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In this study, we present a preprocessing method for quadrupole time-of-f light
(Q-TOF) tandem mass spectra to increase the accuracy of database searching for
peptide (protein) identif ication. Based on the natural isotopic information inher-
ent in tandem mass spectra, we construct a decision tree after feature selection
to classify the noise and ion peaks in tandem spectra. Furthermore, we recognize
overlapping peaks to find the monoisotopic masses of ions for the following iden-
tif ication process. The experimental results show that this preprocessing method
increases the search speed and the reliability of peptide identif ication.
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Introduction

Mass spectrometric analysis and database searching
have been used as well-known approaches for pep-
tide and protein identification (1 ). During the ex-
periment, the peptides separated from liquid chro-
matographers are fragmented and ionized by collision-
induced dissociation (CID) and the ions are mea-
sured by mass spectrometer for mass/charge ratios
(m/z). Consequently, the peptides are identified (or
sequenced) by these m/z values of ions in tandem
spectra with a sequence database searching.

Due to the variety of the fragment ions under CID
and the existence of a large amount of spectral noise,
it is difficult to determine the sequence of a peptide
from its tandem spectrum. Generally, a quadrupole
time-of-flight (Q-TOF) spectrum of a peptide has 500
to 8,000 or even more peaks (2 ), but only 1%–5% of
these peaks are real ones that correspond to the im-
portant and known fragment ions and are useful for
peptide identification. To increase the accuracy of
peptide identification and decrease the computation
complexity, the preprocessing of tandem mass spec-
tra is introduced before database searching in order
to select the peaks corresponding to fragment ions and
minimize the number of selected peaks.

To date, several methods have been proposed for
the preprocessing of tandem data, including threshold
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filtering, denoise transforming, and deisotoping. The
threshold filtering method is the most straightforward
approach. As peaks with very small abundance values
are unlikely to be real ones, this method selects the
peaks above a given threshold or chooses a specific
number of the most intensive peaks in the specified
m/z intervals (3–7 ). As we know, abundance is not
the fundamental attribute of real peaks. Many im-
portant b-type ions have very low abundance. In ad-
dition, for various spectra, the quality, namely the
intensity baseline of noise, is totally different. There-
fore, using thresholds to remove the noise is not per-
fect. In the denoising mechanism, some well-known
procedures such as wavelet transformation have been
used to denoise the raw tandem mass spectra (6 ).
However, the parameters such as the wavelet base
functions, the order, and the level of decomposition
would impact the potential spectrum distortion by
this procedure. In deisotoping, the isotopes are re-
moved so that every fragment ion is represented only
by one peak and the complexity of spectra is greatly
reduced (6 , 7 ). Since peak overlappings, that is, two
or more different ions have confused isotope masses,
are observed frequently in spectra, deisotoping with-
out identifying whether a peak corresponds to the
monoisotope of one ion or the isotope of another ion
leads to the loss of some overlapped but important
fragment ions.

To address the above issues, we present a new pre-
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processing method for Q-TOF tandem mass spectra
based on decision tree classification. Firstly, instead
of threshold filtering and denoise transforming, we use
a Gaussian mixture model (GMM) to estimate the
baseline of noise and treat the baseline just as one
feature to distinguish noise and real peaks. Secondly,
a key concept of isotope pattern vector (IPV) is in-
troduced to characterize the isotope cluster of a frag-
ment ion. The complex overlapping of isotope peaks
are considered before deisotoping. Then we investi-
gate the difference among noise, single fragment ions,
and overlapping ions based on features such as the
baseline of noise and IPV. Finally, a decision tree is
constructed to classify the peaks, and the monoiso-
topic masses of all potential ions are calculated.

We applied our preprocessing method on four
different datasets and conducted extensive experi-
ments to evaluate the specificity and sensitivity of
classification. We also evaluated the effect of the pre-
processing on the speed and accuracy of the Mascot
(4 ) and pFind (8 ) searches. The experimental results
show that this data preprocessing approach can in-
crease the search speed and the reliability of peptide
identification.

Methods

Gaussian mixture model

Factors including the signal to noise ratio of precur-
sor and the imperfect laboratorial environment such
as temperature shifts in the laboratory may all impact
the quality of spectrum. Therefore, the intensity dis-
tribution of noise is different for various spectra. For
example, Figures 1 and 2 show the spectra of peptides
CCAADDKEACFAVEGPK and YLGYLEQLLR, re-
spectively. It can be observed that the intensity base-
line of noise peaks in Figure 1 is much higher than
that in Figure 2.

The peaks corresponding to noise are randomly
produced by mass spectrometry during CID. There-
fore, the variable of the intensity of noise obeys a
normal distribution approximatively and a GMM can
be established, in which the Gaussian curve repre-
sents the distribution of the intensity of noise. Intu-
itively, the centroid of the Gaussian curve correspond-
ing to noise is treated as the baseline. Practically, the

mean and standard deviations are used to character-
ize the baseline of noise, denoted as Ibaseline = (Imean,
Ideviation), and the value of Ibaseline is obtained by
the Expectation-Maximization (EM) algorithm to es-
timate the parameters of GMM. It is noted that we
use the relative intensities instead of the absolute val-
ues of the intensities of peaks in spectra. The highest
value in intensity is 100%. Using the MATLAB tool-
box, the calculated results of (Imean, Ideviation) for the
data in Figures 1 and 2 are (2.290144%, 0.350236%)
and (1.012099%, 0.076899%), respectively, which are
consistent with the observation of the noise in the two
spectra.

Isotope pattern vector

Isotopes are elements that contain the same number
of protons and electrons but differ in the number of
neutrons in nucleus. The elements of H, C, N, O,
and S have stable isotope distributions in nature (9 ).
Most proteins are composed of the above five elements
and thereby have relatively stable isotope patterns.
We use IPV to digitally describe the profile of the
isotopes of an ion. Suppose that the monoisotopic
mass of a fragment ion P (with molecular formula
Cn1Hn2Nn3On4Sn5) is M , and its first four isotopes
(with one, two, three, and four extra neutrons, respec-
tively) are P1, P2, P3, and P4, we can define the IPV
of P as:

IPV = (M, T1, T2, T3, T4,∆m1,∆m2,∆m3,∆m4)

where Tk is the relative abundance of Pk with respect
to P , and ∆mk is the mass difference between Pk and
P , for k=1∼4, respectively.

Theoretical IPV

Since the five elements of H, C, N, O, and S have sta-
ble isotope distributions, the theoretical IPV (tIPV)
of a fragment ion is definite and can be deduced from
its elemental components, that is, from its molecular
formula. We assume that each extra neutron of an
atom in the peptide appears independently. Then the
tIPV for the given formula Cn1Hn2Nn3On4Sn5 can be
deduced from the probability of the isotopes of each
element. For example, we show the deduction of M ,
T1, T2, ∆m1, and ∆m2 as follows:

M = (12.0000, 1.0078, 14.0030, 15.9949, 31.9721)× (n1, n2, n3, n4, n5)T

T1 = n1qC + n2qH + n3qN + n4qO1 + n5qS1
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Peptide: CCAADDKEACFAVEGPK (3) Precursor Ion: 1927.81da

Fig. 1 The tandem mass spectrum of peptide CCAADDKEACFAVEGPK in which the precursor holds 3 charges.
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Peptide:YLGYLEQLLR (2)  Precursor Ion: 1267.71da

Fig. 2 The tandem mass spectrum of peptide YLGYLEQLLR in which the precursor holds 2 charges.
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C∆C + n2(n2 − 1)q2
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+n2n4qHqO1(∆H + ∆O1) + n2n5qHqS1(∆H + ∆S1) + n3n4qNqO1(∆N + ∆O1)

+n3n5qNqS1(∆N + ∆S1) + n4n5qO1qS1(∆O1 + ∆S1)]/T2
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where qC , qH , and qN are the relative abundance of
13C to 12C, D to H, and 14N to 15N; ∆C, ∆H, and
∆N are the mass differences between 13C and 12C, D
and H, and 14N and 15N, respectively; qO1 , qO2 (qS1 ,
qS2) are the ratios of 17O to 16O, 18O to 16O (33S to
32S, 34S to 32S), respectively; ∆O1, ∆O2 (∆S1, ∆S2)
are the mass differences between 17O and 16O, 18O
and 16O (33S and 32S, 34S and 32S), respectively.

Experimental IPV

We can calculate the experimental IPV (eIPV) of a
fragment ion P if the isotope peaks of the ion are
measured by mass spectrometer. We characterize an
ion peak in mass spectrum in terms of (m/z, inten-
sity), where m/z is the value of the mass to charge
ratio and intensity is the relative height of the peak.
Considering a group of isotope peaks (p0, p1, p2, p3,
p4) corresponding to an ion, the interval of the corre-
sponding m/z values among p0, p1, p2, p3, and p4 is
around 1 Da when the ion holds a single charge, while
the interval is around 0.5 Da when the ion holds dou-
ble charges. In general, the interval is 1/z Da when
the ion holds z charges. Contrariwise, the charge of an
ion can be deduced by the m/z interval of the isotope
peaks.

To calculate the eIPV for P , we find the cor-
responding isotope cluster of peaks (p0, p1, p2, p3,
p4) in tandem spectrum with the (m/z, intensity)
pair (Mzk, Ik), k=0∼4, and calculate the number of
charge z from the interval between Mzk. After nor-
malizing z=1, the (m/z, intensity) pairs are converted
to (Mk, Ik), where Mk = Mzk × z − (z − 1)× 1.0078,
k=0∼4. Then the eIPV can be obtained by:

eIPV = (M0, I1/I0, I2/I0, I3/I0, I4/I0,M1 −M0,

M2 −M0,M3 −M0,M4 −M0)

Feature selection and decision tree clas-

sif ication

The next step is to investigate the difference between
noise and fragment ions based on some proposed fea-
tures, and construct a decision tree to classify the
peaks based on the values of the features. Firstly,
since the peaks higher than the baseline of noise are
more likely to be real peaks, it is necessary to find
the baseline of noise Ibaseline = (Imean, Ideviation) of
each spectrum. Secondly, each fragment ion has theo-
retical isotopes while noise does not have. Therefore,
noise and real peaks can be distinguished based on

the concept of IPV. Considering the measure error
of mass spectrometer, the isotope peaks of a frag-
ment ion should be observed and the experimental
isotope pattern should match its theoretical isotope
pattern. Thirdly, there are complex overlapping ions
with different charge states and noise data, hence it is
very important to recognize the charge state of frag-
ment ions and the case of overlapping to determine
all the monoisotopic masses of ions. Therefore, we se-
lect some features such as the charge state, the mass
corresponding to the peak, the intensity distance be-
tween the peak and the baseline of noise, and the dis-
tance between eIPV and tIPV. Finally, we investigate
the difference between noise and fragment ions, learn
the rules from some training samples, and construct
a decision tree to classify the peaks into three classes:
Class 1: noise; Class 2: real peaks corresponding to
single ions; Class 3: real peaks corresponding to over-
lapping ions.

As described above, the interval of the m/z value
of the isotope peaks is around 1/z Da if the ion holds
z charges. For a given peak p0, we scan the spec-
trum and find out the overall groups of potential iso-
tope peaks in tandem spectrum by supposing three
different charge states for z=1, 2, or 3, and within a
tolerance of 0.05/z Da for the interval. For the above
isotope cluster of peaks (p0, p1, p2, p3, p4) with the
(m/z, intensity) pair (Mzk, Ik), k=0∼4, it is noted
that if there is no peak at the kth isotopic interval
within the given tolerance, then we set the virtual
peaks (pk, pk+1, . . . , p4) by setting the intensity Ij as
zero, j = k∼4. Therefore, we can always obtain at
least three groups of potential isotope peaks for p0.
Then it will be judged accordingly that which group
corresponds to the fragment ion.

On the other hand, although the formula of a frag-
ment ion is unknown during the preprocessing, the
tIPV of an ion can be estimated by the expected
(or mean) isotope pattern of an average peptide of
the given mass (10 ). The average peptide is a pep-
tide with an amino acid composition corresponding
to the statistical distribution of amino acids in the
non-redundant database and the expected tIPV =
(M0, T1, T2, T3, T4,∆m1,∆m2,∆m3,∆m4) can be ob-
tained. Therefore, we calculate the value of the fea-
tures for each potential group of isotope peaks and
obtain:

V = (M0, z, I0−Imean−3×Ideviation, I0−Imean+
3×Ideviation, I1/I0−T1, I2/I0−T2, I3/I0−T3, I4/I0−
T4,M1 − M0 − ∆m1,M2 − M0 − ∆m2,M3 − M0 −
∆m3,M4 −M0 −∆m4)
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Fig. 3 Four profiles of the overlapping cases in which Ion 1, Ion 2, and Ion 3 represent the monoisotopes of each ion

involved in overlapping.

We select some peaks as training samples to ob-
serve the difference between the value corresponding
to noise and that to real peaks. Specifically, we judge
whether a peak is noise or it corresponds to an ion or
it involves overlapped ions when the peptide sequence
corresponding to the spectrum is known. There are
four kinds of overlappings considered as follows: Case
1: two ions with 1 Da difference in mass; Case 2: three
consecutive ions with 1 Da difference in mass; Case
3: two ions with 3 Da difference in mass; Case 4: two
ions with 2 Da difference in mass. The four profiles
of the overlapping cases are shown in Figure 3. Then
we select three classes of peaks corresponding to noise,
single ions, and overlapped ions, respectively. Finally,
the decision tree to classify these peaks is constructed
by using the WEKA C4.5 toolbox.

According to the rules of the decision tree, all of
the peaks in spectra can be classified by the calculated
values of V for its potential isotope peak groups. It
is noted that each peak will be classified into one and
only one class. Specifically, a given peak p0 is judged
as noise if all of the values of V corresponding to the
overall groups of potential isotope peaks are classified
into Class 1. If it is classified into Class 2, then the
monoisotopic mass M = Mz × z − (z − 1)× 1.0078 is
selected to present a potential fragment ion. Further-
more, if peak p0 is classified into Class 3, then two or
three monoisotopic masses will be obtained according
to the overlapping cases. Finally, some masses corre-
sponding to the peaks that have been classified into
Classes 2 and 3 are selected prior to database search-
ing.

Application

We applied our preprocessing method on four
different datasets of Q-TOF mass spectra, including
54 spectra from tryptic digestion peptides (11 ), 20
spectra of Glu-Fibrino peptide B, 9 spectra of the mix-
ture of standard peptides measured during different

time, and 7 spectra of the tryptic peptides of bovine
serum albumin protein (the Research Centre for Pro-
teome Analysis, Key Laboratory of Proteomics, Insti-
tute of Biochemistry and Cell Biology, Shanghai Insti-
tutes for Biological Sciences), which were denoted as
PepLutefisk, PepGFB, PepMix, and PepBSA, repec-
tively.

For performance metrics, we gave some definitions
as follows. Firstly, a peak is called a real peak if its
corresponding mass matches with a known theoreti-
cal ion; otherwise, it is called an invalid peak. In this
paper, the known theoretical ions include the predom-
inant a-, b-, and y-type of ions (12 , 13 ), immonium
ions (14 , 15 ), and other less important ions such as
c-, x-, and z-type of ions (12 , 13 ), internal fragment
ions formed by a combination of a- and y-type cleav-
ages (14 , 15 ), and ions with lost ammonia and water
(16 ). It is noted that there are some peaks that re-
ally correspond to fragment ions but the correspond-
ing masses cannot match with any known theoretical
ions because the knowledge of collision rules in CID
is not complete at present. Consequently, the invalid
peaks include noise peaks and some peaks correspond-
ing to fragment ions but its ion type is unknown to
human beings. Secondly, it is called a true positive
(TP) if a real peak is classified correctly; otherwise it
is called a false negative (FN). Similarly, it is called
a true negative (TN) if an invalid peak is classified
correctly; otherwise it is called a false positive (FP).
Finally, sensitivity and specifity are used to measure
the performance of classification. Here, sensitivity is
defined as TP/(TP+FN) and specifity is defined as
TN/(TN+FP).

In our experiment, 900 cases were selected as
training samples and 429,156 cases were selected as
testing samples. The experimental results are sum-
marized in Table 1. From the table, it can be observed
that the ratios of peak selection in the four datasets
are all lower than 5%. The low selecting ratios can
improve the speed of database searching greatly since
the less the number of selected peaks, the simpler the
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Table 1 Classif ication Performance of the Preprocessing

Data No. of spectra No. of total peaks/ Ratio of Sensitivity Specifity

No. of selected peaks peak selection

PepLutefisk 54 89,256/3,721 4.168% 97.94% 99.06%

PepGFB 20 180,088/2,408 1.337% 97.77% 99.66%

PepMix 9 51,836/1,799 3.471% 93.68% 97.99%

PepBSA 7 18,720/789 4.215% 94.50% 97.76%

Table 2 Detailed Performance on Sensitivity of the Preprocessing

Data No. of selected peaks No. of real peaks No. of TP No. of FN

in spectra* a-, b-, y-type/other type

PepLutefisk 3,721 2909 2,849 11/49

PepGFB 2,408 1796 1,756 1/39

PepMix 1,799 775 726 9/40

PepBSA 789 379 358 3/18

*Peaks whose corresponding masses match with the known type of theoretical ions.

computing of the subsequent identification process.

As we know, it is the real peaks that make cer-
tain the identification of peptides. The more selected
real peaks, the higher the accuracy of identification.
Therefore, the sensitivity of classification is very im-
portant for the identification. The detailed results on
sensitivity are depicted in Table 2, where two kinds of
FN samples are given in the last column: one is the
peaks corresponding to the predominant a-, b-, and
y-type of ions, and the other is the peaks correspond-
ing to other less important types of ions. From the
data, it can be observed that the former FN is much
less than the later FN, which means that the lost but
important information in classification is few. Com-
pared with sensitivity, the specifity of preprocessing
is less important for two reasons: Firstly, the number
of invalid peaks is related to the purity of testing sam-
ples and the knowledge of collision rules in CID while
the knowledge of collision rules is not sufficient and
needs improvement, hence the computing of specifity
is not absolutely objective; Secondly, most peaks are
invalid, thus a small number of classification error has
little effect on the value of specifity.

We also evaluated the effect of the preprocessing
on the speed and accuracy of the Mascot (4 ) and
pFind (8 ) searches. On one hand, the experimental
tests were performed with pFind. The results showed
that under the same parameters of searching, the ac-
curacy of identification was increased a little while the
speed of searching was improved up to 5–10 times. On
the other hand, all the experiments were performed
by submitting the data to Mascot through the Inter-

net. Therefore, only the accuracy level of searching
was compared since the testing of speed was not ap-
plicable. We submitted two kinds of data to Mascot:
the original spectrum data and the spectrum data af-
ter our preprocessing. Comparing with the search
results, we can see that: (1) If the peptide can be
identified by the original data, that is, the expected
peptide sequence is listed at the first position by the
Mascot search, it can also be identified by the data
after our preprocessing, which means that the pro-
cess does not destroy the data. (2) Compared with
the search scores including “Score” and “Expectation
value” in Mascot search results, there were 70% data
(spectra) in which the scores for the data after our
preprocessing were much better than those for the
original data. (3) For some spectra, such as the spec-
trum of peptide QNCDQFEK (in which the amino
acid C is carbamidomethylated) and the spectrum of
peptide DDPHACYSTVFDK, the query for the orig-
inal data gave the expected sequence after the fifth
position, while the query for the processed data gave
the correct answer at the first position. Therefore,
the search after our preprocessing is more reliable. In
the future research, we will focus on improving the
sensitivity and specifity of the preprocessing.

Conclusion

In this study, we present a new preprocessing method
for Q-TOF tandem mass spectra to increase the accu-
racy of database searching for peptide (protein) iden-
tification. Instead of threshold filtering and denoise
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transforming, we use a GMM to estimate the baseline
of noise and treat the baseline just as one feature to
distinguish noise and real peaks. In addition, based on
the natural isotopic information inherent in tandem
mass spectra, we construct a decision tree after fea-
ture selection to classify the noise and ion peaks and
recognize overlapping peaks. The experimental re-
sults show that this preprocessing increases the search
speed largely and improves the reliability of peptide
identification.
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