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G-protein coupled receptors (GPCRs) are a class of seven-helix transmembrane
proteins that have been used in bioinformatics as the targets to facilitate drug
discovery for human diseases. Although thousands of GPCR sequences have been
collected, the ligand specif icity of many GPCRs is still unknown and only one
crystal structure of the rhodopsin-like family has been solved. Therefore, iden-
tifying GPCR types only from sequence data has become an important research
issue. In this study, a novel technique for identifying GPCR types based on the
weighted Levenshtein distance between two receptor sequences and the nearest
neighbor method (NNM) is introduced, which can deal with receptor sequences
with different lengths directly. In our experiments for classifying four classes
(acetylcholine, adrenoceptor, dopamine, and serotonin) of the rhodopsin-like family
of GPCRs, the error rates from the leave-one-out procedure and the leave-half-out
procedure were 0.62% and 1.24%, respectively. These results are prior to those of
the covariant discriminant algorithm, the support vector machine method, and the
NNM with Euclidean distance.
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Introduction

G-protein coupled receptors (GPCRs) are a class of
seven-helix transmembrane proteins. They play an
important role in a cellular signaling network through
their extracellular and transmembrane domains. It is
known that such a network can regulate many phys-
iological processes, such as neurotransmission, cellu-
lar metabolism, secretion, cellular differentiation and
growth, inflammatory and immune responses, smell,
taste, vision, and so on. Therefore, GPCRs have be-
come the major targets for the development of new
drug candidates with potential application in all clin-
ical fields (1–3 ). In pharmaceutics, it is very im-
portant to understand their structures and functions.
However, there is only one crystal structure of the
rhodopsin-like family that has been solved so far (4 ).
Moreover, although thousands of GPCRs’ amino acid
sequences have been acquired, the ligand specificity of
many human GPCRs is still unknown and their corre-
sponding types remain undetermined (5 ). Therefore,
identifying GRCP types by only using sequence data
has become a valuable research issue (2 , 6–8 ).
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GPCRs are a large and functionally diverse su-
perfamily. According to their bindings with different
ligand types, GPCRs are classified into six different
families at least, where the rhodopsin-like family is
the largest, which constitutes about 90% of all recep-
tors. In the famous open database GPCRDB (9 ), the
rhodopsin-like amine GPCRs can be categorized into
six classes: acetylcholine, adrenoceptor, dopamine,
histamine, serotonin, and octopamine (6 , 9 ). In the
December 2000 release of GPCRDB, histamine and
octopamine only included ten and six sequences, re-
spectively. Since they were too few to have any sta-
tistical significance, such two types were left out for
further consideration, thus a total of 167 sequences
from other four classes were collected (6 ). For some
classification algorithms, the necessary preprocessing
step is to convert each sequence into a 20-dimensional
feature vector, in which each feature is described by
using its amino acid composition (6 ). In the covari-
ant discriminant algorithm (6 ), the overall error rate
was 16.77% according to the leave-one-out procedure
or the jackknife test. By using the support vector
machine (SVM), an overall error rate of 5.99% was
achieved with ten-fold cross-validation (3 ).

Xu and Zhang (10 ) reported that, while each
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DNA sequence was considered as a string consist-
ing of four bases (A, C, G, T) directly, an aver-
age error rate of 5.88% was obtained by combin-
ing SVM with kernels based on weighted Levenshtein
distance (WLD). Through transforming each DNA
sequence into a numerical vector, the lowest error
rate was 9.5% among other five classification meth-
ods (11 ). It is noted that, when DNA and pro-
tein sequences are converted into numerical vectors,
it is possible to lose some useful information in se-
quence data. In this study, a novel approach is
proposed for identifying GPCR types only from se-
quence data, which combines WLD with the near-
est neighbor method (NNM). Such an approach can
deal with receptor sequences with different lengths
directly. According to the accession numbers in El-
rod and Chou (6 ), 162 available sequences from four
classes of the rhodopsin-like family in the March 2005
release were collected. The overall error rate for these
sequences was 0.62% for the leave-one-out procedure
and 1.24% for the leave-half-out procedure, respec-
tively. It demonstrates that our experimental results
are prior to those of the covariant discriminant algo-
rithm (6 ), the SVM method (3 ), and the NNM with
Euclidean distance.

Results

In this section, we report the identification perfor-
mance of our novel method combining WLD with
NNM by using the leave-one-out and leave-half-out
procedures, where 162 GPCR sequences belonging to
four classes (acetylcholine, adrenoceptor, dopamine
and serotonin) were examined. It is noted that in
Elrod and Chou (6 ) the accession numbers of 167

GPCR sequences were listed, where five accession
numbers that did not occur in the March 2005 release
of GPCRDB were not considered in this study.

Identification performance from the

leave-one-out procedure

Table 1 lists the discriminated results of GPCR iden-
tification from the covariant disciminant algorithm,
the NNM with Euclidean distance between two vec-
tors, and the NNM with WLD between two sequences.
The accession numbers of misclassified sequences are
given and the corresponding numbers in square brack-
ets denote the class labels to be discriminated. The
overall error rate achieved by the covariant discrimi-
nant algorithm was 16.77% for the 167 sequences of
GPCRs (6 ), whereas the overall error rates based on
the NNM with Euclidean distance and the NNM with
WLD were 8.02% and 0.62% for the 162 sequences
in this study, respectively. In the latter case, only
one sequence (O96716) from dopamine was misclas-
sified into adrenoceptor. Therefore, the results of our
method are prior to that of the covariant discriminant
algorithm (6 ).

Identification performance from the

leave-half-out procedure

For the 162 available sequences, we divided them into
two subsets, where set 1 was constructed by the se-
quences located in the odd positions of accession num-
bers and set 2 was constructed by the remainder se-
quences. The experimental results obtained by the
NNM with Euclidean distance and the NNM with
WLD are listed in Table 2, and the overall and class

Table 1 Overall and Class Error Rates and Misclassif ied Accession Numbers of GPCRs in the

Leave-one-out Procedure

Method Acetylcholine [1] Adrenoceptor [2] Dopamine [3] Serotonin [4] Overall error rate

Covariant 10/31 (32.26%) 5/44 (11.36%) 7/38 (18.42%) 6/54 (11.11%) 28/167 (16.77%)

discriminant

algorithm

NNM with 0/28 (0.00%) 5/43 (11.63%) 4/37 (10.81%) 4/54 (7.41%) 13/162 (8.02%)

Euclidean distance P35405[3] P24628[1] Q16950[3]

P32251[3] P21917[2] P20905[2]

Q91081[3] Q24563[2] Q17239[2]

P07700[4] O44198[4] Q25414[3]

P43141[4]

NNM with WLD 0/28 (0.00%) 0/43 (0.00%) 1/37 (2.70%) 0/54 (0.00%) 1/162 (0.62%)

O96716[2]
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Table 2 Overall and Class Error Rates and Misclassif ied Accession Numbers of GPCRs in the

Leave-half-out Procedure

Method Test set Acetylcholine [1] Adrenoceptor [2] Dopamine [3] Serotonin [4] Overall error rate

SVM with 10-fold 0.00% 9.09% 5.26% 7.49% 5.99%

cross-validation

NNM with Set 1 0/14 (0.00%) 1/22 (4.55%) 4/18 (22.22%) 2/27 (7.41%) 7/81 (8.64%)

Euclidean distance P32251[3] P21917[2] Q16950[3]

P53453[1] P20905[2]

O44198[4]

Q9PSA7[1]

Set 2 0/14 (0.00%) 2/21 (9.52%) 3/19 (15.79%) 2/27 (7.41%) 7/81 (8.64%)

Q91081[3] P24628[1] Q17239[2]

P07700[4] Q24563[4] Q25414[3]

Q42317[4]

NNM with WLD Set 1 0/14 (0.00%) 0/22 (0.00%) 0/18 (0.00%) 0/27 (0.00%) 0/81 (0.00%)

Set 2 0/14 (0.00%) 0/21 (0.00%) 2/19 (10.53%) 0/27 (0.00%) 2/81 (2.47%)

Q24563[4]

O96716[2]

error rates from the SVM with ten-fold cross-
validation (3 ) are also provided. According to Ta-
ble 2, the average error rates over two test sets from
the NNM with Euclidean distance and the NNM with
WLD were 8.64% and 1.24%, respectively. The overall
error rate achieved by the SVM with ten-fold cross-
validation was 5.99%, which was 4.75% higher than
that of the NNM with WLD. Generally, the average
or overall error rate decreases when the number of k

in k-fold cross-validation increases. Therefore, the re-
sults of the NNM with WLD are better than that of
the SVM method.

According to Tables 1 and 2, it can be seen that
the performance of the NNM with WLD is better than
those of the covariant discriminant algorithm, the
SVM method, and the NNM with Euclidean distance.
Additionally, 14 misclassified sequences of GPCRs are
listed in Table 1 and 16 sequences in Table 2. Among
these sequences, 12 ones are identical, which have to
be further examined by us.

Discussion

Protein sequence data are described as the symbolic
strings consisting of amino acids. To utilize some
classification algorithms for identifying structures and
functions of proteins, one has to convert sequence
data into numerical vectors (for example, amino acid
composition vectors) through a proper transform way.
However, it is found out that such a transform pro-
cedure would lose some useful information. In this

study, a novel discriminant technique for classifying
GPCR types is introduced, which combines WLD
with NNM. Since the widely used Euclidean distance
between two vectors is replaced by the WLD between
two sequences, the sequence data can be handled di-
rectly. In our experiments, 162 available sequences of
four classes collected from the rhodopsin-like family
were used to evaluate this method. The experimen-
tal results show that the error rate of our method
was lower than those of the covariant discriminant
algorithm, the SVM method, and the NNM with Eu-
clidean distance. It demonstrates that our method
is very effective to identify GPCR types only from
sequence data.

Our further work will deal with more protein and
DNA sequence data to examine the performance of
our method, and fuse more biological information into
the weight definition of WLD.

Materials and Methods

Sequence data of the rhodopsin-like

family

In Elrod and Chou (6 ), the accession numbers of
167 GPCR sequences from the December 2000 re-
lease of GPCRDB were listed, including 31 acetyl-
cholines, 44 adrenoceptors, 38 dopamines, and 54
serotonins (http://www.gpcr.org/7tm/). According
to the March 2005 release, five sequences (Q9QYN6,
Q9QYN7, Q9W180, P35369, and P13953GP) were
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Table 3 Summary of 162 GPCRs from Four Classes of the Rhodopsin-like Family

Class Number Minimal length (aa) Maximal length (aa) Average length (aa)

Acetylcholine 28 460 805 531.46

Adrenoceptor 43 400 519 448.09

Dopamine 37 363 539 441.35

Serotonin 54 357 834 443.69

deleted. Therefore, we collected 162 GPCR sequences
as shown in Table 3.

In this study, we mainly considered these recep-
tor sequences as strings of amino acids directly. In
order to examine the NNM with Euclidean distance,
we also converted these sequences into 21-dimensional
numerical vectors, where the first 20-dimensional fea-
tures represent amino acid composition and the last
feature represents ambiguous symbol composition. To
eliminate the influence of different sequence lengths,
all features were divided by sequence length.

NNM

NNM is a piecewise linear classification technique
(12 ), which can only handle numerical vectors con-
verted from sequences originally. Let l training sam-
ples from c classes be:

{(x1, y1), (x2, y2), . . . , (xl, yl)} (1)

where xi ∈ Rd and yi ∈ {1, 2, ..., c} represent the ith

vector and its class label, respectively. For a new sam-
ple x to be classified, we calculate l distances between
x and xi (i = 1, .., l), and find out the training sample
xg with the minimal distance:

‖x− xg‖ = min
i=1,...,l

‖x− xi‖ (2)

In this case, we decided that x and xg belong to
the same class. Here ‖·‖ usually denotes a certain
distance between two vectors, such as Euclidean dis-
tance.

WLD between two sequences

WLD can directly measure the similarity between two
sequences. Here, we assume two symbolic strings (se-
quences) a and b with different lengths n and m,
respectively, denoted as:

a = a1a2 . . . an, b = b1b2 . . . bm (3)

For these symbols existing in the two strings
above, three correction operations can be defined as:

(1) Deletion operation: some symbol ai in the string
a is deleted; (2) Insertion operation: some symbol bj

in the string b is inserted into the string a ; and (3)
Substitution operation: some symbol ai in the string
a is replaced by some symbol bj in the string b. By
using these correction operations, the string a can be
transformed into the string b step-by-step.

The Levenshtein (edit) distance is defined as the
smallest number of correction operations converting
the string a into the string b. Since in many real ap-
plications the three operations imply different mean-
ings, it is necessary to determine different weights for
the different operations. According to this idea, the
WLD is defined as the minimum total weights of sin-
gle symbol deletion, insertion, and substitution op-
erations required to convert one string into the other
(12–14 ). A dynamic programming algorithm was pro-
posed by Wagner and Fischer (15 ) for calculating the
WLD. Let dij be the WLD between two sub-strings
consisting of the first i symbols of the string a and
the first j symbols of the string b, and cD, cI , and
cS denote the weights of single symbol deletion, in-
sertion, and substitution operation respectively. We
have:

dij = min(d(i−1)j + cD, di(j−1) + cI , d(i−1)(j−1) + cS)
(4)

where d00 = 0; i = 1, . . . , n; j = 1, . . . , m. Figure 1
illustrates the computational procedure of the WLD.
Finally, dnm implies the WLD. We used such a dis-
tance to measure the similarity between two symbolic
strings, that is, two sequences of GPCRs. It is noted
that, when the weights of insertion and deletion op-
erations are identical, the WLD satisfies three condi-
tions in the distance definition.

In order to eliminate the influence of string
lengths, we divided the original WLD by summation
of two string lengths. However, it is still referred to
the WLD. In this study, such a distance between two
strings was used in NNM. That is, we classified GPCR
types by combining WLD with NNM. In our exper-
iments, the weights of single insertion and deletion
operations were equal to 1. If the two symbols were
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Fig. 1 The computational procedure of WLD.

identical, the weight of substitution operation was 0,
otherwise was 3. It implies that there exists no sub-
stitution operation between different amino acids.

Identification performance measure

For many classification methods, k-fold cross-
validation is a widely used technique for estimat-
ing identification performance or generalization error.
Generally, the training set is randomly divided into k

disjoint subsets of almost equal size. The classifier is
trained by using k−1 of the subsets and is then tested
on the subset left out. This procedure is repeated k

times (or trials) and in turn each subset is used for
testing once. Averaging the test error over the k trials
can give an estimate of the expected generalization er-
ror. In real applications, the mean of the k estimates
of predication error rate is usually referred to the av-
erage error rate. There exist two extreme cases: k=2
and k = l. The former is referred as the leave-half-out
procedure, and the latter is the leave-one-out proce-
dure or the jackknife test.

In this study, the leave-one-out and leave-half-out
procedures were used to measure the identification
performance. Since there are four classes of GPCR
types in our experiments, we utilized two indexes,
overall and class error rates, in order to give more
identification details. For the leave-one-out proce-
dure, the overall error rate is defined as the ratio
of the number of misclassified receptors to the to-
tal number of all receptors, and the class error rate
denotes the ratio of the number of misclassified recep-

tors in some class to the receptor number of this class.
In the leave-half-out procedure, two corresponding in-
dexes are defined for each test subset and the average
error rate is estimated over the two subsets.
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