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Abstract Induced pluripotent stem cells (iPSCs) are generated by ectopic expression of defined

transcription factors in somatic cells. They can undergo unlimited self-renewal and maintain the

embryonic stem cells (ESCs)-like ability to differentiate into all three germ layers. iPSCs can poten-

tially provide unlimited autologous cells for therapy and therefore hold great promise for regener-

ative medicine. Here we reviewed the recent advances in iPSC studies on disease modeling and

clinical treatment as well as challenges correlated with clinical development of iPSCs, like tumori-

genicity, immunogenicity and genomic instability.
Introduction

In 2006, using Fbx15bgeo as a reporter system, Yamanaka’s
group screened a panel of genes specifically expressed in

embryonic stem cells (ESCs) and determined that four tran-
scription factors–– Oct4, Sox2, Klf4 and c-Myc–– are sufficient
to reprogram mouse fibroblasts into pluripotent stem cells,

which we called induced pluripotent stem cells (iPSCs) [1].
The same cocktail can also reprogram human differentiated
fibroblast into iPSCs [2–5]. In 2007, Thomson’s group

identified another combination –– Oct4, Sox2, Lin28 and
Nanog –– that can induce human somatic cells to become
pluripotent [6]. Like ESCs, iPSCs can undergo unlimited self-

renewal and maintain the ability to differentiate into all three
germ layers. iPSCs can not only contribute to chimerism and
germ line transmission in mice, but also can develop into
.
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full-term iPSC mice by tetraploid complementation [1–3,7–
10], indicating the totipotency of iPSCs.

Somatic cell conversion to the iPSC state is accompanied by

epigenetic remodeling, including resetting of the chromatin
structure and methylation states of DNA and histone. The
process of cell fate switching that culminates in the iPSC phe-
notype makes this type of cell an ideal model for studying basic

biological phenomena such as development and differentia-
tion. The low efficiency of reprogramming and long period
of time required for reprogramming to occur complicate ef-

forts to study the mechanism of reprogramming, which has
been widely discussed and reviewed [11–14]. In this review, in-
stead of discussing the reprogramming mechanisms, we focus

on the promises and challenges of using iPSCs therapeutically.

Disease modeling

Theoretically, patient-specific iPSCs can be obtained and dif-
ferentiated into different cell types with the same genetic back-
ground as the donor patient, providing the opportunity to

study pathogenesis in vitro, so-called ‘‘modeling disease in a
dish’’. Indeed, iPSCs have already been derived from patients
with a large variety of diseases [12]. It is very challenging to

study the pathogenesis of human neurological disease, due to
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the complexity of the neuronal system and the difficulty of cul-
turing neurons in vitro. iPSCs are a practical means of studying
the development and function of human neurons. Spinal mus-

cular atrophy was the first neurological disease targeted in a
human iPSC-based study of pathogenesis [15]. The patient-de-
rived iPSCs generated in the study gave rise to motor neurons

with the same genotype that is associated with selective deficits,
providing the proof of concept that iPSCs can be used to mod-
el human disease [15]. In another study, iPSCs derived from

Rett syndrome patients were not only able to recapitulate
the hallmark defects associated with the disease but were also
used to test the effects of drugs in rescuing synaptic defects
[16].

Recent studies in which iPSCs have been derived from pa-
tients with Huntington-Gilford progeria syndrome (HGPS)
have shown that the smooth muscles derived from the patient

iPSCs recapitulated the premature senescence in vitro, suggest-
ing great promise for elucidating the molecular mechanisms
underlying the HGPS disease by using iPSCs [17,18]. Interest-

ingly, Liu et al. demonstrated the contribution of the LRRK2
G2019S mutation to Parkinson’s disease (PD), and for the first
time showed that nuclear-envelope defects might be involved

in PD pathology, opening new avenues for PD diagnoses
and treatment [19]. iPSCs have also been used to model cardiac
disease. iPSCs derived from patients with long-QT syndrome
were induced to differentiate into functional cardiac myocytes

that recapitulated the electrophysiological defects characteris-
tic of the disorder [20].

Using iPSC-derived patient-specific cells to model an adult-

onset disease remains challenging, owing to the difficulties in-
volved in differentiating the iPSCs into an adult organ and the
complexity of pathogenesis associated with development. Kim

et al. provided the first evidence that induction of adult-like
metabolism has a crucial role in establishing the adult-onset
disease arrhythmogenic right ventricular dysplasia (ARVD)

using patient-specific iPSCs [21].
Those preliminary studies inspired more-extensive disease

modeling studies using iPSCs. To date, dozens of disorders
affecting neurons, blood, liver, heart, pancreas, lung as well

immunological disorders and cancer were studied by using iPS-
Cs [12,22,23]. Lack of appropriate model systems is a major
block to the study of human hepatitis C virus (HCV) infection

in humans. Interestingly, it was recently reported that hepato-
cyte-like cells derived from iPSCs can support the entire life cy-
cle of HCV in humans, validating the feasibility of using iPSC

as a model system to study human HCV infection [22,24]. In
support of this idea, another recent study showed that hepatic
cells derived from pigtail macaque can also support HCV
infection [25].

Despite plenty of disease modeling using cells differentiated
from iPSCs, generation of complex three-dimensional organs
and tissues for regenerative medicine is still a major challenge.

Two inspiring studies showed that three-dimensional intestine
and liver can be derived from iPSCs [26,27], providing
proof-of-concept that iPSCs can be used to generate functional

organs in vitro for regenerative medicine.

iPSCs for therapy

The first proof-of-principle experiment involving the use of
iPSCs to cure disease was performed by the Jaenisch lab, using
a humanized sickle cell anemia mouse model [28]. Hanna et al.
first derived the mouse iPSCs, corrected the sickle hemoglobin
allele by gene-specific targeting, differentiated the iPSCs into

hematopoietic progenitors, and then transplanted these cor-
rected progenitors into the mice. This strategy successfully res-
cued the phenotype of the blood cells [28]. By transplanting

human iPSC-derived multipotent cardiovascular progenitor
cells into mouse, Lu et al demonstrated that the transplanted
cardiovascular progenitor cells can migrate, proliferate and

differentiate in situ into cardiomyocytes, smooth muscle cells
and endothelial cells to reconstruct the damaged heart [29].

The clinical development of human iPSCs for therapy is still
in its preliminary stage. There are two encouraging clinical tri-

als using human ESC (hESC)-derived cells for therapy in the
USA that have been approved by the FDA. Geron performed
the first FDA-approved clinical trials using hESC-derived cells

to treat spinal cord injury (www.clinicaltrials.gov). Another,
more-encouraging trial was performed by Advanced Cell
Technology (ACT), using hESC-derived retinal pigment epi-

thelial (RPE) cells to treat macular degeneration (MD).
Although no significant vision improvement has been observed
four months after transplantation, structural evidence con-

firms that cells have attached and continued to persist in the
treated patients. Most importantly, no hyperproliferation,
abnormal growth, or immune-mediated transplant rejection
was observed in these transplanted patients, and no patients

lost their vision during the first four months [25,30]. Subse-
quent clinical observations are expected. Meanwhile, a preli-
minary clinical trial for transplantation of iPSC-derived RPE

cells was performed by Masayo Takahashi in Japan, as re-
ported in the ISSCR 2012 Annual Meeting. Publication of
those clinical data is eagerly expected.

Tumorigenicity

The boosting of patient-specific iPSC derivation and iPSC-

based disease modeling underscores the great potential use of
this technology in regenerative medicine. However, to translate
the iPSC technology to therapy quickly, extensive preclinical

experiments are required to evaluate the safety and effective-
ness of this new type of therapy.

The first generation of iPSCs were obtained by overexpress-

ing the defined transcription factors, using retrovirus or lenti-
virus [1,2,5,6]. Integration of the viral genome into that of the
host poses a serious cancer risk [7,31]. iPSCs were subsequently

generated without viral integration by using piggyBac transpo-
sition [32,33]. Soon after, adenovirus or plasmid or episomal
vector transfection was successfully used to reprogram fibro-
blast into iPSCs, both in mouse and human [34–40]. Moreover,

two recent studies showed that both mouse and human iPSCs
can be obtained by directly delivering reprogramming factor
proteins into target cells without any DNA manipulation

[41,42]. All of the aforementioned methods used for repro-
gramming can be applied to generate iPSCs without exogenous
DNA integration into the host genome. Remarkably, tumors

were not observed in mice derived from integration-free iPSCs
up to 20 weeks of age [35]. Recently, mouse iPSCs were gener-
ated by adding only seven small molecule compounds into the
cell culture, suggesting the possibility of generating human

iPSCs for clinical application without tedious genetic manipu-
lations [43]. This study indicates that cell fate decisions can be

http://www.clinicaltrials.gov
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dictated by manipulating intrinsic signal pathways, and repre-
sents an innovative breakthrough in the understanding of
reprogramming mechanisms.

The cancer risks raised by virus or reprogramming factor
integration into the genome could be averted by the use of inte-
gration-free reprogramming technologies. However, whether

reprogramming itself can lead to tumorigenesis is still unknown.
The iPSC reprogramming factors have clearly demonstrated

oncogenicity. Oct4 was shown to dictate the oncogenic poten-

tial of ESCs in a dose–dependent way. Overexpression of
Oct4 enhances the malignant potential of ESC-derived tumors,
while inactivation decreases malignant potential [44–46]. Sox2
is a lineage-survival oncogene in lung and esophageal squa-

mous cell carcinomas [47]. Klf4 functions as a tumor suppres-
sor gene and oncogene in a context-dependent manner [48].
c-Myc is an oncogene as well [49]. Nanog expression has been

detected in various tumors and is thought to be an oncogene
[50,51]. Recent studies showed that Nanog can promote breast
cancer tumorigenesis and metastasis [52]. The overexpression

of oncogenic genes can potentially make cells grow out of con-
trol and cancerous. The oncogenicity of reprogramming factors
can transform some of cells during reprogramming [53]. During

reprogramming, some ES-like colonies failed to expand when
the original ‘‘iPS’’ colonies were picked up, other ES-like colo-
nies can be expanded but lack pluritpotency-defined partially
reprogrammed iPSCs [53]. Whether the bulk transfection of

oncogenic reprogramming factors into somatic cells can cause
abnormality in iPSCs is still under investigation.

Immunogenicity

Although it is widely assumed that iPSC-derived autologous

cells are immune privileged, the immunogenicity of cells differ-
entiated from iPSCs is not extensively studied. Recently, we
first showed that iPSC derivatives can elicit immune rejection
response when transplanted to the syngeneic mice by using a

teratoma model [40]. Although two following-up studies
claimed either ‘‘negligible’’ or ‘‘lack of’’ immunogenicity of
iPSC derivatives, they both support that some certain tissues

but not all tissues differentiated from iPSCs are immunogenic.
Abe group clearly showed that the cardiomyocytes differenti-
ated from iPSCs can elicit immune rejection responses (please

refer to Sup Fig. 13) [54]. Recent report by Guha et al. clearly
showed the immunogenicity differences between ESC- and
iPSC- derived endoderm cells [55].

It should be noted that (1) only certain but not all tissues de-
rived from iPSCs can elicit immune rejection response; (2) the
rejection intensity induced by ESC-derived allografts differs
from that induced by iPSC-derived autografts, due to the fact

that MHC-I molecules are expressed in all allogeneic ESC-de-
rived cells and only certain syngeneic iPSC derivatives can ex-
press minor antigens; (3) if a specific autologous cell type

derived from iPSCs is immunogenic, it is capable of eliciting
serious minor antigen-induced rejection of the cells. In general,
we can still take easier advantage of iPSCs for therapy than allo-

geneic ESC lines even when immunologic issues are considered.

Genomic instability

Many studies have identified chromosomal abnormalities in
iPSCs, indicating that reprogramming itself can induce genetic
instability. Recently, sub-karyotype abnormalities were de-
fined in multiple iPSC lines by using Array Comparative
Genomic Hybridization (aCGH) [56]. Comparative genomic

hybridization analysis of iPSCs revealed the presence of geno-
mic deletions and amplifications, suggesting oncogene-induced
DNA replication stress during reprogramming [57]. High-reso-

lution single nucleotide polymorphism (SNP) analysis revealed
a higher frequency of subchromosomal copy number varia-
tions (CNVs) in human iPSCs compared to somatic cells

[58]. Similarly, another study showed that early-passage hu-
man iPSCs harbor significantly more chromosomal CNVs
than do intermediate human iPSCs, fibroblasts or human
ESCs. Interestingly, in that study, iPSCs with CNVs were rap-

idly disappeared in the iPSC pool during expansion [59]. By
using deep sequencing, a recent study detected somatic coding
mutations in human iPSCs, suggesting that human iPSCs ac-

quire not only epigenetic but also genetic modifications [60].
The tumor suppressor p53 functions as the guardian of the

genome, as it is involved inDNAdamage response, cell cycle ar-

rest, senescence and apoptosis [61–63]. Recent studies clearly
showed that p53 is a barrier to reprogramming [64–69]. Inhibi-
tion of p53 activity can enhance reprogramming efficiency.

However,whether inactivation of p53 is required for reprogram-
ming and whether p53 inactivation directly contributes to geno-
mic instability in iPSCs are questions still under investigation.

Perspective

Although significant progress has been made in understanding

tumorigenicity, immunogenicity and genomic instability in
iPSCs, the relationship among these abnormalities and how
to overcome the associated hurdles for clinical development

of iPSCs are still undergoing study. Meanwhile, encouraging
progress in the development of integration-free reprogram-
ming approaches, disease modeling, and preclinical trials has
significantly enhanced the prospects of advancing iPSC tech-

nology from bench to bedside.
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