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A branch and bound algorithm is proposed for the two-dimensional protein folding
problem in the HP lattice model. In this algorithm, the benefit of each possible
location of hydrophobic monomers is evaluated and only promising nodes are kept
for further branching at each level. The proposed algorithm is compared with
other well-known methods for 10 benchmark sequences with lengths ranging from
20 to 100 monomers. The results indicate that our method is a very eff icient and
promising tool for the protein folding problem.

Key words: protein folding, HP model, branch and bound, lattice

Introduction

The protein folding problem, or the protein struc-
ture prediction problem, is one of the most interest-
ing problems in biological science. Studies have in-
dicated that proteins’ biological functions are deter-
mined by their dimensional folding structures. Be-
cause the structure of a protein is strongly correlated
with the sequence of amino acid residues, predicting
the native conformation of a protein from its given
sequence is a feasible approach and is of great sig-
nificance for the protein engineering. Since the prob-
lem is too difficult to be approached with fully real-
istic potentials, the theoretical community has intro-
duced and examined several highly simplified models.
One of them is the HP model of Dill et al (1–3 ) where
each amino acid is treated as a point particle on a reg-
ular (quadratic or cubic) lattice, and only two types
of amino acids—hydrophobic (H) and polar (P)—are
considered.

Although the HP model is extremely simple, it still
captures the essence of the important components of
the protein folding problem (4 ). The protein folding
problem in the HP model has been shown to be NP-
complete, and hence unlikely to be solvable in polyno-
mial time (5–7 ). For relatively short chains, an exact
enumeration of all the conformations is possible. In
dealing with longer chains, however, more efficient
approximation algorithms are certainly desirable.

The methods used to find low energy structures
of the HP model include genetic algorithm (GA; ref.
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8–12 ), Monte Carlo (MC; ref. 10 , 12 ), simulated an-
nealing (9 ), etc. These algorithms can find optimal
or near-optimal energy structures for most benchmark
sequences, however, their computation time is rather
long. In this paper, a branch and bound algorithm is
proposed to find the native conformation for the two-
dimensional (2D) HP model. The experimental re-
sults have shown that our algorithm is very efficient,
which can find optimal or near-optimal conformations
in a very short time for a number of sequences with
lengths ranging from 20 to 100 monomers.

Model

Let us consider this problem in 2D Euclidean space.
The monomers are numbered consecutively from 1 to
n along the chain, which is folded on the square lat-
tice, and each monomer occupies one site with the
center on the lattice point. Note that each monomer
should be connected to its chain neighbors and is un-
able to occupy a site filled by other monomers. If
monomer i is placed on the square lattice, then the
coordinates of its location are denoted by (xi, yi).

The HP model is based on the assumption that
the hydrophobic interaction is one of the fundamen-
tal principles in the protein folding. An attractive
hydrophobic interaction provides for the main driv-
ing force for the formation of a hydrophobic core that
is screened from the aqueous environment by a shell
of polar monomers. Therefore, the energy function of
the HP model is defined as:
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E = −
∑

i,j<i−1

σi σj (1)

where σi = 1 if the ith monomer in the chain is hy-
drophobic, otherwise σi= 0. In other words, the en-
ergy of a conformation can be obtained by count-
ing the number of adjacent pairs of hydrophobic
monomers (H–H) that are not consecutively num-
bered, and multiplying by −1. The goal of the protein
folding problem is to find the conformation with the
minimal energy.

Figure 1 shows a folding conformation of sequence
HPPHPPHPHPPHP on the 2D square lattice. It can
be seen that each monomer occupies one lattice site
connected to its chain neighbors. The energy of this
conformation is −4, which is the lowest energy state
of the sequence. Obviously, there is a compact hy-
drophobic core in the folded conformation.
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Fig. 1 The lowest energy conformation with E = −4 of

sequence HPPHPPHPHPPHP. Black point particle: hy-

drophobic (H); White point particle: polar (P).

Algorithm

In our algorithm, a conformation is built by adding a
new monomer at an allowed neighbor site of the last
placed monomer on the square lattice. In order to ob-
tain a self-avoiding conformation, an already occupied
neighbor should not be considered. The monomers are
placed consecutively until all the n (the length of the
chain) monomers are placed, that is, our algorithm is
a growth algorithm.

If k−1 (1 ≤ k ≤ n) monomers have been placed on
the square lattice, the kth monomer may have three
possible locations: turn 90◦ right, turn 90◦ left, or
continue ahead. Figure 2 gives a partial conformation
where four monomers have been placed on the square
lattice. It can be seen that there are three unoccupied
positions neighboring to Monomer 4. The next mono-
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Fig. 2 The three possible positions for Monomer 5.

mer, namely Monomer 5, can be placed at any
one of these unoccupied positions, resulting in three
different partial conformations accordingly. In this
way, all possible folding conformations of a sequence
can be enumerated. As shown in Figure 3, a search
tree representation can be used to denote all possi-
ble folding conformations, with three descendants at
most for each node. Each node in the search tree
corresponds to a partial conformation, and a line be-
tween two nodes represents a placement choice of a
new monomer to the existing partial conformation.
Consequently, leaf nodes at the end of the tree corre-
spond to the complete conformation.

Fig. 3 A representation of the search tree.

From Figure 3, it is obvious that the conforma-
tional space grows exponentially when the length of
the protein chain increases. As mentioned by Unger
and Moult (12 ), the number of possible (self-avoiding)
conformations for an L-long sequence on a 2D square
lattice is AµLLγ , where µ ≈ 2.63 and γ ≈ 0.333. Ac-
cordingly, for a protein chain of not too short length,
the search space is too huge to find the lowest energy
conformation within a reasonable running time.

To reduce the computational cost, a so-called
branch and bound method is introduced in this paper.
In this search method, only the promising nodes are
kept for further branching and the remaining nodes
are pruned off permanently. Since a large part of the
search tree is pruned off aggressively to obtain a solu-
tion, its running time is polynomial in the size of the
problems.
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In our algorithm, we treat H monomers and P
monomers differently. For a partial conformation
where k−1 monomers have been placed on the square
lattice, if the kth monomer is P, then all possible
branches should be kept. Otherwise, if the kth mono-
mer is H, then the benefit of all possible branches of
the kth monomer will be evaluated and some branches
may be pruned. That is to say, the main part of our
algorithm is centered on the evaluation and pruning of
the H monomers. This strategy maintains the diver-
sity of the conformations and eliminates the hopeless
partial conformation at the same time. The details
are as follows:

We set two variables, Uk and Zk, as the thresholds
to evaluate the benefit of all branches for monomer k.
Here, Uk is defined as the lowest energy of the partial
conformation with length k that has ever been gener-
ated so far, and Zk is the arithmetic average energy of
the partial conformation with length k so far. After

pseudo-placing monomer k at a possible location, we
calculate Ek, which is defined as the energy of the cur-
rent partial conformation with k monomers placed. It
should be pointed out that the term “pseudo-place”
means that it is just a test and the placing process can
be reverted. Then we compare Ek with thresholds Uk

and Zk:

If Ek ≤ Uk, it means that this partial conforma-
tion is very promising and this branch should be kept.
If Ek > Zk, that means the benefit of the partial
conformation is below the average, so this conforma-
tion is discarded with probability ρ1. Otherwise, if
Zk ≥ Ek > Uk, the partial conformation is discarded
with probability ρ2.

The pseudo-code of this subroutine is presented in
Figure 4, including the details of evaluation criterion
and the pruning mechanism, which is the main part
of our algorithm.

Procedure: Searching (Ek-1, k)
Begin

Compute Mk as the set of possible sites for monomer k

If |Mk |>0

For each candidate site  Mk, do 
Calculate Ek of the partial conformation after pseudo-placing monomer k at ;
If k=n                                    /* the conformation hit n */

Place monomer k at  and update Emin by En;
Return;

Else
If monomer k is H (hydrophobic)

If Ek Uk                          /* all branches are kept */
Place monomer k at ;
Call Searching (Ek, k+1);

If Ek>Zk                           /* prune with probability 1 */

Draw r uniformly [0,1]

If 1r

Place monomer k at ;
Call Searching (Ek, k+1);

If Ek [Uk , Zk]                      /* prune with probability 2 */

Draw r uniformly [0,1]

If 2r

Place monomer k at ;
Call Searching (Ek, k+1);

Else                                  /* the k
th monomer is polar */

Place monomer k at ;
Call Searching (Ek, k+1);

End.
Fig. 4 The pseudo-code of the subroutine in the branch and bound algorithm.
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The above process is implemented in a recursive
way until all the conformations are either pruned or
hit length n. From the conformations hitting length n,
we choose one with the lowest energy as the output of
the algorithm. It should be mentioned that the search
could be implemented by depth-first or breadth-first,
where the two results are identical. In this paper, our
algorithm is implemented by depth-first.

Here, Emin is the minimal energy of the com-
plete conformations ever built. Note that the first
two monomers of a chain can be placed on the square
lattice randomly. Therefore, the input parameters are
k = 3, E2= 0. The initial values of the two thresholds
Uk and Zk are both 0.

Obviously, if ρ1= 0 and ρ2= 0, the search space
will be the complete tree (no node be pruned) and it
will take a prohibitively long time to search for the
lowest energy conformation. If ρ1= 1 and ρ2= 1, it
takes a very little time to search the entire search
space because the thresholds are so high that many
promising nodes may be discarded. That is to say, the
higher the value of the probabilities, the more difficult
a branch is to be kept. Therefore, choosing the value
of ρ1 and ρ2 is an essential factor affecting the speed
and efficiency of this approach. In this paper, we let
ρ1 = 0.8 and ρ2 = 0.5. The probability ρ2 is chosen to
be less than ρ1 because a partial conformation with
energy below average is more promising than a high
energy partial conformation.

In this way, Ek, the energy of the partial confor-
mation, can be viewed as the energy expectation of

the partial conformation after looking one step ahead
and Zk is expressed as the mean energy of the al-
ready generated partial conformations of length k. Zk

keeps a historical record, which is, to a large extent,
conducive to the formulation of promising conforma-
tions. For any partial conformation, it would have
more opportunities to procreate if holding higher in-
dividual quality (Ek), which is in accordance with the
law of natural selection.

Validation

To test the performance of the branch and bound al-
gorithm, we compared it with the MC, GA, and mixed
search (MS; ref. 13 ) algorithms by using 10 bench-
mark sequences for evaluation (Table 1).

Table 2 presents the results obtained by the four
methods on the 10 different sequences. As shown in
the table, our branch and bound algorithm can find
the optimal lowest energy conformations for six se-
quences. It is noteworthy that our algorithm can find
one native state for the sequence of length 60, whereas
the other three methods failed. For the two long se-
quences of length 85 and 100, respectively, our algo-
rithm can find near-optimal energy conformations. It
should be pointed out that predicting the longest se-
quence of length 100 is a hard problem, whose native
state can only be obtained by a few methods such as
the PERM algorithm (14 , 15 ) and the guided simu-
lated annealing method (7 ).

Table 1 The 10 Benchmark Sequences for Algorithm Evaluation

Length Sequence

20 HPHPPHHPHPPHPHHPPHPH

24 HHPPHPPHPPHPPHPPHPPHPPHH

25 PPHPPHHPPPPHHPPPPHHPPPPHH

36 PPPHHPPHHPPPPPHHHHHHHPPHHPPPPHHPPHPP

48 PPHPPHHPPHHPPPPPHHHHHHHHHHPPPPPPHHPPHHPPHPPHHHHH

50 PPHPPHPHPHHHHPHPPPHPPPHPPPPHPPPHPPPHPHHHHPHPHPHPHH

60 PPHHHPHHHHHHHHPPPHHHHHHHHHHPHPPPHHHHHHHHHHHHPPPPHH–

HHHHPHHPHP

64 HHHHHHHHHHHHPHPHPPHHPPHHPPHPPHHPPHHPPHPPHHPPHHPPHP–

HPHHHHHHHHHHHH

85 HHHHPPPPHHHHHHHHHHHHPPPPPPHHHHHHHHHHHHPPPHHHHHHHHH–

HHHPPPHHHHHHHHHHHHPPPHPPHHPPHHPPHPH

100 PPPHHPPHHHHPPHHHPHHPHHPHHHHPPPPPPPPHHHHHHPPHHHHHHP–

PPPPPPPPHPHHPHHHHHHHHHHHPPHHHPHHPHPPHPHHHPPPPPPHHH
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Table 2 Performance Comparison of the Four Algorithms*

Length Optimal MC GA MS BB

20 −9 −9 −9 −9 −9

24 −9 −9 −9 −9 −9

25 −8 −7 −8 −8 −8

36 −14 −12 −14 −14 −14

48 −23 −18 −22 −22 −22

50 −21 −19 −21 −21 −21

60 −36 −31 −34 −34 −36

64 −42 −31 −37 −38 −38

85 −53 N/A N/A N/A −52

100 −50 N/A N/A N/A −48

*Performance comparison on finding the lowest energy conformations of the four algorithms, including Monte Carlo

(MC), genetic algorithm (GA), mixed search (MS), and branch and bound (BB).

We did not compare the speed with other methods
directly because the machines were different. More-
over, the running time of the other three methods was
presented in terms of “number of steps” while the ex-
act CPU time was used in our test. All the computa-
tions in this study were carried on a 2.4 GHz PC with
512 M memory. The CPU time for all sequences was
less than 10 s except the sequence of length 64, for
which the CPU time was 39.46 s. It can be seen from
Unger and Moult (12 ) that the “number of steps”
of MC and GA methods increases badly with the in-
crease of sequence lengths, therefore, it is imaginable
that the computational speed of MC and GA methods

in Unger and Moult (12 ) for practical applications is
unacceptable.

The resulting folding conformations for sequences
with 24, 36, 60, 85, and 100 monomers are given in
Figure 5, respectively. For sequences with 24, 36, and
60 monomers, the corresponding conformations are
all of the lowest energy. For the other two sequences
with longer lengths, the corresponding conformations
are also of near-optimal energy. It can be seen that
the conformation has a single compact hydrophobic
core for all sequences, which is analogous to the real
protein structure.
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Fig. 5 The lowest energy states of the sequences with length n = 24, 36, 60, 85, and 100, respectively.
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Conclusion

The branch and bound algorithm proposed in this pa-
per is a novel and effective tool for the conformational
search in the low-energy regions of the protein fold-
ing problem in the 2D HP model. The experimen-
tal results on 10 benchmark sequences demonstrate
that our algorithm outperforms other three methods
in terms of speed and efficiency. Our algorithm is sim-
ilar to the “population control” scheme (15 ) where in-
dividuals would have more opportunities to procreate
if holding higher individual quality, and the pruning
mechanism reduces considerably the computational
burden of search. This is the root reason why our
approach yields high efficiency.

With slight modification, this algorithm can be
extended for the 3D version. We should point out
that, the coding of this algorithm is very simple and
hence it can be easily implemented by practitioners.
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