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Cheng and Church algorithm is an important approach in biclustering algorithms.
In this paper, the process of the extended space in the second stage of Cheng
and Church algorithm is improved and the selections of two important parameters
are discussed. The results of the improved algorithm used in the gene expression
spectrum analysis show that, compared with Cheng and Church algorithm, the
quality of clustering results is enhanced obviously, the mining expression models are
better, and the data possess a strong consistency with fluctuation on the condition
while the computational time does not increase significantly.

Key words: biclustering algorithm, gene expression pedigree analysis, Cheng and Church algo-
rithm

Introduction

Gene expression spectrum analysis is an important
subject in the field of bioinformatics. Its task is to
find remarkable structures from the data matrix. The
structure types consist of the overall and the local
models. As an effective tool to analyze gene expres-
sion data, the clustering analysis is comprehensively
applied to many fields, such as gene expression spec-
trum analysis (1 ), genome study, biological regula-
tory networks (2 ), medicine filtering, new medicine
development, clinical disease diagnosis (3 , 4 ), and so
on. The basic hypothesis included in the clustering
analysis is that, the genes that have the same expres-
sion mode may have similar functions (5 ). However,
traditional clustering methods have a series of prob-
lems in reducing noise, mining local information, and
synthesizing the heterogeneous data, etc.

The data dimension is becoming higher and higher
due to the use of new biological microarray chips. Dif-
ferent objects of the same cluster in the data of a high
dimensional space could show the similarity only in a
certain subspace. When this principle is applied to
gene expression data, mutual-controlling genes could
show similar expression patterns in some conditions
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for test samples. In fact, in the whole input space,
the gene expression pattern is different. Therefore,
difficulties appear when we use traditional clustering
methods to determine the object similarity by using
the value approximation in high dimensional data.

The biclustering algorithm presented by Cheng
and Church (6 ) is different from traditional cluster-
ing algorithms, in which the similarity is not treated
as a function of pairs of genes or pairs of conditions.
Instead, it is a measure of the coherence of the genes
and conditions in the biclustering. This measure can
be a symmetric function of genes and conditions in-
volved and thus the finding of biclusters is a process
that groups genes and conditions simultaneously.

Cheng and Church algorithm

The most important innovation of Cheng and Church
algorithm is that they put forward a definition called
residue score (6 , 7 ). The algorithm divides an expres-
sion model into three parts: attribute residue, object
residue, and δ-cluster residue (or background residue).
The mathematical definitions are as follows:

eIj =
∑

i∈I eij

|I| eiJ =

∑
j∈J eij

|J |

Geno. Prot. Bioinfo. Vol. 3 No. 3 2005 189



Improved Biclustering Algorithm

eIJ =

∑
i∈I,j∈J eij

|I||J | (1)

where I and J are the row and column vector sets of
the submatrix, respectively; |I| and |J | are the num-
ber of rows and columns, respectively; eij is the ele-
ment of the submatrix; eIj , eiJ , and eIJ are the at-
tribute residue, object residue, and δ-cluster residue,
respectively.

The definition of the residue score is as follows:

RSIJ (i, j) = eij − eIj − eiJ + eIJ (2)

Let X be the set of genes and Y the set of con-
ditions. Let eij be the element of the gene-condition
expression matrix representing the logarithm of the
relative abundance of the mRNA of the ith gene un-
der the jth condition. Let I ⊂ X and J ⊂ Y be the
subsets of genes and conditions. The pair (I, J) spec-
ifies a submatrix AIJ with the following mean squared
residue score:

H(I, J) =
∑

i∈I,j∈J

RS2
ij

|I||J | (3)

The lowest score H(I, J) = 0 indicates that the
gene expression levels fluctuate in unison. This in-
cludes the trivial or constant biclusters where there
is no fluctuation. These trivial biclusters may not be
very interesting but need to be discovered and masked
so that more interesting ones can be found. The row
variance may be an accompanying score to reject triv-
ial biclusters:

V (I, J) =
1
|J |

∑

j∈J

(eij − eIj)2 (4)

The higher the value of H is, the more disordered
the data is. In Cheng and Church algorithm, a greedy
method is used to select submatrix with a low H score.
It is divided into two phases. Firstly, the method is to
remove the row or column to achieve the largest de-
crease of the score. For the current submatrix, they
calculate the average residue score of each row using
d(i) = 1

|J|
∑

j∈J RSIJ (i, j) and the average residue
score of each column using e(j) = 1

|I|
∑

i∈I RSIJ(i, j),
then choose the row or column with the maximal
score and delete it from the current submatrix, un-
til H(I, J) < δ. Also they use a parameter α, so that
they can delete a set of nodes each time before the
score is recalculated. Without updating the score af-
ter the removal of each node, the matrix may shrink
too much and one may miss some large δ-clusters.

One may also choose an adaptive α based on the score
and the size during the iteration. Secondly, they add
rows and columns so that the matrix with the maxi-
mal size can be obtained.

Results and Discussion

Improvements for Cheng and Church

algorithm

Cheng and Church algorithm is a greedy method es-
sentially. Because the greedy method may not always
lead to correct results, we use an additional course
to avoid deleting “good” rows or columns. The steps
for the node addition in the original algorithm are as
follows:

1. Compute eiJ (for all i), eIj (for all j), eIJ , and
H(I, J).

2. Add the columns j /∈ J with

1
|I|

∑

i∈I

(eij − eIj − eiJ + eIJ )2 < H(I, J).

3. Recompute eiJ , eIJ , and H(I, J).
4. Add the rows i /∈ I with

1
|J |

∑

j∈J

(eij − eIj − eiJ + eIJ )2 < H(I, J).

5. For the ith row that is still not in I, add its
inverse if

1
|J |

∑

j∈J

(eij − eIj − eiJ + eIJ )2 < H(I, J).

6. If no node needs to add in the current iteration,
return the final I and J .

Considering that the search space of Cheng and
Church algorithm is only a subspace of the result set,
we make some improvements as follows. In order to
maximize the size of the result submatrix, we amend
the decision condition in the original algorithm by
changing the original constraint

1
|I|

∑

i∈I

(eij − eIj − eiJ + eIJ )2 < H(I, J) (5)

into the following form

1
|I|

∑

i∈I

(eij − eIj − eiJ + eIJ )2 < KH(I, J) (6)

and when it is added into the former matrix, the value
of H in the new matrix is less than the original value.
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The improved algorithm extends the searching
scope and increases the number of the nodes that
can be added into the cluster. Our improved algo-
rithm introduces a parameter K in Equation (6) to
ensure that the blind search is reduced. Cross vali-
dation shows that the improved algorithm performs
better when K is taken as 3.2.

To speed up the improved algorithm, we first ex-
press the matrix by using the idea of chromosome
used in evolutionary computation, and then change
the chromosomes in the matrix into two-dimensional
link lists, in which we calculate the value of H and
save the values of the chromosomes in the field H.

To examine the efficiency of the improved algo-
rithm, we tested it using the yeast gene expression

spectrum from the gene expression data set (2 ). For
the ten clusters obtained in the simulation, we calcu-
lated the average computational time of the results
and found that the original algorithm cost 65 s, while
the improved algorithm cost 94 s. The comparison re-
sults are shown in Table 1. The quality of result sets
of the improved algorithm is enhanced obviously, on
the tolerable condition that the time cost is increased
by less than 0.5 times. The comparison of the subma-
trix rows and columns from the improved algorithm
and the result sets of the original algorithm are also
shown in Table 1. It is obvious that from the results
in the same condition, the improved algorithm can
obtain better result sets and more information.

Table 1 Comparisons of Original and Improved Algorithms*

A B C EB/EA

∆X 15.2 18.9 12.4 1.24

∆Y 2.3 2.7 1.8 1.17

∆X+∆Y 17.5 21.6 / 1.23

*A represents the result set from the original algorithm, B is the result set from the improved algorithm, C is the

intersection of A and B, ∆X is the row increment, ∆Y is the column increment, and EB/EA is the efficiency ratio of

the improved and original algorithms.

Parameter selection

In Cheng and Church algorithm, there are two im-
portant parameters δ and α that need to be set be-
fore the algorithm running, where δ is a threshold
of score function H and measures the extent of data
consistency. The parameter δ influences the quality
of matrix clustering and in general it is better if the
value is smaller. But if δ is too small, the scale of the
submatrix will be over small and easy to lose informa-
tion. Hence, a balance point should be found for this
parameter before running the algorithm. The para-
meter α is used in the deletion course of the first phase
in the original algorithm, which is also an important
threshold. It directly influences the clustering speed.
We determined the value ranges through experiments
to provide referable information for realizing adaptive
setting for the parameters.

Firstly, we chose real data sets for testing.
Through a series of numerical experiments, we ob-
tained the relation between the values of parameter δ

and submatrix size, as shown in Figure 1. The arith-
metic average of space size is used to estimate the
quality of the clustering.

In the experiments, it was found that the size of

the submatrix decreases monotonously with the de-
scent of the value of δ. When δ is taken as around
120, the trend of the descent is gentle. Even the value
of δ goes down again, this trend does not change es-
sentially. Therefore, we suggest that for these data
sets, it is better to take the value of δ in the range of
[120, 180].

For the same data sets, we took the difference of
the two systems’ clocks before and after the experi-
ment as the time consumption of clustering, and only
calculated the consuming time during the course of
deletion. In this way we obtained the relation between
the value of α and the time consumption (Figure 2).
The value of α was taken in the range of [2.8, 3.2].
We also need to make practical clustering test at α =
2.8 to avoid any misvalue. If the clustering results are
satisfied, we could keep the range, otherwise we have
to increase the lower limit.

For different data sets, we can obtain a series of
results. Through linear regression and suitable ad-
justment to these calculation results, we have the fol-
lowing selection suggestions for the two parameters.

Let [a, b] be the value range of data sets, m the
number of genes, and n the number of conditions.
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Fig. 1 The relation between δ and submatrix size. Fig. 2 The relation between α and time consumption.

Let J = |b−a|
mn c1, where c1 = 5000. The simulating

experiments showed that it is better to take the value
of δ in the range of [3J, 4J ]. Let L = |b−a|

mn c2, where
c2 = 30. The results of simulations showed that it is
better to take the value of α in the range of [7L, 8L].

Application

The open human lymphoma B cell data set (8 ) was
used to examine the proposed improved algorithm.
Figure 3 shows the results obtained by using the im-

proved algorithms. Compared with the original algo-
rithm, the quality of clustering results using the im-
proved algorithm is enhanced obviously, the mining
expression models are better, and the data possess
stronger consistency with fluctuation on the condi-
tion that the time cost is increased a bit. In addition,
in spite that the noise level of data sets is very high
of having the loss rate of 12.3%, simulation results
showed that the improved algorithm could still keep
a good clustering effect even if the noise interference
is very strong.

Fig. 3 Clustered result sets for the open human lymphoma B cell data using the improved algorithm.
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Conclusion

The process of the extended space in the second stage
of Cheng and Church algorithm is improved. The
numbers of rows and columns are increased about 20%
by using the improved algorithm. The effects of the
two important parameters on the speed of the algo-
rithm and the clustering quality are discussed. On the
basis of simulated experiments, the experienced val-
ues for selecting parameter ranges are proposed. Real
data sets with noise are used to examine the algo-
rithms. Experimental results show the efficiency and
antinoise ability of the improved algorithm.
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