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Abstract Non-coding variants in the human genome significantly influence human traits and com-

plex diseases via their regulation and modification effects. Hence, an increasing number of compu-

tational methods are developed to predict the effects of variants in human non-coding sequences.

However, it is difficult for inexperienced users to select appropriate computational methods from

dozens of available methods. To solve this issue, we assessed 12 performance metrics of 24 methods

on four independent non-coding variant benchmark datasets: (1) rare germline variants from clin-

ical relevant sequence variants (ClinVar), (2) rare somatic variants from Catalogue Of Somatic

Mutations In Cancer (COSMIC), (3) common regulatory variants from curated expression quanti-

tative trait locus (eQTL) data, and (4) disease-associated common variants from curated genome-

wide association studies (GWAS). All 24 tested methods performed differently under various

conditions, indicating varying strengths and weaknesses under different scenarios. Importantly,

the performance of existing methods was acceptable for rare germline variants from ClinVar with
ion and
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the area under the receiver operating characteristic curve (AUROC) of 0.4481–0.8033 and poor for

rare somatic variants from COSMIC (AUROC = 0.4984–0.7131), common regulatory variants

from curated eQTL data (AUROC = 0.4837–0.6472), and disease-associated common variants

from curated GWAS (AUROC = 0.4766–0.5188). We also compared the prediction performance

of 24 methods for non-coding de novo mutations in autism spectrum disorder, and found that the

combined annotation-dependent depletion (CADD) and context-dependent tolerance score (CDTS)

methods showed better performance. Summarily, we assessed the performance of 24 computational

methods under diverse scenarios, providing preliminary advice for proper tool selection and guiding

the development of new techniques in interpreting non-coding variants.
Introduction

Most regions of the human genome are non-coding sequences,
and some of them harbor structural, regulatory, and tran-
scribed information [1]. Some variants in non-coding

sequences play important roles in human traits and complex
diseases [2]. It is widely accepted that a large proportion of
non-coding sequences is functional and harbors genetic vari-

ants that contribute to disease etiology [3] and that modified
penetrance of pathogenic coding variants by non-coding regu-
latory variants can contribute to disease risk [4]. In addition,

recent discoveries support that variants in non-coding
sequences are important in cancer development [5,6]. Further-
more, genome-wide association studies (GWAS) have identi-
fied numerous single-nucleotide variants (SNVs) associated

with many human traits and complex diseases, and most of
these associations are thought to be mediated by non-coding
regulatory variants [7–9].

In the last few years, many genomic features in the non-
coding sequences of the genome have been identified across
multiple human tissues and cell types through various large-

scale projects, such as the Encyclopedia of DNA Elements
(ENCODE) [10], Roadmap Epigenomics [11], and the func-
tional annotation of the mammalian genome (FANTOM5)
[12], enabling analysis and prediction of the functional effects

of non-coding variants. Several computational methods [13–
32] based on supervised, unsupervised, and semi-supervised
models have been developed to prioritize non-coding variants

by integrating various genomic features. For instance, com-
bined annotation dependent depletion (CADD) used more
than 60 various annotations from conservation, epigenetic

modification, genetic context, and functional prediction [13];
Prioritization And Functional Assessment (PAFA) was the
first method to introduce the fixation index [33], a

population-level metric important for prioritizing population
relevant functional non-coding variants [30]. Given that com-
putational methods offer differing advantages, disadvantages,
and specific features [34], users with different requirements

need to choose appropriate methods. Three previous studies
have evaluated the performance of several computational
methods [35–37]. Nevertheless, limited benchmark datasets

were used in the three studies, and they measured the area
under the receiver operating characteristic (ROC) curve
(AUROC) and area under the precision-recall (PR) curve

(AUPRC); other critical performance metrics, such as the
accuracy at 95% sensitivity or specificity, were not used. Fur-
thermore, several recently developed methods, such as non-

coding essential regulation (ncER) [28], de novo pattern discov-
ery and prioritization of functional variants (DVAR) [18], and
PAFA [30], have not been evaluated in detail. Hence, it is
imperative to systematically and comprehensively evaluate
these methods to help users choose computational methods

matching their needs.
Notably, in our previous research, we did not develop any

computational method for non-coding variants. Therefore, we

independently assessed 12 performance metrics for 24 methods
using four benchmark datasets. Our study compared computa-
tional methods under different conditions and showed that the

performance of each method varied under different conditions.
We also identified some computational methods with accept-
able performance for rare pathogenic germline non-coding

variants. We noted that no methods yielded satisfactory pre-
diction results for rare somatic non-coding variants, disease-
associated common non-coding variants, and common regula-
tory non-coding variants. Our results provide an opportunity

for clinicians and researchers to select applicable evaluation
methods to explore the functional effects of non-coding vari-
ants. Additional more accurate computational methods for

various non-coding variants must be developed.

Results

Predictions among methods showed poor concordance

In this study, a total of 24 computational methods were
assessed (Table 1). Four independent benchmark datasets were
built that represented various genetic aspects: (1) rare germline

variants from clinical relevant sequence variants (ClinVar),
including rare non-coding germline variants of human traits
and genetic diseases [38]; (2) rare somatic variants from cata-

logue of somatic mutations in cancer (COSMIC) for rare
non-coding somatic variants of human cancers [39,40]; (3)
common regulatory variants from curated expression quantita-

tive trait locus (eQTL) data for common non-coding variants
of the human genome that explain variation in gene expression
levels [41–43]; and (4) disease-associated common variants
from curated GWAS for common non-coding risk variants

of human diseases recognized by GWAS [43,44] (Table 2). Fur-
ther, all 24 computational methods were published before 2020
and the training datasets used were published before 2019. To

reduce overlap between our testing benchmark data and the
training data used in the 24 computational methods, we
selected variants published after 2019 and removed variants

that existed in these publicly available training datasets before
comparing the methods.

Spearman rank correlation coefficients were calculated
between pairs of computational methods based on the

PHRED-scaled scores of four benchmark datasets to evaluate
the predictive concordances among the 24 computational



Table 1 Summary of 24 computational methods compared in this study

Method Prediction model Model type Learning dataset Version Ref.

CADD SVM and logistic regression model Supervised Simulated DNMs and variants arisen and fixed in

human populations

v1.3 [13]

CDTS Difference between expected and

observed score as context-dependent

tolerance score

Unsupervised 11,257 human whole-genome sequences 2017 [14]

CScape Kernel-based models and leave-one-

concentration-out cross validation

Supervised Somatic point variants from the COSMIC and SNVs

from the 1000 Genomes Project

2017 [15]

DANN Deep neural network Supervised Simulated DNMs and variants arisen and fixed in

human populations

2015 [16]

DIVAN_TSS Ensemble learning framework Supervised Risk variants of 45 diseases/phenotypes (ARB) and

benign variants are sampled from the 1000 Genomes

Project with TSS-matched criterion

2016 [17]

DIVAN_REGION Ensemble learning framework Supervised Risk variants of 45 diseases/phenotypes (ARB) and

benign variants are sampled from the 1000 Genomes

Project with region-matched criterion

2016 [17]

DVAR Multivariate Dirichlet Process

Mixtures

Unsupervised 2 million variants randomly sampled from the 1000

Genomes Project

v1.0 [18]

Eigen Spectral meta-learner Unsupervised Variants in the 1000 Genomes Project without a match

in dbNSFP and within 500 bp upstream of the TSS

v1.1 [19]

Eigen_PC Spectral meta-learner Unsupervised Variants in the 1000 Genomes Project without a match

in dbNSFP and within 500 bp upstream of the TSS

v1.1 [19]

FATHMM-MKL Multiple kernel learning Supervised Germline variants in HGMD and control variants

from the 1000 Genomes Project

2017 [20]

FATHMM-XF Kernel-based models and platt

scaling

Supervised Positive variants from the HGMD and control

variants from the 1000 Genomes Project

2017 [21]

FIRE Random forest model Supervised Cis-eQTL SNVs identified by the Geuvadis

lymphoblastoid cell lines and sampled non-eQTL

SNVs

2017 [22]

fitCons Generative probabilistic model Semi-supervised Multiple species genomic DNA sequence v1.01 [23]

FitCons2 Probabilistic evolutionary model Semi-supervised Multiple species genomic DNA sequence 2017 [24]

FunSeq2 Weighted scoring scheme Semi-supervised Small-scale informative data context from the 1000

Genomes Project, ENCODE, COSMIC, and CGC

v2.1.6 [25]

GenoCanyon Conditional joint density estimation Unsupervised Each location in the human genome v1.0.3 [26]

LINSIGHT Combination of generalized linear

model and probabilistic model

Semi-supervised Multiple species genomic DNA sequence and 54

unrelated human genomes

2017 [27]

ncER XGBoost model Supervised Positive examples from HGMD (2016_R1) and

ClinVar (July 2016) and negative examples from

gnomAD

v1.0 [28]

Orion Difference between the observed and

expected site-frequency spectrums

Unsupervised 1662 WGS samples 2017 [29]

PAFA Logistic regression with L1

regularization

Supervised Variants labeled ‘‘pathogenic” in ClinVar and

significant SNPs associated with complex traits or

diseases and variants labeled ‘‘benign” in ClinVar and

variants in the 1000 Genomes Project

2018 [30]

regBase_REG XGBoost model Supervised Functional regulatory variant dataset and non-coding

variants from the 1000 Genomes Project

v1.0 [31]

regBase_PAT XGBoost model Supervised Pathogenic regulatory variant dataset and non-coding

benign variants labeled ‘‘benign” in ClinVar

v1.0 [31]

regBase_CAN XGBoost model Supervised Cancer recurrent regulatory somatic mutation dataset

and non-recurrent somatic mutations

v1.0 [31]

ReMM Random forest model Supervised Hand-curated set of regulatory mendelian mutations

and derived alleles of human evolution

v0.3.1 [32]

Note: The difference between DIVAN_TSS and DIVAN_REGION was the criteria to choose benign variants in the training set. Eigen_PC had the

same prediction model and learning dataset as Eigen but they had different weights for some genomic features. regBase trained three composite

models based on different training datasets to score functional, pathogenic, and cancer driver non-coding regulatory variants, respectively. CADD,

combined annotation dependent depletion; CDTS, context-dependent tolerance score; DANN, deleterious annotation of genetic variants using

neural networks; DIVAN, DIsease-specific Variant ANnotation; FIRE, Functional Inference of Regulators of Expression; fitCons, fitness con-

sequences of functional annotation; ncER, non-coding essential regulation; PAFA, Prioritization And Functional Assessment; ReMM, Regulatory

Mendelian Mutation; DNM, de novo mutation; COSMIC, the Catalogue of Somatic Mutations in Cancer; SNV, single-nucleotide variant; ARB,

association results browser; TSS, transcription start site; HGMD, Human Gene Mutation Database; eQTL, expression quantitative trait locus;

ENCODE, Encyclopedia of DNA Elements; CGC, Cancer Gene Census; gnomAD, Genome Aggregation Database; WGS, whole-genome

sequencing; SNP, single-nucleotide polymorphism; SVM, support vector machine; XGBoost, extreme gradient boosting.
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Table 2 Summary of four independent benchmark datasets used in this study

Benchmark dataset Positive set Negative set No. of

positive

variants

No. of

negative

variants

Refs.

Rare germline variants from ClinVar Non-coding ‘pathogenic’ and ‘likely

pathogenic’ germline variants from

ClinVar (20190102–20201128)

Non-coding ‘benign’ germline

variants from ClinVar (20190102–

20201128)

515 1850 [38]

Rare somatic variants from COSMIC Non-coding somatic variants from

COSMIC (v88–v92) with

recurrence � 2 and located on risk

genes collected by CNCDatabase

Non-coding somatic variants from

COSMIC (v88–v92) with

recurrence = 1 and located on genes

except for risk genes collected by

CNCDatabase

1966 597,221 [39,40]

Common regulatory variants from

curated eQTL data

eQTL SNPs from the GTEx portal

database and Brown’s study

Randomly selecting variants with

matched properties from the 1000

Genomes Project by vSampler

13,274 13,274 [41–43]

Disease-associated common variants

from curated GWAS

Non-coding SNVs in the intersection

set of credible sets defined by three

tools from CAUSALdb database

with MAF > 5%

Non-coding SNVs from the 1000

Genomes Project with MAF > 5%

in the same LD blocks as

corresponding positive variants with

r2 threshold > 0.2

73,693 76,214 [43,44]

Note: Matched properties including MAF, distance to closet transcription start site, gene density, and number of variants in LD. Three tools

include PAINTOR [62], CAVIARBF [63], and FINEMAP [64]. CNCDatabase, Cornell Non-coding Cancer driver Database; GTEx, Genotype-

Tissue Expression; MAF, minor allele frequency; LD, linkage disequilibrium.
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methods (Figure S1). The overall pairwise correlation for rare
somatic variants from COSMIC was generally higher than for

the other three datasets, suggesting that current methods show
better concordance in somatic variants prediction. Moreover,
we calculated the Spearman rank correlation coefficient based

on the positive variant dataset and negative variant dataset for
each benchmark dataset. We found that the overall pairwise
correlation for negative rare somatic variants from COSMIC

was higher than for positive rare somatic variants from COS-
MIC. The weak pairwise correlations (R < 0.4) among all 24
computational methods were common in the four benchmark
datasets, except for a few computational methods that were

highly correlated with each other (R > 0.8) in the positive rare
germline variants from ClinVar, such as CADD and deleteri-
ous annotation of genetic variants using neural networks

(DANN), possibly because of the selection of similar training
data and learning features. In summary, our results indicate
that existing computational methods have poor predictive con-

cordance for the same benchmark dataset, suggesting the
necessity and importance of assessing different computational
methods under various conditions.

Methods showed different performances for rare germline and

somatic variants

It is widely accepted that pathogenic variants are often rare

variants. To determine the performance of all 24 methods
for rare variants, we constructed two datasets, including rare
germline variants from ClinVar and rare somatic variants from

COSMIC. (1) Rare germline variants from ClinVar included
515 positive and 1850 negative variants (Table 2, Table S1),
which were downloaded from ‘pathogenic’, ‘likely pathogenic’,

and ‘benign’ non-coding germline variants in the ClinVar
database [38] with allele frequency (AF) < 0.1% in the
Genome Aggregation Database (gnomAD) [45]. (2) Rare
somatic variants from COSMIC included 1966 positive and
597,221 negative variants (Table 2, Table S1), and all of these
variants were downloaded from the COSMIC database [39]

with AF < 0.1% in the gnomAD database. In addition, we
selected AUROC as our major performance measure because,
compared to other metrics, its value is unaffected by different

cutoff values.
Assessments of 12 performance metrics for all 24 computa-

tional methods based on the PHRED-scaled scores of rare

germline variants from ClinVar are summarized in Table 3.
We found that the AUROC of the 24 methods ranged from
0.4481 to 0.8033 (median of AUROC = 0.6988), and that
Functional Analysis Through Hidden Markov Models with

an eXtended Feature set (FATHMM-XF [21];
AUROC = 0.8033) exhibited the best performance, followed
closely by Functional Analysis Through Hidden Markov

Models with multiple kernel learning (FATHMM-MKL [20];
AUROC = 0.7954) and Regulatory Mendelian Mutation
(ReMM; AUROC = 0.7848). Clinicians and researchers

sometimes require computational methods with high sensitiv-
ity or specificity (typically > 95%). For example, doctors
may choose computational methods with high sensitivity to
evaluate the pathogenicity of non-coding variants in genetic

counseling for known pathogenic genes. We further assessed
the high-specificity regional AUROC (hspr-AUROC) and
high-sensitivity regional AUROC (hser-AUROC) values. We

found that FATHMM-XF (hspr-AUROC = 0.7067) exhib-
ited the best performance with hspr-AUROC values > 0.70,
while regBase_PAT [31] (hser-AUROC = 0.5517) exhibited

the best performance with hser-AUROC values > 0.55
(Table 3). The accuracy and Mathews correlation coefficient
(MCC) were also used to assess the performance of computa-

tional methods, with FATHMM-XF showing the highest
accuracy and MCC scores among the 24 methods. Notably,
methods based on supervised models (median of
AUROC = 0.7161) showed better performance than those

based on semi-supervised models (median of



Table 3 Performance evaluation based on rare germline variants from ClinVar

Method Missing

rate (%)

Best

threshold

PPV

(%)

NPV

(%)

FNR

(%)

Sensitivity

(%)

FPR

(%)

Specificity

(%)

Accuracy

(%)

MCC AUROC hspr-AUROC hser-AUROC Prediction

model

CADD 0.00 11.1395 44.40 87.83 39.22 60.78 21.19 78.81 74.88 0.3572 0.7509 0.5587 0.5277 Supervised

CScape 9.77 30.6855 37.46 85.79 48.43 51.57 22.75 77.25 71.88 0.2589 0.6655 0.5344 0.5217 Supervised

DANN 0.00 9.5376 45.95 86.78 44.85 55.15 18.05 81.95 76.11 0.3484 0.7341 0.5956 0.5244 Supervised

DIVAN_REGION 0.00 2.6953 23.89 82.34 27.57 72.43 64.22 35.78 43.76 0.0715 0.5357 0.5153 0.5064 Supervised

DIVAN_TSS 0.00 3.8817 23.16 80.52 33.59 66.41 61.35 38.65 44.69 0.0431 0.5047 0.5040 0.5028 Supervised

FATHMM-MKL 0.00 12.1444 49.10 90.16 31.46 68.54 19.78 80.22 77.67 0.4375 0.7954 0.6359 0.5344 Supervised

FATHMM-XF 9.77 26.0395 60.32 90.98 33.18 66.82 11.61 88.39 83.88 0.5322 0.8033 0.7067 0.5074 Supervised

FIRE 0.00 9.7388 26.09 80.95 53.59 46.41 36.59 63.41 59.70 0.0831 0.5256 NA 0.5034 Supervised

ncER 0.25 13.9272 39.92 87.50 37.94 62.06 26.02 73.98 71.39 0.3144 0.7067 0.5249 0.5161 Supervised

PAFA 8.03 1.1395 36.40 90.42 26.32 73.68 34.15 65.85 67.49 0.3256 0.7239 0.5208 NA Supervised

regBase_CAN 0.00 10.2935 39.50 89.49 29.51 70.49 30.05 69.95 70.06 0.3423 0.7083 0.5176 0.5018 Supervised

regBase_PAT 0.00 7.3824 35.23 89.40 26.60 73.40 37.57 62.43 64.82 0.2970 0.7375 0.5721 0.5517 Supervised

regBase_REG 0.00 20.6843 27.53 80.37 65.63 34.37 25.19 74.81 66.00 0.0852 0.5491 NA NA Supervised

ReMM 0.00 13.8161 47.68 89.36 34.17 65.83 20.11 79.89 76.83 0.4115 0.7848 0.5969 0.5448 Supervised

CDTS 8.25 10.9826 25.36 79.56 66.88 33.12 27.24 72.76 64.10 0.0538 0.4910 NA NA Unsupervised

DVAR 0.00 15.0531 51.63 88.69 38.45 61.55 16.05 83.95 79.07 0.4283 0.7420 0.5371 0.5159 Unsupervised

Eigen 10.40 15.3901 43.68 89.58 35.48 64.52 21.42 78.58 75.70 0.3786 0.7656 0.5379 0.5425 Unsupervised

Eigen_PC 10.40 8.8690 27.96 88.79 24.42 75.58 50.15 49.85 55.12 0.2064 0.6032 NA 0.5366 Unsupervised

GenoCanyon 0.00 12.2531 33.39 82.57 58.25 41.75 23.19 76.81 69.18 0.1721 0.5890 0.5418 0.5012 Unsupervised

Orion 14.80 11.1831 23.61 80.75 67.07 32.93 27.47 72.53 64.42 0.0488 0.5124 0.5074 NA Unsupervised

fitCons 8.16 0.2856 21.12 95.45 0.22 99.78 98.78 1.22 21.87 0.0408 0.4481 NA 0.5034 Semi-supervised

FitCons2 8.03 17.3066 41.81 86.30 48.46 51.54 19.02 80.98 74.80 0.3023 0.6909 0.6052 0.5029 Semi-supervised

FunSeq2 1.61 7.6079 29.59 91.72 14.03 85.97 56.84 43.16 52.47 0.2491 0.6756 0.5330 0.5299 Semi-supervised

LINSIGHT 1.82 17.6486 64.97 88.15 44.44 55.56 8.31 91.69 83.85 0.5010 0.7743 0.6307 0.5005 Semi-supervised

Note: Best threshold indicates the threshold corresponding to the best sum of sensitivity and specificity. Top three methods of every measure are represented by bold text. PPV, positive predictive value;

NPV, negative predictive value; FPR, false-positive rate; FNR, false-negative rate; MCC, Mathew correlation coefficient; AUROC, area under the receiver operating characteristic curve; hspr-AUROC,

high-specificity regional area under the receiver operating characteristic curve; hser-AUROC, high-sensitivity regional area under the receiver operating characteristic curve; NA, not available.
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Figure 1 Performance evaluation in ASD based on DNMs

A. Performance evaluation of 24 computational methods under different cutoff values of PHRED-scaled scores. The order of the 24

computational methods shown on the Y-axis is based on their OR values under cutoff = 20. B. Performance evaluation of 24

computational methods under different numbers of DNMs that are most likely to be functional in ASD. The order of the 24

computational methods shown on the Y-axis is based on their OR values with the number of most likely functional DNMs being 200. The

OR and P values were calculated by a two-sided Poisson’s ratio test. The size of each ball is proportional to the OR value. Differently

colored balls represent different P value ranges. OR, odds ratios; DNM, de novo mutation; ASD, autism spectrum disorder.
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AUROC = 0.6832) and methods based on unsupervised mod-
els (median of AUROC = 0.5961). Moreover, we assessed the
performance of the 24 computational methods based on rare
germline variants from ClinVar after removing the ‘likely

pathogenic’ non-coding germline variants, resulting in 343 pos-
itive variants and 1850 negative variants. The assessment
results of 12 performance metrics for all 24 computational

methods are summarized in Table S2. Performance metrics
such as the AUROC of the computational methods were gen-
erally concordant, regardless of whether the variants were

likely pathogenic (Figure S2).
In addition, we assessed the performance of 24 methods for

somatic variants and assessments of 12 performance metrics
based on PHRED-scaled scores, as summarized in Table S3.

The AUROC of the 24 computational methods ranged from
0.4984 to 0.7131 (median of AUROC = 0.6295) in rare
somatic variants from COSMIC, with FunSeq2 [25]

(AUROC = 0.7131) exhibiting the best overall performance,
followed closely by fitness consequences 2 (FitCons2) [24]
(AUROC = 0.7069). This result suggests that existing meth-

ods perform poorly for non-coding somatic variants. Further-
more, methods based on semi-supervised models (median of
AUROC = 0.6988) performed better than methods based on

unsupervised (median of AUROC = 0.6551) and supervised
(median of AUROC = 0.6063) models.
Predictive ability of methods for common variants warrants

improvement

It is now accepted that some common variants are regulatory
or risk variants; hence, we also constructed common regula-
tory variants from curated eQTL data and disease-associated

common variants from curated GWAS (see Materials and
methods) to evaluate the performance of 24 methods for vari-
ants in the 1000 Genomes Project [43] with AF> 5% (Table 2,
Table S1). The respective numbers of positive and negative

variants were recorded in the common regulatory variants
from curated eQTL data (13,274 and 13,274) and disease-
associated common variants from curated GWAS (73,693

and 76,214). We found that the AUROC of the 24 computa-
tional methods ranged from 0.4837 to 0.6472 (median of
AUROC = 0.5619) in common regulatory variants from

curated eQTL data and from 0.4766 to 0.5188 (median of
AUROC = 0.5041) in disease-associated common variants
from curated GWAS (Tables S4 and S5), and that the distribu-
tions of PHRED-scaled scores for positive and negative vari-

ants were similar irrespective of them being in common
regulatory variants from curated eQTL data or disease-
associated common variants from curated GWAS (Figures

S3 and S4). This indicates that existing methods are unsuitable
for common variants, particularly for common variants in the



Figure 2 Overall AUROC of four benchmark datasets

Distributions of AUROC values for 24 methods are shown in a boxplot. Differently colored balls represent different benchmark datasets.

Differently colored boxes represent different models. AUROC, area under the receiver operating characteristic curve.
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same linkage disequilibrium (LD) block. Furthermore, we clas-
sified the disease-associated common variants from curated

GWAS into four subgroups (0.2–0.4, 0.4–0.6, 0.6–0.8, and
0.8–1.0) according to r2 thresholds of LD, and found that all
methods showed poor performance for four subgroups
(Figure S5).

CADD and context-dependent tolerance score showed better

performance for non-coding de novo mutations in autism

spectrum disorder

Non-coding de novo mutations (DNMs) play important roles
in neurodevelopmental disorders [46], such as DNMs in the

promoter and regulatory regions in autism spectrum disorder
(ASD) [47,48]. We then downloaded 115,569 and 113,530
non-coding DNMs from 1902 patients with ASD and 1902

unaffected siblings from the Gene4Denovo database [49],
and evaluated the performance of the methods based on their
PHRED-scaled scores (Figure 1; Table S6). Given that the
pathogenicity of most non-coding DNMs is unclear, we
selected odds ratios (OR) to assess the performance of the
computational methods; better methods were expected to show

higher OR under the same conditions. We adopted two strate-
gies to calculate the OR and two-sided P values between
patients with ASD and their unaffected siblings.

In the first strategy, we counted the number of positive non-

coding DNMs in the ASD and sibling groups under different
cutoff values of PHRED-scaled scores (i.e., 10, 15, 20, 25,
30, and 35) for the 24 computational methods. The number

of positive DNMs predicted by most methods between the
ASD and sibling groups showed significant differences
(P < 0.05) under the most relaxed condition (cutoff = 10)

but had low OR (OR < 1.05). Under increasingly rigorous
thresholds, many methods showed higher OR but with
P > 0.05; the context-dependent tolerance score (CDTS)

method achieved the best performance at a cutoff value of
20 (OR = 1.13, P = 0.006).

In the second strategy, we selected the top 50, 100, 150, 200,
250, and 300 DNMs that were most likely to be functional in

patients with ASD based on PHRED-scaled scores and
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obtained corresponding thresholds to make predictions in
unaffected siblings. We found that many methods yielded
P > 0.05 and OR > 1.05 under the most relaxed condition

(top 300). Under a more rigorous condition, some methods
exhibited higher OR values and lower P values; CADD
achieved the highest OR value and the lowest P value

(OR = 1.5, P = 0.002, threshold = 21.6241), followed by
CDTS (OR = 1.21, P = 0.0493, threshold = 26.8855). In
summary, these results suggest that CADD and CDTS have

better prediction performance for functional DNM.

Different methods showed different resolutions

Theoretically, a perfect computational method should assign
different prediction scores to different variants at the same
position. Here, we calculated the rates of discriminable predic-
tion scores among 24 computational methods for the same

position across the whole genome, and noted that only nine
methods, including regBase_REG [31], regBase_CAN [31],
and regBase_PAT, showed discriminability at base-wise reso-

lution for most sites in the whole genome (Figure S6). Addi-
tionally, for computational methods without discriminability
at the base-wise resolution, we calculated the physical dis-

tances of surrounding DNA sites that showed the same predic-
tion scores. We also determined the cumulative sum of
proportions of different physical distances from 1 to the largest
value until it was no smaller than 0.9, and then selected the last

physical distances as the resolution. We found that most pre-
diction scores of DNA sites differed with 1-bp site around
them (Figure S7).

Discussion

In recent years, it has been widely accepted that non-coding
variants play important roles in human diseases [2–9]. Many
computational methods for evaluating the function and
pathogenicity of non-coding variants have been developed

for clinicians and geneticists to help them identify functional
or pathogenic non-coding variants. Given that computational
methods for non-coding variants have adopted various algo-

rithms and training data based on different evolutionary con-
straints, epigenomics, and sequence features, their
performance differs under differing conditions. However, it is

difficult to choose an optimal method because of the lack of
knowledge about the performance of the methods under differ-
ent conditions. Selecting an optimal method can effectively aid

in the prioritization of functional variants and candidate genes,
thus increasing the demand for assessment of different compu-
tational methods under various conditions. In this work, we
assessed 12 performance metrics of 24 computational methods

based on four non-coding independent benchmark datasets.
Although multiple studies [35–37] have compared computa-

tional prediction methods for non-coding variants, our study

differs from these studies for the following reasons. (1) Our
benchmark data are more comprehensive and stricter. We con-
structed four benchmark datasets representing different geno-

mic contexts and simulated realistic situations, such as positive
and negative variants from the common regulatory variants
from curated eQTL data with matched genomic features. (2)
Our evaluation metrics are more comprehensive. We not only

selected some classic metrics but also adopted hser-AUROC
and hspr-AUROC data to serve some users who need to prior-
itize variants with high sensitivity or specificity. (3) To the best
of our knowledge, this is the first study to assess the perfor-

mance of existing methods for non-coding DNMs based on
OR values.

Based on the correlation analysis of 24 computational

methods, the predictive concordances among the 24 computa-
tional methods in rare somatic variants from COSMIC were
higher than in the other three datasets. This may be because

somatic variants result from replication errors and DNA dam-
age [50]. Hence, somatic variants may have some similar fea-
tures that germline variants do not, but most variants in the
other three datasets are germline variants. Additionally, an

ensemble learning method named regBase_CAN [31] in the
prediction of common regulatory variants and disease-
associated common variants was negatively correlated with

many methods. Of note, most of these methods with a negative
correlation with regBase_CAN were incorporated into
regBase_CAN. Compared to other methods, regBase includes

three methods designed for different purposes, and regBase_
CAN is a method designed to predict the effects of somatic
variants based on a somatic variant training dataset [31]. Thus,

parameters in regBase_CAN may lead to inconsistent predic-
tion results for common variants with other methods.

Based on our results, we clustered the 24 methods into three
groups based on their computational models (supervised,

unsupervised, and semi-supervised models), and preliminarily
found that ncER (supervised model), DVAR (unsupervised
model), and LINSIGH (semi-supervised model) [27] are the

representative methods of the aforementioned three groups
with the highest median of AUROC values based on four
benchmark datasets (Figure 2). Additionally, we noted that

computational methods showed different prediction efficien-
cies under different conditions (Figure 2). For example,
FATHMM-XF was the best method for rare germline variants

from ClinVar (AUROC = 0.8033) but performed poorly for
rare somatic variants from COSMIC (AUROC = 0.5933).
Although the performance of the computational methods var-
ied for the four different benchmark datasets, the best perfor-

mance was recorded for rare germline variants from ClinVar.
These results are consistent with a previous study [35] and
might be attributed to the following reasons. First, most com-

putational methods selected more germline than somatic vari-
ants, which may have different genomic features; this selection
bias in training data may improve performance in rare germ-

line variant dataset from ClinVar. Second, it is well known
that genetic variation in many complex quantitative traits
results from the joint small effects of multiple variants
[51,52], and non-coding variants often have a weak impact

on complex traits [53]. The stronger functional effects of germ-
line variants in the ClinVar database made it easier to distin-
guish functional variants for these computational methods.

Given that the contribution of single eQTL and GWAS SNV
to heritability is small, functional prediction of these SNVs
remains an enormous challenge.

In addition, we found that methods based on supervised
models performed better than those based on unsupervised
and semi-supervised models in rare germline variants from

ClinVar. This may be explained by the selection of training
data, as supervised learning demands representative and cor-
rectly labeled training data [54], and many methods based on
supervised models select high-quality germline variant data
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from the Human Gene Mutation Database (HGMD) [55] and
ClinVar database as training data. Thus, many methods based
on supervised models performed better with rare germline vari-

ants from ClinVar. Furthermore, methods based on semi-
supervised models performed better than unsupervised and
supervised models in rare somatic variants from COSMIC.

This may be because semi-supervised models select labeled
and unlabeled data with stronger and weaker functional
effects, respectively, as their training data. In contrast, the

supervised and unsupervised models select labeled and unla-
beled data, respectively, as their training data [54].

According to the performance measurement strategy, we
divided the 24 methods into three groups (I, II, and III) based

on the rank of their AUROC values, and every group con-
tained eight methods (Table S7). None of these methods per-
formed well in all evaluations. This may be because different

evaluations represent different aspects of method performance.
Hence, appropriate methods should be selected based on dif-
ferent requirements. In addition, the AUROC is not affected

by different cutoff values and does not vary significantly with
different ratios of positive and negative variants in benchmark
data; thus, we selected the AUROC as our major measure.

It is well known that non-coding DNMs play important
roles in neurodevelopmental disorders, such as ASD [46–48];
however, there is no authoritative database for validated
pathogenic DNMs. To assess the prediction performance of

the 24 methods for non-coding DNMs, we downloaded non-
coding DNMs from patients with ASD and unaffected siblings
from our previous study [49]. Although the pathogenicity of

these DNMs is unclear, the number of pathogenic DNMs from
patients with ASD should be more than unaffected siblings.
Hence, we selected OR to assess the performance of these

methods. In addition, we tried our best to collect 57 experi-
mentally validated non-coding transcriptional-regulation-dis
ruption DNMs from ASD probands and 50 nearest non-

coding non-pathogenic DNMs in the siblings of ASD patients
as our testing dataset to further assess the performance of 24
methods for DNMs. We noted that DVAR, regBase_CAN,
and FitCons2 performed better with an AUROC > 0.77

(Table S8). Based on these results, we think it is still a chal-
lenge to make an accurate prediction for DNMs.

In this study, we noted that three of 24 compared methods

were ensemble prediction models and found that the perfor-
mances of the three methods (regBase_REG, regBase_PAT,
and regBase_CAN) were moderate compared to other meth-

ods. In addition, we selected the top 10 methods of each bench-
mark dataset based on the sum of sensitivity and specificity to
evaluate whether combined prediction would improve perfor-
mance. If a variant was predicted as positive by more than half

of the methods, it was considered positive. Finally, we assessed
the performance of this combined prediction based on the
accuracy and MCC, and found that combined prediction did

not further improve performance. This indicates that it is still
challenging to improve prediction performance for non-coding
variants based on existing ensemble models. Hence, we think

that more attention should be paid to improving the quality
of training data and models to get better prediction perfor-
mance for non-coding variants.

This study had some limitations. First, there was some
potential circularity between the testing and training data of
the computational prediction methods [56]. To eliminate
potential circularity, we selected testing data that were
recorded after 2019 and, as much as possible, removed variants

that overlapped with publicly available training data when
comparing methods. Given that some methods only provide
the source and version without including the exact variants

of the training data, a small amount of the benchmark data
may still be the same as the training data in the methods.
Hence, we suggest that scientists who develop new methods

should publish their original training and testing data. Second,
although the testing data downloaded from the ClinVar, COS-
MIC, the Genotype-Tissue Expression project (GTEx portal)
[41], and GWAS catalog [57] databases have been widely used

to develop computational methods and assess their perfor-
mance, relatively little is known about the functional conse-
quences of variations in the non-coding regions of the

genome, and most variants in benchmark datasets were not
experimentally validated; as such, incorrectly labeled data
may have been included in our benchmark data. Therefore,

we strongly recommend that scientists select experimentally
validated or high-confidence training data to develop new
methods in future studies.

Taken together, our findings suggest that existing computa-
tional methods show acceptable performance only for germline
variants and that their predictive ability must be improved for
different types of non-coding variants. We strongly recom-

mend that more attention should be paid to the quality of
learning data in future software development work. For exam-
ple, methods should use various training data and genomic

features to avoid selection bias. Our findings will serve as a
useful guide for clinicians and researchers in choosing appro-
priate methods for non-coding variant prediction, leading to

the development of new methods.

Materials and methods

Computational methods and prediction score processing

We compared 24 computational methods that provide precom-
puted prediction scores for the whole human genome. We
included 14 methods based on supervised models, six based

on unsupervised models, and four based on semi-supervised
models (Table 1). The genomic positions of all precomputed
scores were based on GRCh37/hg19. For standardization, all

precomputed scores recorded by interval-level values were
transformed into base-wise positions, and each base-wise posi-
tion was assigned the same score. In addition, these raw scores
were transformed into PHRED-scaled scores [�10 �
log10 (rank/total)] according to the genome-wide distribution
of scores for approximately 9 � 109 potential SNVs, which is
the set of all three non-reference alleles at each position of

the reference assembly. PHRED-scaled scores provide a com-
parable unit to unify the estimation standard for assessment.
For instance, if a raw score in the top 10% of all possible ref-

erence genomic SNVs, it was represented as a PHRED-scaled
score of � 10, and a raw score in the top 1‰ was
represented as a score of � 30. We calculated the mean of
the precomputed base-level whole-genome DIsease-specific

Variant ANnotation (DIVAN) [17] scores across 45 diseases
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for both region-matched and transcription start site (TSS)-
matched criteria, and then transformed them into a
PHRED-scaled score. Other raw and PHRED-scaled scores

for all methods were downloaded from a previous study [31]
except for DIVAN_TSS [17] and DIVAN_REGION [17].

Benchmark datasets of non-coding variants

To evaluate the performance of the 24 methods, it was essen-
tial to construct an independent test of datasets in which vari-

ants overlapping with the training data were removed from the
compared methods as much as possible. Four independent
benchmark datasets of non-coding variants were used to assess

the performance of the 24 computational methods, including
(1) rare germline variants from ClinVar, (2) rare somatic vari-
ants from COSMIC, (3) common regulatory variants from
curated eQTL data, and (4) disease-associated common vari-

ants from curated GWAS. Both positive and negative non-
coding variants were included in each benchmark dataset
(Table 2, Table S1). We adopted the following strategies to

reduce overlap between testing benchmark data and training
data for further analysis. First, as all training datasets were
published before 2019, we selected variants recorded in public

databases [38,39] after 2019 to reduce overlap. Second, we
comprehensively collected public training data on existing
methods and removed overlap between benchmark data and
available training data of the computational methods.

The first benchmark dataset (rare germline variants
from ClinVar) was downloaded from the ClinVar database.
According to the American College of Medical Genetics and

Genomics guidelines [58], the variants were classified as
‘pathogenic’, ‘likely pathogenic’, ‘benign’, ‘likely benign’, and
‘uncertain significance’ in the ClinVar database. Furthermore,

the ClinVar database contains interpretations of allele origins,
and records in ClinVar with ORIGIN = 1 indicate that these
variants are germline variants. To improve the accuracy of the

benchmark dataset and eliminate overlap between testing
benchmark data and training data used in the 24 computa-
tional methods, we selected all ‘pathogenic’, ‘likely patho-
genic’, and ‘benign’ non-coding germline variants deposited

in the ClinVar database after January 2, 2019, as testing data.
And ‘pathogenic’ and ‘likely pathogenic’ non-coding germline
variants are regarded as positive variants, and ‘benign’ non-

coding germline variants are regarded as negative variants.
Furthermore, we determined the AFs of these variants based
on the gnomAD database, and noticed that (1) over 80% of

‘pathogenic’ and ‘likely pathogenic’ variants were not
observed, (2) over 98% of ‘pathogenic’ and ‘likely pathogenic’
variants had AF < 0.1%, (3) over 99% of ‘benign’ variants
were observed, and (4) over 98% of ‘benign’ variants had

AF � 0.1%. Based on the AFs of these variants, we regarded
all ‘pathogenic’ and ‘likely pathogenic’ variants as rare
variants with AF < 0.1%. Finally, we only selected all ‘patho-

genic’, ‘likely pathogenic’, and ‘benign’ variants with
AF < 0.1% (515 and 1850) as our testing data.

The second benchmark dataset (rare somatic variants from

COSMIC) was downloaded from the COSMIC database. As
most deleterious non-coding somatic variants are unknown
and one criterion for identifying cancer driver variants is to

examine their mutational recurrence across multiple samples
[59], non-coding somatic variants from the COSMIC database
after March 19, 2019 were divided into positive and negative
variants, respectively, according to the recurrence of the vari-
ants. To increase the reliability of these variants, we also

ensured that our positive variants are located on risk genes col-
lected from the Cornell Non-coding Cancer driver Database
(CNCDatabase) [40], whereas negative variants are not. A

total of 2346 and 648,471 variants were categorized as positive
and negative variants, respectively, when the threshold value of
recurrence was equal to 2, and 84% of positive variants and

92% of negative variants had AF < 0.1% based on the gno-
mAD database. It is widely accepted that most somatic vari-
ants observed in the cancer genome are rare [60], and thus
we only selected variants with AF < 0.1% (1966 and

597,222) as our final testing data.
It is well known that non-coding variants influence pheno-

types mainly through regulating gene expression levels. Hence,

we selected regulatory variants with minor allele frequency
(MAF) > 5% as our third benchmark dataset (common reg-
ulatory variants from curated eQTL data) to assess the 24

methods. Here, we integrated three independent eQTL test
datasets from two studies [18,31] and removed eight variants
labeled differently in both studies as our testing data. The

positive dataset included (1) high-confidence eQTL single-
nucleotide polymorphisms (SNPs) from the GTEx portal
database and (2) multi-tissue eQTL SNP fine-mapping data
from the GTEx portal database and Brown’s study [42]. The

negative dataset was randomly sampled by vSampler [61]
based on 1000 Genomes Project phase3 (1000G P3) [43], and
negative variants were matched with positive variants based

on the information of MAF, distance to the nearest transcrip-
tion start site, gene density, and the number of variants in LD
(Table S9). Notably, all positive and negative variants are non-

coding, with MAF > 5% based on 1000G P3. We also
referred to the criteria of test sets from Li’s study [36]. We only
included paired positive and negative variants beyond 1 kb

from each other as our final testing data to prevent physically
proximate variants from confounding.

The fourth benchmark dataset (disease-associated common
variants from curated GWAS) was downloaded from the

CAUSALdb database [44] and 1000 Genomes Project [43].
We only selected non-coding SNVs in the intersection set of
credible sets defined by three fine-mapping tools, including

probabilistic annotation integrator (PAINTOR) [62], caviar
bayes factor (CAVIARBF) [63], and FINEMAP [64] with
MAF > 5% based on the 1000 Genomes Project as positive

variants and corresponding non-coding SNVs in the same
LD blocks with R2 > 0.2 from the 1000 Genomes Project with
MAF > 5% as negative variants. Overlapping variants
between positive and negative data as well as positive variants

without corresponding negative variants were excluded from
the analysis.

Correlation analysis

Spearman rank correlation analysis was used to evaluate the
relationships among the 24 compared computational methods

based on the four non-coding benchmark datasets described
above. Specifically, Spearman rank correlation coefficients
were calculated between any two computational methods for

each benchmark dataset, in which variants with missing values
for a method were excluded, and the results of correlation
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analyses were visualized in the form of heatmaps. In addition,
for each benchmark dataset, we performed correlation analysis
based on the positive and negative variant datasets.

Metrics for performance evaluation

The performances of the 24 computational methods were

assessed based on the following 12 criteria: (1) the positive pre-
dictive value (PPV), the proportion of positive results in the
computational methods that are positive under the benchmark

dataset; (2) the negative predictive value (NPV), the propor-
tion of negative results in computational methods that are neg-
ative under the benchmark dataset; (3) the false-negative rate

(FNR), which is calculated as the ratio of the number of pos-
itive events wrongly categorized as negative by the computa-
tional method to the total number of actual positive events
under the benchmark dataset; (4) the sensitivity (or true-

positive rate; TPR), which measures the proportion of actual
positives under the benchmark dataset that are correctly iden-
tified as such by the computational method. The FNR and sen-

sitivity are paired measures with a sum equal to 100%; (5) the
false-positive rate (FPR), which is calculated as the ratio of the
number of negative events wrongly categorized as positive by

the computational method to the total number of actual nega-
tive events under the benchmark dataset; (6) the specificity (or
true-negative rate; TNR), which measures the proportion of
actual negatives under the benchmark dataset that are cor-

rectly identified as such by the computational method. The
FPR and specificity are paired metrics with a sum equal to
100%; (7) the accuracy, which represents the proportion of

positive and negative variants in the benchmark data that
are correctly predicted as positive and negative variants,
respectively; (8) the MCC, a correlation coefficient (ranging

from �1 to 1) between the observed and predicted classifica-
tions (where 1 indicates a perfect prediction, 0 indicates no bet-
ter than random prediction, and �1 indicates complete

disagreement between the prediction and true classification);
(9) the ROC curve, a graphical plot that illustrates the predic-
tive ability of a computational method as its discrimination
thresholds are varied; (10) the AUROC value, which ranges

from 0 to 1 for each ROC curve, where a higher AUROC indi-
cates better performance of the computational method; (11)
the hser-AUROC value, which is the AUROC corresponding

to high sensitivity (TPR > 95%); and (12) the hspr-AUROC
value, which is the AUROC corresponding to high specificity
(TNR > 95%). The hser-AUROC and hspr-AUROC values

are evaluated to serve some users who require a distinction
between positive variants with high sensitivity or specificity.
Given that many computational methods do not offer recom-
mended cutoff values, all metrics described above were calcu-

lated based on the best thresholds corresponding to the best
sum of sensitivity and specificity. In addition, the best thresh-
olds, sensitivities, specificities, AUROC values, hspr-AUROC

values, and hser-AUROC values were calculated using the
‘pROC’ package [65] based on PHRED-scaled scores.

Non-coding DNMs from the Simons simplex collection

Non-coding DNMs identified in 1902 patients with ASD and
1902 unaffected siblings were downloaded from the Simons

simplex collection [47,66] (Table S1) and were previously
cataloged in the Gene4Denovo database that we developed
[49]. Comparison of the performance of computational meth-
ods for non-coding DNMs was based on PHRED-scaled

scores. We compared the burden of functional non-coding
variants predicted by the computational methods in the ASD
and sibling groups under different cutoff values. To assess

the performance of computational methods for DNMs, we cal-
culated the OR, 95% confidence interval of the OR, and P
value between ASD and unaffected siblings using the two-

sided Poisson’s ratio test.

Experimentally validated non-coding DNMs from ASD

We collected experimentally validated non-coding
transcriptional-regulation-disruption DNMs from ASD
probands [48] and nearest non-coding non-pathogenic DNMs
in the siblings of ASD patients [31] as our supplementary test

dataset (Table S1) to further assess the performance of
24 methods for DNMs.
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