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More than 170 distinct chemical modifications have been iden-
tified in non-coding and coding RNAs. Accumulating evidence
suggests that RNA modifications play pivotal roles at both the

molecular and physiological levels. Dysregulation of RNA-
modifying enzymes has been linked to various human cancers
and developmental diseases. The expanding understanding of

RNA modifications in molecular and cellular functions further
suggests promising prospects for therapeutic applications.
Recently, the creation of effective mRNA vaccines against

coronavirus disease 2019 (COVID-19), based on RNA base
modification, was honored with the Nobel Prize in Physiology
or Medicine 2023 (https://www.nobelprize.org/prizes/medi-

cine/2023/press-release/). Aiming to provide a forum for
emerging advances in detection and functional studies of epi-
transcriptomic modifications, we have organized a special issue
‘‘RNA Modifications and Epitranscriptomics” for the journal

Genomics, Proteomics & Bioinformatics (GPB). This special
issue encompasses a wide range of topics, including: (1)
dynamic landscapes of RNA modifications in various organ-

isms, including animals, plants, and viruses; (2) mechanistic
regulation of m6A and m5C modifications in human diseases
and plant responses to stresses; (3) an online platform for
unveiling the context-specific m6A methylation and m6A-

affecting mutation; and (4) the regulatory role of non-coding
RNAs (ncRNAs), including tRNAs and circular RNAs (cir-
cRNAs), in gene expression regulation.

We are pleased to present 14 articles selected for publica-
tion in this special issue, comprising eleven original research
articles, one review, one letter, and one database article. An

overview of the studies included in this issue is provided as
follows.

Yafen Wang and Xiang Zhou reviewed the writer, reader,

and eraser proteins involved in m6A modification, describing
their mechanism of action during viral replication and infec-
tion. Moreover, the authors provided an overview of current
detection methods for m6A, shedding light on the development

of vaccines and antiviral drugs by examining the role of epige-
netic modifications in viral processes [1].

Yixian Cun et al. uncovered a novel role of serine/arginine-

rich splicing factor 7 (SRSF7) in regulating m6A and its impact
on glioblastoma (GBM) progression. The authors found that
SRSF7 specifically influenced m6A levels on genes associated

with cell proliferation and migration, exhibiting oncogenic
roles by recruiting the m6A methyltransferase complexes. This
study highlights the significance of RNA-binding protein
(RBP)-mediated specific regulation of m6A in determining cel-

lular functions [2].
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Xiao Han et al. presented the inaugural landscapes of
dynamic DNA 5hmC and RNA m5C modifications across a
variety of samples, including heart, kidney, liver, and lung,

from human fetuses at 13–28 weeks. The authors identified
70,091 and 503 organ- and stage-specific differentially hydrox-
ymethylated regions (DhMRs) and m5C-modified mRNAs,

respectively. The integrated studies revealed a potential link
between DNAmodification and RNA methylation, illustrating
the epigenetic dynamics during human fetal organogenesis [3].

Feng Yu et al. presented a study on the complexity of epi-
transcriptomic dynamics in rice by identifying RNA modifica-
tions using direct RNA sequencing (DRS) technology. Besides
identifying tissue-specific genes and transcript expression, the

authors also mapped the m6A and m5C modifications on
RNA across six developmental tissues of rice, offering a thor-
ough understanding of the rice transcriptome and epitranscrip-

tome [4].
Peng Yu et al. explored the relationship between tRNA

abundance and translational efficiency in mammals, as well

as the contribution of tRNA expression to tissue-specific pro-
teomes. The authors measured tRNA expression using
demethylase-tRNA sequencing (DM-tRNA-seq) and mRNA

translational efficiencies using ribosome-tagging sequencing
(RiboTag-seq) in the mouse brain, heart, and testis. They
showed tRNA expression variations among tissues and pro-
vided insights into the dynamics of tRNAs and their roles in

translational regulation [5].
Shuai Chen et al. studied the presence and role of circRNAs

in stress granules (SGs), which are cytoplasmic ribonucleopro-

tein assemblies formed under stress conditions. The authors
used improved total RNA sequencing to identify both linear
and circular RNAs in purified SG cores and found that

circRNAs with higher SG-related RBP binding abilities are
more likely to be enriched in SGs. They also identified differ-
entially expressed SG-enriched circRNAs in hepatocellular

carcinoma (HCC) and adjacent tissues, suggesting a regulatory
role of circRNAs and SGs in HCC [6].

Bowen Song et al. presented m6A-TSHub, a comprehensive
online platform designed to explore tissue-specific m6A RNA

methylation patterns and related genetic mutations. This plat-
form encompasses four core tools: m6A-TSDB, which curates
extensive m6A site data from human tissues and tumors; m6A-

TSFinder, a predictive server for tissue-specific m6A sites using
deep learning; m6A-TSVar, evaluating genetic variant impacts
on m6A modifications; and m6A-CAVar, cataloging mutations

affecting m6A in various cancers. This serves as a pivotal
resource for specialized m6A epitranscriptome studies [7].

Zidong Liu et al. uncovered the m6A modification dynam-
ics during porcine spermatogenesis. Analyzing m6A distribu-

tion across spermatogonia, spermatocytes, and round
spermatids, they identified a globally conserved m6A pattern
in genes related to spermatogenesis. Enrichment of m6A in

genes encoding metabolic enzymes and regulators was
observed, showcasing its regulatory role. This study provides
novel insights into the transcriptional regulation of lifelong

male fertility in non-rodent mammals, enhancing our under-
standing of spermatogenesis in large animals [8].

Lorane Le Franc et al. employed the methylated RNA

immunoprecipitation sequencing (MeRIP-seq) method to
map m6A RNA methylomes during oyster development. Their
analysis revealed dynamic and stage-specific m6A modifica-
tions in mRNA and lncRNA classes, displaying unique methy-
lation patterns compared to transposon transcripts. The
observed shifts in methylation profiles corresponded to expres-
sion changes across developmental stages such as cleavage,

gastrulation, and organogenesis. These findings highlight the
potential regulatory role of m6A in oyster development, offer-
ing novel insights into the control and evolution of develop-

mental processes in lophotrochozoan organisms [9].
Ying Lv et al. deciphered the pattern and function of m6A

modification during sexual reproduction in Chlamydomonas

and also revealed its frequent occurrence in the DRAC motif
and its main enrichment in the 30 untranslated region (UTR)
of mRNAs. The study found that m6A levels negatively corre-
late with gene expression, particularly affecting the micro-

tubule-associated pathway. This study offers evolutionary
insights into the role of m6A in Chlamydomonas and sheds
light on its evolutionary significance in plant sexual reproduc-

tion [10].
Dan Song et al. highlighted that HCC tissues exhibit

increased m5C methylation, particularly influencing phosphok-

inase signaling pathways. NOP2/Sun RNA methyltransferase
(NSUN2) is notably overexpressed in HCC, impacting the
expression of several genes and HCC cell sensitivity to the drug

sorafenib. The study revealed innovative insights into the
impact of RNA epigenetic modification on HCC progression,
which might help to discover more effective HCC treatment
targets and strategies [11].

Boyang Shi et al. employed the psoralen analysis of RNA
interactions and structures method (PARIS) to map RNA
structures in non-small cell lung cancer (NSCLC) cells, shed-

ding light on epidermal growth factor receptor-tyrosine kinase
inhibitor (EGFR-TKI) resistance mechanisms. They found
that RNA structures, particularly in UTRs, correlate with

translation efficiency, and the RNA structure of the gene
encoding yrdC N6-threonylcarbamoyltransferase domain con-
taining (YDRC) impacts EGFR-TKI sensitivity by modulat-

ing its translation. Disrupting the RNA structure in YRDC
30 UTR with antisense oligonucleotide (ASO) presents a poten-
tial therapeutic strategy. This unveils a novel RNA structure-
driven mechanism controlling EGFR-TKI resistance, provid-

ing valuable therapeutic perspectives [12].
Chen Zhu et al. explored the m6A-mediated regulatory

impact on tea flavor-related metabolic pathways during

solar-withering processes. Through integrated transcriptome
analysis, the study revealed that two m6A erasers control glo-
bal m6A levels, influencing terpenoid biosynthesis and spliceo-

some pathways. This m6A-mediated mechanism affects volatile
terpenoid accumulation and flavonoid content. This study
uncovered a novel epitranscriptomic layer in tea flavor forma-
tion, enhancing our understanding of tea flavor evolution dur-

ing solar-withering [13].
Yongsheng Wang et al. systematically explored circRNAs

in moso bamboo seedlings, especially in relation to gibberellin

(GA) and auxin (NAA) treatments. They also developed a cus-
tom degradome sequencing method to detect microRNA-
mediated cleavage of circRNAs. Their study revealed insights

into the biogenesis, function, and microRNA-mediated
degradation of circRNAs, emphasizing their significance in
regulating hormone metabolism. The findings provided a dee-

per understanding of the role of circRNAs in plant biology,
especially in moso bamboo [14].

These 14 articles in this special issue collectively broaden
our understanding of RNA epitranscriptomics. They elucidate
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the roles of RNA modifications in gene regulation, diseases,
and developmental processes across a range of organisms
and tissues. We envision that new breakthrough in epitran-

scriptomics will underscore the complexity and importance
of RNA modifications in determining cellular functions and
hint at potential novel clinical applications.
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