or ‘‘partial
response”. These CDR values were used to evaluate the pre-

dicted drug response values using TINDL and other algo-
rithms but were not used for training them. The list of these
14 drugs, number of TCGA patients, and their cancer types

are provided in Table S1. Similarly, we obtained GEx profiles
and ln IC50 drug response values of CCLs from different lin-
eages from the GDSC database [3], corresponding to the 14

drugs mentioned above (see Table S1 for the number of train-
ing samples for each drug).

Following previous work in this area [9,14], we used a one-

sided Mann–Whitney U test to determine if the predicted
ln IC50 values of resistant patients for a drug are significantly
higher than those of sensitive patients. Table 1, Table S2, and
Figures S1 and S2 show the performance of TINDL in the pre-

diction of CDR of TCGA samples using preclinical GDSC
samples for different drugs. TINDL is capable of distinguish-
ing between resistant and sensitive patients for 10 (out of 14)

drugs (P < 0.05, one-sided Mann–Whitney U test) with a
combined P value of 2.77E–10 (Fisher’s method).

Next, we defined a measure called precision at k-th per-

centile to determine whether patients whose predicted
ln IC50 is within the lower tail of the distribution correspond
to sensitive patients (i.e., responders to the drug). For different

values of k, tumors with predicted ln IC50 in the bottom k%
were predicted as sensitive, and their count was used to calcu-
late precision. Figure 2A and Table S3 show precision at k-th
Table 1 The number of TCGA samples and the performance of TIND

Drug Number of clinical samples Number of

Cisplatin 303 237

Tamoxifen 20 14

Etoposide 84 73

Doxorubicin 100 68

Paclitaxel 158 111

Vinorelbine 30 23

Oxaliplatin 54 33

Temozolomide 95 11

Bleomycin 52 46

Gemcitabine 157 75

Cyclophosphamide 101 96

Pemetrexed 38 18

Irinotecan 23 6

Docetaxel 102 67

Note: P values were calculated by a one-sided Mann–Whitney U test to

patients. To ensure the results are not biased by the initialization of the para

and the mean aggregate of its prediction was used to calculate the P value

learning pipeline with tissue-informed normalization; TCGA, The Cancer
percentile of TINDL for different values of k. These results
suggest that for six drugs (tamoxifen, etoposide, vinorelbine,
cyclophosphamide, bleomycin, and cisplatin), TINDL can

identify responders with a precision at k-th percentile above
84% for any choice of k. The distribution of predicted CDR
values for sensitive and resistant patients for these drugs are

shown in Figure 2B.

TINDL outperforms alternative methods in prediction of CDR

Next, we sought to determine how TINDL performs against
alternative computational models. For this purpose, we con-
sidered multiple traditional and state-of-the-art ML models

[9,14] for predicting CDR of cancer patients from preclinical
CCLs. The detailed performance measures for each drug and
each model are provided in Table S2 and Figures S1 and S2,
and the summary of the results are provided in Table 2. In this

table, we used the combined P value of 14 drugs to summarize
the performance of different methods (Fisher’s method). As
shown in Table 2, TINDL can distinguish between sensitive

and resistant patients for 10 (out of 14) drugs (with a combined
P value of 2.77E�10 for all drugs), whereas the second-best
method in this table can only distinguish between sensitive

and resistant patients for 7 drugs. Similar to our previous
study [9], we also observed that regression with least absolute
shrinkage and selection operator (LASSO) and its variation,
TG-LASSO, performed reasonably well (when considering

all drugs), whereas support vector regression (SVR) and ran-
dom forests did not perform as well.

As discussed earlier, one of the major challenges in predict-

ing the CDR of cancer patients based on ML models trained
on preclinical CCLs is the statistical differences between these
samples. To assess the performance of TINDL against other

DL models that explicitly try to remove these statistical differ-
ences, we considered three alternative methods, as well as two
baselines that could be considered ‘‘default workflows”, had

we not foreseen the dire impact of these statistical differences.
The first method (referred to as ComBat-DL) utilizes ComBat
L in predicting their CDR for 14 drugs

sensitive samples Number of resistant samples P value

66 6.36E�4

6 1.14E�3

11 4.00E�3

32 1.42E�2

47 2.29E�2

7 2.41E�2

21 2.41E�2

84 2.94E�2

6 3.41E�2

82 4.57E�2

5 5.60E�2

20 2.86E�1

17 3.04E�1

35 7.04E�1

determine if TINDL can distinguish between sensitive and resistant

meters of model, TINDL was trained using ten random initializations,

s. Drugs were sorted based on their associated P values. TINDL, deep

Genome Atlas; CDR, cancer drug response.



Figure 2 Performance metrics for a subset of the drugs

To prevent the figure from becoming cluttered, the results

corresponding to only six drugs are shown (see Tables S2 and

S3 for performance metrics of all drugs). A. Precision at k-th

percentile for identification of sensitive patients. B. Distribution of

predicted drug response for sensitive and resistant patients. The P

values are calculated using a one-sided Mann–Whitney U test.

Table 2 The performance of different computational models in predi

preclinical GDSC CCLs

Algorithm Number of drugs with P < 0.05

(one-sided Mann–Whitney U test)

TINDL 10

LASSO 7

TG-LASSO [9] 6

SVR (RBF kernel) 5

Geeleher, et al. [14] 4

Random forests 4

Note: The combined P value combined over all 14 drugs using Fisher’s m

Cancer; LASSO, least absolute shrinkage and selection operator; SVR, sup
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[15] as a preprocessing step to remove the statistical discrep-
ancy between CCLs and tumor samples. ComBat [15] is a pop-
ular method for removing batch effects in GEx datasets and

has been widely used for drug response prediction [9,14,19]
and other applications [20,21]. The ComBat-transformed
GEx profiles are then used in a DL architecture similar to

TINDL for a fair comparison. The second and third methods
are based on Domain Adaptive Neural Network (DANN) [16]
and Adversarial Discriminative Domain Adaptation (ADDA)

[17], two domain adaptation techniques that were originally
developed for image processing, so here we called them
DANN-DL and ADDA-DL, respectively. Instead of adapting
the GEx input features, these methods adjust the latent feature

representations learned by the encoder. DANN uses adversar-
ial neural networks to create a shared latent feature space
between the datasets. ADDA, on the other hand, is a unidirec-

tional domain adaptation approach that builds over a pre-
trained predictor and tries to adapt the first few layers of the
neural network such that the latent feature representation of

target dataset aligns with that of the source dataset.
Although the three approaches mentioned above actively

try to reduce the discrepancy between the training set and test

set, two default workflows (TrainNorm-DL and TestNorm-
DL) actively ignore this challenge. In particular, TrainNorm-
DL assumes that the test set (tumors) comes from the same dis-
tribution as the training set (CCLs), and therefore uses the

mean and standard deviation of the training set to normalize
all of the data. This is essentially the default workflow for most
ML tasks in order to prevent data leakage during normaliza-

tion. The TestNorm-DL normalizes the test set and training
set separately (i.e., it uses the mean and standard deviation
of the test set to normalize itself). One should note that

TestNorm-DL is not an ideal approach in practice, because
it requires a large number of test samples to be present and
is not recommended when predicting the response of a small

number of samples.
We trained models of these methods with a similar architec-

ture to that of TINDL, with the exception of the discrimina-
tors, which are specific to ADDA and DANN and are used

for domain adaptation. The details of these methods, including
their architecture and training procedure, are provided in
Materials and methods and File S1. Table 3 and Table S2 show

the performance of these DL-based approaches. These results
showed that in all three cases of explicit discrepancy removal,
cting CDR of TCGA samples using models completely trained on

Total number

of evaluated drugs

Combined P value

(Fisher)

14 2.77E�10

14 7.47E�7

14 8.32E�7

14 1.89E�6

14 5.63E�3

14 3.12E�3

ethod. CCL, cancer cell line; GDSC, Genomics of Drug Sensitivity in

port vector regression; TG-LASSO, tissue-guided LASSO.



Table 3 The performance of DL-based methods that explicitly try to remove discrepancy between preclinical training and clinical test

datasets

Algorithm Number of drugs with P < 0.05

(a one-sided Mann–Whitney U test)

Tatol number of evaluated drugs Combined P value

(Fisher)

ComBat-DL 7 14 6.73E�10

ADDA-DL 7 14 2.16E�7

DANN-DL 7 14 1.66E�6

TrainNorm-DL 6 14 4.68E�7

TestNorm-DL 8 14 1.80E�9

Note: The combined P value combined over all 14 drugs using Fisher’s method. To ensure a fair comparison, a similar architecture to TINDL was

used for all these methods. Additionally, each model was trained using ten random initializations, and the mean aggregate of these predictions was

used for calculating the P values. DL, deep learning; DANN, Domain Adaptive Neural Network; ADDA, Adversarial Discriminative Domain

Adaptation.

540 Genomics Proteomics Bioinformatics 21 (2023) 535–550
only for 7 (out of 14) drugs the predicted normalized ln IC50
of sensitive patients was significantly smaller than those of

resistant patients. As expected, TrainNorm-DL did not per-
form as well (6 out of 14) as the others DL approaches.
TestNorm-DL was able to segregate sensitive patients in 8

drugs, which surprisingly came second to TINDL, but this
method is not well suited for applications in which only very
few samples exist in the test set.

To assess the superior performance of TINDL compared
with the first three DL-based models above, we assessed their
ability in removing the discrepancy between preclinical and
clinical samples. We did not include the default workflows in

this analysis, because they ignore this discrepancy. For this
purpose, we assessed the distance of clinical samples and pre-
clinical samples for each method and each drug (see Materials

and methods for details of calculating distances). Because
methods that use domain adaptation do not modify the input
features, but rather seek to remove the domain discrepancies in

the latent space (the output of the encoder), we used the
learned representation of each sample in the latent space for
all methods. Using a one-sided Wilcoxon signed-rank test,
we observed that the learned representations of TINDL for

clinical samples have a significantly smaller average distance
to preclinical samples compared with ComBat-DL
(P = 6.10E�5), ADDA-DL (P = 4.27E�4), and DANN-

DL (P= 6.10E�5), for all drugs (Figure 3A). The effectiveness
of tissue-informed normalization of TINDL in removing the
statistical discrepancy between the preclinical and clinical

embeddings can also be visually observed using principal com-
ponent analysis (PCA) and Uniform Manifold Approximation
and Projection (UMAP) plots of the representations learned

by each method (Figure 3B, Figures S3–S6).
Next, we sought to determine whether the latent space rep-

resentation similarity has an influence on drug response predic-
tion performance of TINDL across different drugs. We

observed a negative Spearman rank correlation (r = �0.17,
P = 3.93E�2) between the aforementioned distances and the
area under the receiver operating characteristic curve

(AUROC) of prediction for different drugs. In particular,
tamoxifen that had the highest AUROC (Table S2,
AUROC = 0.92) also had the smallest average distance

between clinical and preclinical representations of its samples
among all drugs in TINDL. These results further support the
conclusion that reducing the discrepancy between the statisti-

cal characteristics of clinical and preclinical samples plays an
important role in the success of TINDL in the prediction of
CDR.
More complex neural network architectures do not show impro-

vement

We also assessed the performance of different neural network
architectures when used as the feature extractor, instead of

fully-connected (FC) networks that were used in the previous
section. Specifically, we used long short-term memory
(LSTM), graph convolutional network (GCN) [22], and graph

attention network (GAT) [23] for the first few layers of the
model (see Materials and methods for details). All models were
subjected to the same protocol and evaluation techniques as

the other DL methods based of FC networks. A summary of
the results are provided in Table 4, and more detailed evalua-
tion metrics are provided in Table S2. Although in theory

GCN and GAT may hold some advantage compared with a
FC architecture because the features (GEx) are not indepen-
dent, these architectures did not show an improvement over
FC networks. LSTM was expected not to perform well because

the data are not sequential. Nevertheless, it is interesting that
for some of the drugs, the LSTM is able to separate the sensi-
tive and resistant patients.

TINDL identifies biomarkers of drug response

We used TINDL (Figure 1B) to assign a score to the contribu-

tion of each gene in the trained model (see Material and meth-
ods for details). Figure S7 shows the distribution of these
scores for each drug. To identify the threshold below which

the contribution of the genes to the predictive model is small,
we used a method called kneedle [24], which systematically
determines this threshold for each drug based on the distribu-
tion of the scores. This method identified between 64 (for

pemetrexed) to 243 (for bleomycin) genes, depending on the
drugs. The ranked list of genes identified by TINDL using this
drug-specific threshold is provided in Table S4.

Next, we sought to determine whether the identified genes
are drug specific. To this end, we calculated the Jaccard simi-
larity coefficient of drug pairs (Figure S8A). The results

revealed a high degree of drug specificity with the average Jac-
card similarity coefficient for all drugs equal to only 0.027.
However, some genes were implicated for multiple drugs (Fig-
ure S8B; Table S5). Previous studies have shown that these

genes are involved in several cancers and are associated with
sensitivity to multiple drugs [25–31]. Multidrug resistance
(MDR) is one of the reasons for reduced effectiveness of many

cancer therapeutic agents [32]. MDR is defined as the insensi-



Embedding distance of clinical and preclinical samples

Drug

Figure 3 Evaluation of the embeddings of DL models

A. Scatter plots comparing the distance between preclinical and clinical samples in the embedding space for each drug. Each point in the

scatter plot corresponds to a different drug. The P values are calculated using a one-sided Wilcoxon signed-rank test. The error bars show

the 95% confidence intervals and are calculated based on ten runs of each method with random initializations. B. PCA of the embeddings

used by each method to predict the response to etoposide. Visually, the TCGA samples are better mixed (i.e., are not easily separable) with

GDSC samples in TINDL compared with other methods. TINDL, deep learning pipeline with tissue-informed normalization; PCA,

principal component analysis; PC, principal component; TCGA, The Cancer Genome Atlas; GDSC, Genomics of Drug Sensitivity in

Cancer; DL, deep learning; DANN, Domain Adaptive Neural Network; ADDA, Adversarial Discriminative Domain Adaptation.
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tivity to therapeutic substances that are not associated by
structure or mechanism of action [33]. The classical mechanism
of MDR is associated with the overexpression of the ATP-

binding cassette (ABC) transporter genes (ABCB1, ABCD1,
etc.), which contribute to the reduction of the effective drug
concentration transporting the drug out of the cells [34]. In
addition to the classical MDR mechanism associated with
the overexpression of ABC genes, there are atypical mecha-
nisms [35–37]. Examples of these atypical mechanisms include

escaping adaptive immune responses [35]. Dysregulation of
many genes, e.g., APOBEC3A, promote evolution and pro-
gression of cancers, escape adaptive immune responses, and



Table 4 The performance of different neural network architectures when used as feature extractors

Architecture Number of drugs with P < 0.05

(a one-sided Mann–Whitney U test)

Total number of evalutated drugs Combined P value

(Fisher)

GAT 7 14 2.75E�11

GCN 6 14 2.85E�7

LSTM 6 14 1.86E�5

Note: The combined P value combined over all 14 drugs using Fisher’s method. To ensure a fair comparison, a similar architecture to TINDL was

used for all these methods. Additionally, each model was trained using ten random initializations, and the mean aggregate of these predictions was

used for calculating the P values. GAT, graph attention network; GCN, graph convolutional network; LSTM, long short-term memory.
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lead to development of drug resistance in multiple cancers
[38,39]. Other atypical mechanisms include dysregulation of

genes, such as CRYAB, related to macrophage infiltration
and polarization [36], and dysregulation of genes that regulate
drug-induced apoptosis by activating the survival pathways

such as MEK/ERK signaling and inhibiting the mitochondrial
apoptosis pathway in cervical cancer cells [37]. In particular,
Schlafen family member 11 (SLFN11) was implicated for nine

drugs and was the top contributor for bleomycin, cisplatin,
doxorubicin, etoposide, gemcitabine, and irinotecan, and the
top third contributor for oxaliplatin. SLFN11 is a putative
DNA/RNA helicase that is recruited to the stressed replication

fork and inhibits DNA replication. DNA replication is one of
the fundamental biological processes in which dysregulation
can cause genome instability [40]. This instability is one of

the hallmarks of cancer and confers genetic diversity during
tumorigenesis [41]. Various studies have shown that the expres-
sion of this gene sensitizes cancer cells to many chemothera-

peutic agents including cisplatin, oxaliplatin, irinotecan,
gemcitabine, doxorubicin, and etoposide [42–44]. Epigeneti-
cally mediated suppression of SLFN11 via EZH2 contributes
to acquired chemotherapy resistance, one that can be pre-

vented and/or actively remodeled through targeting EZH2
[45]. Several potent and selective EZH2 inhibitors are now in
different stages of clinical development with promising safety

profile, including phase II (Epizyme) and phase I (Constella-
tion, GSK) trials in multiple solid tumor and hematological
indications. Our data support the notion that the combination

of down-regulating SLFN11 via EZH2 inhibitor with
chemotherapeutic reagents should be considered in multiple
cancer types [46].

To better understand the functional characteristics of genes
implicated by TINDL for multiple drugs, we used KnowEnG’s
gene set characterization (GSC) pipeline [47] to identify path-
ways associated with 29 genes identified by TINDL for at least

4 drugs (Figure S8B). This pipeline enables identification of
associated pathways while incorporating interactions among
genes and their protein products through network-guided

analysis. The results (Table S5) implicated five pathways,
including ‘‘regulation of toll-like receptor signaling pathway”,
‘‘alpha-synuclein signaling”, ‘‘Arf6 trafficking events”,

‘‘insulin pathway”, and ‘‘RalA downstream regulated genes”.
Innate immune receptors such as toll-like receptors (TLRs)
are responsible for recognizing molecular patterns associated

with pathogens and provide critical molecular links between
innate cells and adaptive immune responses. Engagement of
TLRs on dendritic cells (DCs) promotes cross-talk between
the innate and the adoptive immune system, maturation and
migration of DCs into lymph nodes leading to activation,
and proliferation and survival of tumor antigen-specific naı̈ve

CD4+ and CD8+ T cells [48]. Tumor cells themselves do
not express molecules which would induce DC maturation,
so application of TLR agonists is an important element of

immunotherapy protocols aiming T cell activation [49]. In
addition, TLR agonists have been proposed as adjuvants for
cancer vaccines [50]. TLR3 agonist as an adjuvant with con-

ventional chemotherapy can break tolerogenic or immunosup-
pressive effects generated by the tumor and drive T cell
responses and tumor rejection [51,52].

Alpha-synuclein (a-syn) is a neuronal protein responsible

for regulating synaptic vesicle trafficking. a-syn is frequently
expressed in various brain tumors and melanoma [53], and
its up-regulation has been linked to aggressive phenotypes of

meningiomas [54]. Moreover, loss of a-syn results in dysregu-
lation of iron metabolism and suppression of melanoma tumor
growth [55]. Oncogenic activation of synuclein contributes to

the cancer development by promoting tumor cell survival via
activation of JNK/caspase apoptosis pathway and ERK, and
by providing resistance to certain chemotherapeutic drugs
[56], suggesting synuclein as a new therapeutic target for future

treatment to overcome resistance to certain chemotherapeutic.
ADP-ribosylation factor 6 (ARF6) governs the trafficking of
bioactive cargos to tumor-derived microvesicles (TMVs) which

comprise a class of extracellular vesicles released from tumor
cells that facilitate communication between the tumor and
the surrounding microenvironment [57]. Invasive tumor cells

shed TMVs containing bioactive cargo and utilize TMVs to
degrade extracellular matrix during cell invasion [58]. Indeed,
several studies have suggested a correlation between ARF6

expression and invasion and metastasis of multiple cancers
[59,60], suggesting that antagonistic ARF6 signaling can dic-
tate TMV shedding and the overall mode of invasion. Insulin,
a signaling molecule that controls systemic metabolic home-

ostasis, can be seen as enabling tumor development by provid-
ing a mechanism for PI3K activation and enhanced glucose
uptake [61,62], and plays a role in cytotoxic therapy response

[63]. RAS-related protein RalA is a member of the Ral family,
and the RalA pathway contributes to anchorage independent
growth, tumorigenicity, migration, and metastasis [64,65]. In

conclusion, the link between genes implicated for multiple
drugs and the pathways mentioned above that play different
roles in cancer may point to shared mechanisms of

action among different anti-cancer drugs. We also performed
a similar pathway enrichment analysis for genes implicated
for each drug separately and the results are provided in
Table S6.



Figure 4 Top genes identified for tamoxifen response and their functional validation

A. The ROC curves for tamoxifen when different number of genes were used for CDR prediction. TINDL utilized the GEx values of all

genes (AUROC = 0.92), whereas TINDL-top20 (AUROC = 0.90) and TINDL-kneedle (AUROC = 0.83) assigned a value of 0 to all

genes except for top 20 and top genes identified by kneedle, respectively. B. Tamoxifen dose–response curves corresponding to the siRNA

knockdown of RPS6 and RPL13 in MCF7 cells. Cytotoxicity assays were performed using technical triplicate experiments with three wells

per drug concentration. Knockdown efficiency was assessed by qRT-PCR using three technical replicates (Table S8). The dose–response

curves for all genes are provided in Figure S9. C. Tamoxifen dose–response curves corresponding to the siRNA knockdown of RPS6 and

RPL13 in T47D cells. Cytotoxicity assays were performed using technical triplicate experiments with three wells per drug concentration.

Knockdown efficiency was assessed by qRT-PCR using three technical replicates (Table S8). The dose–response curves for all genes are

provided in Figure S10. All P values are calculated using an extra sum-of-squares F test. ROC, receiver operating characteristic; AUROC,

area under the receiver operating characteristic curve; GEx, gene expression; qRT-PCR, quantitative real-time polymerase chain reaction;

NC, negative control; mRNA, messenger RNA; siRNA, small interfering RNA.
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Functional validation confirms the role of TINDL-identified genes

in response to tamoxifen

We sought to evaluate the drug response-predictive ability of
top identified genes by TINDL, both computationally and

experimentally. We focused on tamoxifen due to the good pre-
diction performance of TINDL for this drug (AUROC= 0.92,
P = 1.14E�3 for Mann–Whitney U test). First, using only top

implicated genes for this drug (n = 136 based on the threshold
identified by kneedle), we observed a consistently high value of
AUROC and a significant Mann–Whitney U test P value (Fig-

ure 4A, AUROC= 0.89, P = 2.32E�3). Next, we reduced the
number of genes for the model to only top 20 and observed
that AUROC remains high even with this small number of
genes (Figure 4A, AUROC = 0.90, P = 1.65E�3). This

shows that even a small panel of 20 genes can be used to pre-
dict the CDR of this drug, suggesting potential clinical appli-
cations in precision medicine for these small panels of genes.

Next, we set out to determine whether genes identified by
TINDL as predictive of tamoxifen response could be associated
in vitro with relevant changes in drug sensitivity. We selected 10

genes identified by TINDL, which included the top 9 ranked
genes (RPP25, EMP1, EXTL3, EXOC2, NUP37, RPL13,
WBP2NL, RPS6, and GBP1) as well as the gene ranked as 19

(JAK2), due to its involvement with the type II interferon sig-
naling pathway, an important pathway in cancer [66]. We used
estrogen receptor positive breast CCLs, MCF7 and T47D,
because tamoxifen has most often been used as the treatment

for estrogen receptor positive breast cancer patients in general
and 85% of patients in our test dataset for this drug corre-
sponded to breast cancer. We measured the dose–response val-

ues of tamoxifen in these two cell lines for these ten genes using
CyQUANT assay, which provides an accurate measure of cell
numbers based on DNA content [67]. We defined ‘‘signifi-

cance” as a gene knockdown with a significant change in appar-
ent IC50 in comparison with a negative control siRNA.
Knockdown of all ten genes with specific siRNAs had a signif-
icant effect on tamoxifen sensitivity in MCF7 cell line

(P < 0.0001, extra sum-of-squares F test), validating 100%
of tested genes in this cell line (Figure 4B, Figure S9;
Table S7). Similarly, our experiments confirmed seven of these

genes in T47D cell line (Figure 4C, Figure S10; Table S7).
Taken together, through the functional validation in estrogen
receptor positive breast cancer cells, we found that the expres-

sion of seven genes, RPP25, EXOC2, NUP37, RPL13, RPS6,
GBP1, and JAK2, were involved in tamoxifen-induced response
in both cell lines, and three genes, EMP1, EXTL3, and

WBP2NL were involved in tamoxifen-induced response in
MCF7. The percentage of variation in the IC50 of breast cancer
cells that was explained by the variation of expression of these
ten genes is provided in Table S7, whereas Table S8 shows the

efficiency of knockdown for each gene.

Discussion

Predicting the response of an individual to cancer treatments
and identification of predictive biomarkers of drug

response are two major goals of individualized medicine.
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Computational models that can achieve these goals based on
preclinical in vitro data can make a considerable impact, due
to the significant ease of preclinical data generation and data

collection compared with clinical samples. This is particularly
important for newly developed or newly approved drugs, for
which clinical samples may be very limited or non-existent.

However, the biological and statistical differences between
CCLs and patient tumors make this task challenging. In a
recent study [9], we assessed the ability of a wide range of

ML models trained on preclinical CCLs, including those that
incorporate auxiliary information such as gene interaction net-
works, in predicting the CDR of cancer patients. Our analysis
confirmed the difficulty of this task and emphasized the impor-

tance of carefully designing advanced computational
techniques.

In this study, we developed TINDL, and showed its sub-

stantial improvement compared with the state-of-the-art ML
models (based on both traditional and DL techniques) (Fig-
ure 1). Our results showed the importance of removing the sta-

tistical discrepancies between preclinical and clinical samples,
as well as incorporating the cancer types and tissues of origin
of the tumor samples. TINDL is not simply a drug response

predictor, but rather allows identification of the most predic-
tive biomarkers for each drug. The biomarkers identified by
multiple drugs (Figure S8B) suggested important genes and
signaling pathways that may play important roles in the mech-

anism of action of different drugs in cancer. Many genes iden-
tified during our study have been reported to have altered
levels of expression in response to a given drug, especially

SLFN11 for multiple chemotherapies [42–44,68,69], SALL4
for cisplatin [70], ABCB1 for taxane and doxorubicin [71,72],
PIGB for gemcitabine [73], and BAX to oxaliplatin [74]. These

results suggest that our preclinical-to-clinical model could gen-
erate biologically relevant candidate genes and pathways for
understanding mechanisms underlying drug resistance, and

may offer additional combinational therapeutic strategies to
overcome certain drug resistance.

Focusing on tamoxifen, we were able to show that only a
small panel of 20 genes can preserve the predictive perfor-

mance of TINDL for this drug (Figure 4A). Moreover, func-
tional validation of 10 of these genes identified by TINDL
using siRNA knockdown performed with MCF7 and T47D

estrogen receptor positive breast cancer cells, confirmed the
direct role of these genes in response to tamoxifen (Figure 4B
and C, Figures S9 and S10). These results suggest that, like

many complex traits, response to tamoxifen also involves mul-
tiple genes in different pathways. In addition, these results pro-
vide us with new insights into novel mechanisms in tamoxifen
response. For example, among these genes, RPS6 is the canon-

ical substrate of S6 kinase (S6K), which is activated by integrin
engagement and inactivated by detachment. Abnormal expres-
sion of RPS6 has been indicated as a critical trigger for

detachment-induced keratinization related to breast cancer
development [75]. Indeed, the prognostic value of RPS6 was
assessed by Kaplan–Meier plotter analysis of GEx data from

estrogen receptor positive/HER2 negative breast tumor sam-
ples of 686 patients. High expression of RPS6 was associated
with better relapse-free survival (RFS) in this cohort of

patients (Figure S11A). Decreased phosphorylation of RPS6
was previously observed in tamoxifen-resistant breast cancer
cells compared with parental cells [76]. However, to the best
of our knowledge, no previous study has linked RPS6 to
tamoxifen sensitivity. The fact that we found that RPS6
expression can predict tamoxifen sensitivity and that knock-
down of RPS6 desensitized breast cancer cells to tamoxifen

exposure by two folds suggests a potential role for RPS6 in
the estrogen response pathway, in addition to its role as a pro-
tein synthesis regulator. In addition to its prognostic value,

further analysis revealed that high messenger RNA (mRNA)
expression of RPS6 was also remarkably associated with pro-
longed RFS in tamoxifen-treated patients (Figure S11B). This

hypothesis will need to be tested further in future experiments.
The second gene that influenced tamoxifen response the most
was RPL13, also known as ‘‘Ribosomal Protein L13”.
RPL13 encodes a component of the 60S ribosomal subunit

that is expressed at significantly higher levels in benign breast
lesions than in breast carcinomas [77]. Similarly, to the best of
our knowledge, no previous study has linked RPL13 to estro-

gen signaling or tamoxifen response. Kaplan–Meier Plotter
analysis revealed that patients with high expression of
RPL13 had a significantly longer RFS than those with low

RPL13 expression (Figure S11C). Our observations here sug-
gest an important role of RPL13 expression level in predicting
tamoxifen sensitivity, and could help identify additional drug

targets or treatment options to overcome tamoxifen resistance.
Our analysis suggests that TINDL performs better than

other approaches (in terms of the number of drugs for which
it can distinguish between resistant and sensitive tumors).

Although its superior performance compared with traditional
ML models can be attributed to higher capacity of DL
approaches in modeling complex and nonlinear relationships,

its superior performance compared with DL-based domain
adaptation techniques reveals its ability to remove the discrep-
ancies between the preclinical and clinical samples. In this

study, we performed additional analyses on the embedding
space, which confirmed the hypothesis above both visually
and quantitatively. When inspecting the principal components

and the UMAPs of the samples in the embedding space from
the two datasets (Figure 3B, Figures S3–S6), it was clearly vis-
ible that the distributions of GDSC and TCGA samples were
quite distinct from each other when using domain adaptation

models or ComBat. However, embeddings learned by TINDL
showed a mixing of the GDSC and TCGA samples, which can
be interpreted as a better reduction of the domain discrepancy.

We quantified this observation by calculating the average
inter-domain distance of the samples in the latent space (smal-
ler value is better). As shown in Figure 3A, TINDL had a sig-

nificantly lower average distance compared with the existing
approaches. One possible reason for this observation is that
the other approaches do not incorporate prior information
about the target domain. Tissues have distinct GEx profiles,

which was leveraged by TINDL. Another reason is the diffi-
culty of assessing the level of adaptation in domain adaptation
models because vector representations of GEx (unlike images)

cannot be visually verified. Furthermore, domain adaptation
methods can suffer from a ‘‘mode collapse” problem in which
all samples are mapped in a small subspace in the latent space

such that the discriminator is confused, which is erroneously
equated to having a sufficient adaptation. We would like to
point out that in spite of the shortcomings of current domain

adaptation techniques, we posit that novel domain adaptation
methods can be developed to improve the results. However,
such methods need to be carefully designed for the analysis
of GEx data and must take into account biological factors that
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influence the response of cancer patients to different drugs. In
addition, including information on the cancer type or even
subtype of each cancer may be necessary to achieve better

results.
Another important consideration is that due to the limita-

tion of CCLs in mimicking patient tumors (e.g., their growth

in 2D environment, being more homogenous than tumors,
and not being able to capture the effect of tumor microenvi-
ronment), computational models trained on CCLs are limited

in their ability to predict CDR of cancer patients, even if they
remove the statistical discrepancies of the training and test sets.
As a result, availability of large datasets, pertaining to better
models of cancer (such as patient-derived organoids or xeno-

grafts), plays an important role in improving the predictive
ability of computational models.

In this study, our focus was models trained only on GEx

profiles of samples, because previous studies have shown this
data modality to be most informative regarding drug response
[6]. However, a multi-omics approach that incorporates differ-

ent molecular characteristics of samples may provide a more
complete understanding of the mechanisms of drug response
in cancer. Nevertheless, such models need to be carefully

designed to avoid over-fitting due to the additional number
of features, which can cause severe performance deterioration.
Another limitation of this study was that all the computational
models were trained on CCLs and their response to single

drugs. However, some of the patients in the TCGA dataset
have received multiple drugs in the course of their treatment,
which we had to include in the analysis due to the small num-

ber of samples with known CDR. In such cases, any computa-
tional models trained on single drugs can only provide an
approximation. To improve the prediction performance in

such cases, a computational model must also consider the syn-
ergistic and antagonistic effects of the drugs. Recent large pub-
licly available datasets such as DrugComb [78] and

DrugCombDB [79] that contain response of different cell lines
to pairs of drugs provide an opportunity for developing such
methods, a direction that we will pursue in the future.

Materials and methods

Datasets

We used the publicly available data fromGDSC and TCGA for

training and testing, respectively. For training data, we used the
robust multi-array analysis (RMA)-normalized GEx data in
GDSC, which contains 958 unique cell lines. For the test data,
we used RNA sequencing [in fragments per kilobase million

(FPKM)] from primary tumors in TCGA. For both datasets,
we filtered out genes with missing values. We also removed
genes that were not expressed (FPKM < 1) for at least 90%

of all the TCGA samples, and transformed the remaining genes
using log2 (FPKM+ 0.1). Only genes that were present in both
datasets were included, which summed up to 15,650 genes. We

used z-score to normalize the GDSC GEx data (gene-wise) as
well as the ln IC50 values (drug-wise). We obtained CDR of
cancer patients from the supplementary file of Ding and his col-
leagues [10]. Because the number of samples with known drug

response in TCGA is relatively small, in our analysis we also
included samples that have received multiple drugs in their
course of treatment. We only focused on drugs which are com-
mon to both datasets and have at least 20 samples with known
CDR in TCGA. We used a tissue-informed normalization,
which is detailed below. Furthermore, we recategorized the

CDRs to sensitive (corresponding to complete and partial
responses) and resistant (corresponding to stable disease and
clinically progressive disease). Details on sample counts and tis-

sue types per drug are in Table S1.

Tissue-informed normalization

TINDL trained a separate model for each drug. Each model
performed a separate normalization on the GEx profiles of test
samples from TCGA to account for the cancer types and tis-

sues of origin of the samples. First, for each drug D, the set
of tissues/cancer types to which this drug was administered
in the TCGA samples was identified (referred to as TD). All
samples corresponding to TD (excluding those used in the test

set) were collected from TCGA, forming the unlabeled dataset.
Then, the gene-wise mean (lTD

) and standard deviation (rTD
)

of these unlabeled samples were calculated and used to nor-

malize labeled test samples corresponding to drug D. More
specifically, for a gene i of an arbitrary sample in the test set,
the normalized value xi would be:

xi ¼
exi � li;TD

ri;TD

ð1Þ

where exi is the log-transformed expression for gene i of that

sample. The test samples were then used as input to the trained
model to predict the normalized ln IC50 values, which were
compared with the actual CDR categories for evaluation.

Architecture of TINDL, hyperparameter selection, and training

We used grid-search and 5-fold cross validation to select the
number of epochs, batch size, and learning rate of all our DL-

based models (including TINDL). We only used the training
data corresponding to CCLs (from GDSC) to perform the
hyperparameter search, in which the set of hyperparameters

with the highest average Pearson correlation coefficient on the
validation set across the five foldswere chosen. Specific hyperpa-
rameters chosen using this procedure for TINDL are provided

in Table S9. In addition to the input layer (which contained
one node for each gene), we used three hidden layers with dense
connections, each with 512, 256, and 128 hidden nodes, in the

order of their distance to the input layer. We used a rectified lin-
ear units (ReLU) activation function and added a dropout layer
with 0.2 probability of dropping out prior to the output layer.

Models were trained using mean squared error (MSE) as

the loss function, and the normalized ln IC50 values as the
labels. During hyperparameter tuning, models were allowed
to train up to a maximum of 1000 epochs, but early stopping

was applied when the loss of model did not decrease after 30
epochs. After hyperparameter tuning, we retrained a final
model using all the labeled CCL samples. We used 10 different

random initializations (i.e., seeds) and ensembled the models
by averaging their predictions to ensure robustness of the
results. Note that individual models were trained indepen-

dently. Loss curves for hyperparameter tuning and final train-
ing are shown in Figures S12 and S13. A similar technique was
used for ADDA-DL, DANN-DL, ComBat-DL, TrainNorm-
DL, and TestNorm-DL.
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Calculation of contribution scores of genes

In the second phase of TINDL (Figure 1B), we used CXPlain
[18] as the explainer to assign a contribution score to each gene
in each sample. CXPlain is a method that attempts to provide

causal explanations of predictions of a trained model. This is
achieved by training a separate model (called ‘‘explainer”)
using the outputs of the trained model (called ‘‘predictor”).
This method utilizes Granger causality [80] to evaluate the

contribution of a single feature (gene in our case) by zeroing
out features one by one and calculating the normalized differ-
ence of the predictor’s original error and its error when the fea-

ture is zeroed out. In our case, we defined error as

eX ¼ yX � byXð Þ2, where yX is the true value and byX is the out-

put of the predictor for sample X ¼ x1; � � � ; xp

� �
, p being the

number of features. Note that our predictor was an ensemble,

and byX is the average of the outputs of the individual models.
Prior to training the explainer, the real contribution vectors,

XX ¼ x1 Xð Þ; � � � ;xp Xð Þ� �
, are calculated for each training

sample as follows:

xi Xð Þ ¼ DeX;iP
j¼1���pDeX;j

ð2Þ

where DeX;i ¼ eXn if g � eX. Here, eXn if g denotes the predictor’s

error when given X but with feature i zeroed out. The explainer
has an architecture such that the dimensions
of the input vector X and the output vectorbXX ¼ bx1 Xð Þ; � � � ; bxp Xð Þ� �

are the same. Each of the outputs

correspond to the predicted contribution for the corresponding
feature. The explainer is trained by minimizing the Kullback–

Leibler (KL) divergence KL XX; bXX

� �
of the real contributions

XX and predicted contributions bXX of the training set.
We used a neural network with two layers and 512 hidden

units for the explainer, and used the ensemble mode, which
trained 10 independent explainers and reported their median
as the final contribution values. We modified the code of
CXPlain library to fit our application, which we also included

in our published code. Once trained, we predicted the contri-
bution values of each genes in each of the samples in the testing
set. To obtain drug-specific gene contribution scores, we calcu-

lated the mean contribution score of each gene across all the
labeled test samples for that drug and normalized it such that
the largest contribution score of a drug equals 1.

Identification of genes with highest contribution scores

After obtaining contribution scores to each gene for a drug, we

sought to identify the top genes that substantially affect the
predictions our model. We sorted the genes according to their
final test contribution scores and plotted a curve (Figure S7),
where the X-axis is the rank of the gene i and the Y-axis is

the drug-specific contribution score x
�
i of gene i. We used

the kneedle algorithm [24] to identify the point of maximum
curvature, called ‘‘knee”, which we then treated as the cutoff

for the top genes. Kneedle relies on the idea that if one forms

a line l from (1, x
�
max) to (n;x

�
min) and rotate the curve around

the point (n;x
�
min), the ‘‘knee” can be approximated by the set

of points in the local maxima. Among these points, the point
that is farthest from the line l is then identified as the knee.
Knowledge-guided pathway enrichment analysis

We identified pathways associated with the top identified genes
using KnowEng’s GSC pipeline [47]. We used the network-
guided mode, which incorporates knowledge in the form of

gene–gene interactions to augment the analysis. For the knowl-
edge network, we selected the experimentally verified protein–
protein interactions within the STRING database [81]. We then
proceeded with the default 50% network smoothing parameter

and used the ‘‘Enrichr” pathway collection. This pipeline does
not provide a P value, but rather uses a score called ‘‘Difference
Score” to implicate top pathways. Any pathway above the 0.5

threshold is considered associated with the input query set. A
value above this threshold shows that the pathway has a high
relevance score to the input query set (using a randomwalk with

restarts algorithm), compared with the background [47].

Precision at k-th percentile

For each drug, we used TINDL’s predictions of ln IC50 of the
tumor samples, and identified the k-th percentiles of the distri-
bution (k � 50), which we denoted as tk. We stratified the pre-
dictions such that all predictions below tk was predicted as

positives (i.e., sensitive). We then calculated the precision at

k-th percentile as TPk

TPkþFPk
, where TPk and FPk are the true pos-

itives and false positives at k-th percentile, respectively.

Baseline models

SVR, random forests, and LASSO regression were all imple-

mented using scikit-learn. Geeleher’s method [14] was reimple-
mented using scikit-learn and pyComBat, a python
implementation of ComBat [15]. We used the available imple-

mentation of TG-LASSO [9]. All hyperparameters were tuned
as described in the previous subsections except for TG-
LASSO, which has its built-in hyperparameter tuning.

To ensure a fair comparison, all DL-based baseline models
used a similar architecture to TINDL. Additionally, the hyper-
parameter tuning and training procedure was also similar to

the one described above for TINDL. Below, we describe
model-specific considerations. For ComBat-DL we used Com-
Bat [15] for removing the discrepancy between TCGA and
GDSC datasets. Similar to TINDL, we used both labeled

and unlabeled samples of TCGA for this purpose.
ADDA-DL utilizes ADDA [17], to remove the discrepancy

between TCGA and GDSC datasets. ADDA is a unidirec-

tional domain adaptation technique, which takes a pretrained
neural network and attempts to adapt the network to the tar-
get dataset by forcing the latent feature space of the target

dataset (TCGA) to be similar to that of the source dataset
(GDSC). We used the TINDL model as the pretrained net-
work, which we adapt through the adversarial losses of

ADDA. We used the unlabeled tumor samples from the drugs
target tissues during training. Details are provided in File S1.

DANN-DL utilizes DANN [16] to remove the discrepancy
between TCGA and GDSC datasets. DANN utilizes the

shared latent feature space to allow the model to be used on
the target dataset despite only being trained using the labels
of source dataset. This is done by incorporating a gradient-

reversed discriminative loss function such that a discriminator
cannot tell whether the given embedding came from the source
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(GDSC) or target (TCGA) datasets. Similar to ADDA-DL, we
used the unlabeled tumor samples from the drugs target tissues
for training of the discriminator.

TrainNorm-DL and TestNorm-DL are two default work-
flows when domain discrepancies are not an important prob-
lem. In the TrainNorm-DL, we used the training set’s mean

and standard deviation to normalize both the training set
and the test set. This is analogous to assuming that the training
set and test set belong to the same domain. The TestNorm-DL

uses a per dataset normalization technique, in which the test
set is normalized using its own mean and standard deviation,
whereas the training set also uses its own summary statistics.
The same model as TINDL was used for these baselines

because the difference in normalization only affects the test set.
GCN [22] and GAT [23] are two types of graph neural net-

works. For both architectures, the STRING co-expression

graph [81] was used as the input structure. Only genes that
existed in both STRING and the transcriptomic dataset were
utilized. Each node in the graph is a gene, represented by the

concatenation of a unique trainable embedding vector (gene-
specific, shared across samples) and the expression value of
gene (sample-specific). The purpose of gene-specific vectors is

to allow GCN and GAT to distinguish differences between
genes, which would normally be ignored because of the permu-
tation invariance properties of architectures. The complete
model is similar to that of TINDL, but with the first two layers

replaced with GCN or GAT, corresponding to two-hop mes-
sage passing in the graph.

LSTM is a type of recurrent neural network, which are typ-

ically used for sequential data. We used the gene indices of our
input file as the artificially induced ordering, and split the fea-
tures into ten windows. Only the embedding coming from the

last window (10th pass to the LSTM) was fed to the subse-
quent fully-connected layers. Only one LSTM layer was used
because the parameters of one layer of LSTM are more com-

parable to two layers of a fully-connected network. The com-
plete model resembles TINDL, but with the first layer replaced
with an LSTM layer.

Measurement of distance of clinical and preclinical samples in

the latent space of DL-based models

To assess the ability of each DL-based model in removing dis-

crepancy between preclinical and clinical samples, we used
pairwise Euclidean distance of samples based on their repre-
sentation learned by the encoder of the DL models. Because

these representations are used by the decoder to make predic-
tions, comparing these latent representations is more meaning-
ful than comparing input feature representations. We used
Ward’s method [82] to assess the distance of preclinical sam-

ples and clinical samples, which is one of the most popular
methods in assessing the distance of two groups of samples.
This method, which is widely used in hierarchical clustering,

has the advantage that not only analyzes the Euclidean dis-
tances of the data points, but also incorporates their variance
in determining the distance of two groups of samples.

Chemicals and reagents

Dulbecco’s Modified Eagle’s medium (DMEM; Catalog No.

11-965-092) was purchased from ThermoFisher Scientific
(Carlsbad, CA). Fetal bovine serum (FBS; Catalog No. 10-
437-028) and charcoal-stripped FBS (Catalog No. 12-676-
029) were from Invitrogen (Carlsbad, CA). On-Target Plus

SMARTpool siRNAs targeting RPP25, EMP1, EXTL3,
EXOC2, NUP37, RPL13, WBP2NL, RPS6, GBP1, and
JAK2 as well as negative siRNA controls were purchased from

Dharmacon (Horizon Discovery, Lafayette, CO). Reagents
and primers for quantitative real-time polymerase chain reac-
tion (qRT-PCR) were purchased from QIAGEN (Valencia,

CA) and Integrated DNA Technologies (Coralville, IA). 17b-
estradiol (E2; Catalog No. E2758) and 4-hydroxytamoxifen
(OH-TAM; Catalog No. 579002) were purchased from Sigma
Aldrich (Saint Louis, MO).

Cell lines

MCF7 and T47D cell lines were obtained from American Type

Culture Collection (ATCC; Manassus, VA) in 2014, and the
identities of all cell lines were confirmed by the medical gen-
ome facility at Mayo Clinic (Rochester, MN) using short tan-

dem repeat profiling upon receipt. MCF7 cells were cultured in
DMEM containing 10% FBS. T47D cells were cultured in
RPMI-1640 containing 10% FBS.

Transfection and gene silencing

Specific siRNAs that targeted RPP25, EMP1, EXTL3,
EXOC2, NUP37, RPL13, WBP2NL, RPS6, GBP1, JAK2,

and negative siRNA controls (Horizon Discovery) were trans-
fected into MCF7 and T47D cells in 96-well plates using Lipo-
fectamine RNAiMAX Transfection Reagent (Catalog No.

13778500, ThermoFisher Scientific, Waltham, MA) according
to the vendor’s protocol [67,83]. Total RNA was extracted 48 h
after transfection for RNA quantification. Specific siGEN-

OME siRNA SMARTpool Reagents (Catalog Nos. M-
020782-01-0005 for RPP25, M-010507-00-0005 for EMP1,
M-012578-00-0005 for EXTL3, M-017357-01-0005 for

EXOC2, M-014282-00-0005 for NUP37, M-013714-00-0005
for RPL13, M-017184-00-0005 for WBP2NL, M-003024-01-
0005 for RPS6, M-005153-02-0005 for GBP1, and M-
003146-02-0005 for JAK2) against a given gene as well as a

negative control, siGENOME Non-Targeting siRNA (Catalog
No. D-001206-13-20), were purchased from Horizon Discov-
ery. For the purpose of drug tamoxifen response assay, cells

were plated in base medium supplemented with 5% charcoal
stripped FBS for 24 h, and then cultured in FBS-free DMEM
media for another 24 h before transfection. Different treat-

ments were started 24 h after transfection.

qRT-PCR

qRT-PCR assays were performed for measuring GEx using
Power SYBR Green RNA-to-CT 1-Step Kit (Catalog No.
4389986, ThermoFisher Scientific, Grand Island, NY) and Pri-
meTime (Integrated DNA Technologies, Coralville, IA) pre-

designed quantitative polymerase chain reaction (qPCR) pri-
mers. RNA was extracted using the QIAGEN RNeasy Kit
(Catalog No. 74104, QIAGEN, Germantown, MD). RNA

was measured by NanoDrops3000 (ThermoFisher Scientific,
Rockford, IL). qRT-PCR reactions were prepared as per the
manufacturer’s protocol. Samples were run using StepOnePlus
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Real-Time PCR System (ThermoFisher Scientific, Carlsbad,
CA). For the experiments, we used three technical replicates.
GEx was normalized to the negative siRNA control.

Table S8 shows the knockdown efficiency of each gene and
corresponding statistical analysis.

Tamoxifen sensitivity assay

Drugs were dissolved in dimethyl sulfoxide (DMSO), and ali-
quots of stock solutions were frozen at �80 �C. Cytotoxicity
assays were performed in triplicate at each drug concentration.
Specifically, 4000 breast cancer cells were seeded in 96-well
plates, cultured in base media containing 5% (v/v) charcoal-

stripped FBS for 24 h, and subsequently cultured in FBS-
free base media for another 24 h. Cells were then transfected
with either control siRNA or siRNA targeting a specific gene.
After 24-h transfection, the media were replaced with fresh

FBS-free base media, and the cells were treated with 10 ll of
tamoxifen at final concentrations of 0, 0.1875, 0.375, 0.75,
1.5, 3, 6, 12, 24, and 48 lM [84]. After incubation for an addi-

tional 72 h, cytotoxicity was determined by quantification of
DNA content using CyQUANT assay (Catalog No. C35012,
Invitrogen, Carlsbad, CA) following the manufacturer’s

instructions [85–87]. 100 ll of CyQUANT assay solution was
added, and plates were incubated at 37 �C for 1 h and then
read in a Safire2 Microplate Reader with filters appropriate
for 480-nm excitation and 520-nm emission.

Code availability

An implementation of TINDL in Python, with appropriate
documentation, is available at https://github.com/ddhostal-
lero/tindl. Preprocessed input data and trained models are also

linked in the code repository.
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