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KEYWORDS Abstract Protein structure determination is a very important topic in structural genomics, which
Markov chain Monte Carlo; helps people to understand varieties of biological functions such as protein-protein interactions,
Nuclear magnetic resonance; protein-DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often
Peak picking been used to determine the three-dimensional structures of protein in vivo. This study aims to auto-

mate the peak picking step, the most important and tricky step in NMR structure determination.
We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use
the stochastic approximation Monte Carlo algorithm as the computational tool to solve the prob-
lem. Under the Bayesian framework, the peak picking problem is casted as a variable selection
problem. The proposed method can automatically distinguish true peaks from false ones without
preprocessing the data. To the best of our knowledge, this is the first effort in the literature that
tackles the peak picking problem for NMR spectrum data using Bayesian method.

Introduction NMR protein structure determination commonly involves a
series of steps, such as peak picking, chemical shift assignment,
nuclear Overhauser effect (NOE) assignment and structural
calculation [1]. Among them, peak picking is the most impor-
tant and tricky step and it is also the prerequisite for all the fol-
lowed steps (see e.g., [2,3]). As shown in Figure 1 using protein
TM1112 as an example, a typical NMR spectrum contains
many peaks. We show 3D plot of protein TM1112 in panel
A and show contour plot in panel B for the same protein.
Here, H dimension corresponds to chemical shift in hydrogen
dimension and N dimension corresponds to chemical shift in
nitrogen dimension. Each peak, which is often referred to as
a signal, represents a group of nuclei that can be coupled
through bonds (scalar coupling) or space (spin—spin coupling).
Peak picking step extracts the frequencies of each peak, which
correspond to the chemical shift values of the corresponding
nuclei. Such chemical shift values are then assigned to the cor-
responding atoms of the protein by considering the inter- and

Determination of structure-function relationships has been a
long-standing research topic in structural genomics. Nowa-
days, nuclear magnetic resonance (NMR) has often been used
to determine the three-dimensional structures of proteins,
especially for the small proteins that are partially disordered,
exist in multiple stable conformations in solution, show weak
interactions with ligands, or do not crystallize readily. The
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intra-residue information that different spectra contain. The
assignment is used to interpret NOE peaks, which provide
distance constraints for the structural calculation step. How-
ever, the peak picking step is usually very time-consuming.
Typically, it costs an experienced spectroscopist weeks or even
months to accomplish the task. To automate this step, a vari-
ety of methods have been proposed, including neural networks
[4], singular value decomposition [5,6], wavelet-based smooth-
ing [7], among others.

The existing methods select peaks based on the intensities
or the volumes of the peaks, and often fail for complex spectra.
For example, they often fail to identify peaks with low inten-
sity and overlapping peaks, and fail to distinguish false peaks
with high intensities/volumes from true ones. In addition, they
require a preprocessing step of data smoothing to remove
noise. In this paper, we propose a Bayesian method to tackle
this problem. We model the spectrum by a mixture of bivariate
Gaussian densities and use the stochastic approximation
Monte Carlo (SAMC) algorithm to estimate the positions
and intensities of the peaks. Under the Bayesian framework,
we cast the peak picking problem as a variable selection
problem. Therefore, sophisticated Bayesian variable selection
methods can be applied to seek for high-quality solutions to
this problem.

The rest of this paper is structured as follows. We will first
introduce the Bayesian model for NMR spectrum data. Next,
we describe in detail the SAMC algorithm for peak picking.
Following that, we give the results for both simulation studies
and real NMR data, which show the benefit of the proposed
method. We then conclude the paper with a brief discussion.

A Bayesian model for NMR spectra

For simplicity, this section describes only the model for the
NMR spectra in two-dimensional (2D) space. The 2D NMR
experiments, such as '"N-HSQC, are among the most fre-
quently used spectra for protein structure determination.
Extension of the proposed method to higher-dimensional
spaces is straightforward.

Suppose that the NMR spectrum consists of a total of n
(= Lx W) grid points. Let g(i,j) denote the intensity of the
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spectrum at the grid point (i,j) for i=1,...,L and
j=1,...,W. Then we model g(i,j) as a mixture of bivariate
Gaussian densities:

g(l'vj):Zak¢k(i:.f|ﬂm7#k2>fi177/%z)+5i/v i= 1,...,Landj: 17"'7 W?
k=1
)

where ¢,(-) is the k'™ component of the mixture density func-
tion with mean (uz, Mro) and covariance matrix diag
(2,,13,), a is the volume (or amplitude) of the k™ component,
and ¢; is the error term, which is assumed to be normally dis-
tributed with mean 0 and variance ¢>. We use M to denote a
model and use m = |M| to denote its size, i.e., the number
of components included in the mixture density function.

By lining up all the n grid points, the model (1) can be writ-
ten in the matrix—vector form as follows:

Y==0a+e, (2)
where
g(1,1) ¢i(1,1) $m(1,1) en
g(1,w) & (LW) - b, (1, W) ai 1w
Y= , = a= , €=
g(L,1) ¢i1(L,1) -+ ¢,(L.1) n €Ll
g(L, W) GI(L,W) - ¢, (L, W) eLw

Here Y is an n-vector representing the spectrum intensity for
each grid point; @ is an 7 x m matrix that carries the informa-
tion of m Gaussian density functions, each column of ® corre-
sponds to one Gaussian density component, and ¢, (i,)) is
defined as in (1) but with parameters omitted; a is a m-vector
consisting of the volumes of each component; and € is an n-vec-
tor representing the random error.

Let ¥ = (3, ....9,), where 0; = (1, 1,108 (13),log (13)).
Then the likelihood function of the model (1) is given by
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Ilustration of 2D NMR spectrum data using protein TM1112 as an example

A. A 3D plot of 2D NMR spectrum data for protein TM1112. The Z axis is for the intensity of the spectrum. B. A contour plot of the
same spectrum data. Here, H dimension corresponds to chemical shift in hydrogen dimension and N dimension corresponds to chemical
shift in nitrogen dimension. One unit in H dimension represents 0.0148 ppm and one unit in D dimension represents 0.0873 ppm.
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where /,, denotes an m X m identity matrix.
To conduct Bayesian analysis for the model (1), we consider
the following prior distributions for the unknown parameters:

a~ N(0,02V),

Hip ~ U(07L)7 Hip ~ U(07 W)>
Tlgl ~ IG(“?ﬁLTiZZ ~ IG(OC> ﬁ)7
e~

where IG (-,") denotes an inverse gamma distribution, U (-,*)
denotes a uniform distribution, and v, V" are hyperparameters
to be specified by the user. In this paper, we set V' = (®'®)~!;
that is, we specify a Zellner’s g-prior for the regression coeffi-
cients a with g = 1. Following [8], we set v =1 and
o = f = 0.05. The latter leads to vague priors for 7;;’s and
7’s. Since, for a given spectrum, the peak positions are always
bounded, we let y;s be subject to the uniform priors.

Furthermore, we assume the prior distribution of m follows
a truncated Poisson distribution with mean A; that is,

m
L

1 -
P(|M‘ :m) :E%e B me {lz-ﬂamma,\‘}v

where C = Y"1 2:¢~* and 4 and m,,, are hyperparameters
to be specified by the user. In practice, one may set / to a small
number to avoid finding too many false peaks. In this paper,
we set 2 = 1 in all computations which yield good results.
Our numerical results indicate that the choice of m,,,, is not
crucial for peak picking, as long as it is not too small, e.g.,
smaller than the number of true peaks. In this paper, we set
Myax to 10 for the simulation studies, and a relatively small
number, e.g., two times of the number of amino acids, for a
given protein.
Integrating out a and ¢ gives us the posterior

i=1
where

r)0)”

—(v+n)/2
2T (3) |1, + @VoT|' '

P(Y]9,m) = x v+ YT (I+ova") v}

Note that the intensity for a true peak should be positive for
the 2D NMR spectrum considered here. However, in our mod-
el, no any constraints are imposed concerning the value of a.
This allows us to integrate out a from the posterior and, as a
consequence, this accelerates the convergence of the simulation
of the posterior. The marginal posterior distribution of a is
normal with mean (®’® + V') '®”¥ and covariance matrix
(@@ + V)", Hence, a can be estimated based on its
expectation (®7d + V‘1)71®TY conditional on the samples
of ¥ and m obtained at each iteration.

Bayesian peak picking

The Bayesian peak picking problem is to determine the
number of peaks, m, and the peak positions (u;;, ti2), ---,

(tm1> Um2) through simulating from the posterior (Eq. (3)).
However, it is not known how many peaks there are for a gi-
ven NMR spectrum, although the intensities at the grid points
around the peaks are relatively high. Based on this observa-
tion, we propose following algorithm for Bayesian peak
picking.

For an L x W grid NMR spectrum, we first select N poles
as “‘peak candidates”. This can be done by selecting N poles
with the highest intensities, or, if we have the results from some
other methods, we can set them to be part of the peak candi-
dates as well. In this paper, we have tried both. Let
{(P1.1,P12), ... (Pn1, Pnp)} denote the pool of candidate
peaks, which gives all candidate components for the model
(Eq. (1)). Then the peak picking problem is casted as a Bayes-
ian variable selection problem, selecting appropriate compo-
nents from the pool of candidate peaks.

For the solution of the Bayesian variable selection problem,
we apply the stochastic approximation Monte Carlo (SAMC)
algorithm [9] to estimate both the number and positions of the
peaks through simulating from the posterior distribution (Eq.
(3)). SAMC is an adaptive Markov chain Monte Carlo
(MCMC) algorithm which possesses the self-adjusting mecha-
nism and is immune to local trap problems. At each step,
SAMC updates the set of selected peaks by either adding a
peak (birth move), deleting a peak (death move), or refining
the position of a selected peak (position update). Let b} denote
the peaks included in the model at iteration ¢ and let P, denote
the remaining peaks that are not included in the current sam-
ple. Hence, p} U PIR = {(PLlyPl,Z)y ey (PNJ’PN,Z)} The birth
move creates a new peak by randomly selecting one from the
set P, and proposing a peak position based on the selected
peak. The death move removes one peak from the set Pj.
The position update refines the position of a randomly-selected
peak, which does not change the dimension of the model (Eq.

(1).

A brief review of the SAMC algorithm

Let fix) = c(x), x € y, denote a distribution that we are
working with, where ¢ denotes a constant and X denotes the
sample space of the distribution. Let U(x) = —log(i(x))
denote the energy function of the distribution. SAMC works
on a partitioned sample space. For example, the sample space
can be partitioned into x disjoint subregions according to the
energy function: E; = {x:U(x) < uy}, E; = {x:u; < U(x) <
u2}a R By = {X:u,\;z < U(x) < urcfl} and E, = {x:
U(x) = u,_1}, where uy, u, ... ,u,_1 are prespecified numbers.
SAMC algorithm aims to sample from the following
distribution:

Po(x) i@[(}c e E), 4)

where 0 = (0, ....,0;) and 0, = log _[E’_ W(x)dx, and I (°) is the
indicator function. It is easy to see that sampling from (Eq.
(4)) will lead to a “random walk” in the space of energy, if
the sample space is partitioned according to the energy func-
tion and each subregion is treated as a “point”.

However, 6 is usually unknown. SAMC provides an auto-
matic mechanism to estimate @ in simulations from f{(x). As
shown in [10], SAMC is essentially a dynamic importance sam-
pling algorithm. Let 0,; denote the estimate of log |, £ W(x)dx at
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iteration ¢, and define 6, = (0,1, ... ,0,). Then one iteration of
the SAMC algorithm can be described as follows.

(1) Conditioned on the current sample x, simulate a sam-
ple x "D according to a Markov transition kernel,
which admits the following distribution as the invariant
distribution:

, Z‘” (5)

(2) Set 0,1 =0, + 7, 4 1(e;+1 — 1/x), where e ;=
€+ 11> ---5C + Lm)s € + 1, = 1 if "D eE and 0
otherwise, and 7, 4  is called the gain factor.

Py (x

The gain factor sequence {y,} is positive and non-decreas-
ing, and satisfies the conditions Y 7y, =00 and > 7% <
for some &€ (1,2). In this paper, we set y, = maifjm,
ty = 5000, 6 =0.5.

When the dimension of x is high or when the sampling
space X is too large, SAMC may take long time to converge.
For this reason, we adopt a variant of SAMC, annealing sto-
chastic approximation Monte Carlo [11], for simulating from
the posterior (Eq. (3)). Annealing SAMC shrinks the sample
space at each iteration according to the current sample. To
be precise, at each iteration, annealing SAMC draws samples
from the distribution

RN
HG™
i exXp (Qtl)
where UY)

i 18 the best value of U(x) obtained by iteration
£, > 0 is a user-defined parameter that determines the broad-
ness of the sample space at each iteration, and Il(«) denotes the
index of subregions based on the energy function; if
;1 < u<u;, then Il(u) = i. Clearly, if N is large, say
N > 20, then it follows from the principle Occam’s razor [12]
that the samples simulated using annealing SAMC can still
be used for Bayesian inference. In this paper, we set X = 1000.

Py, (x) o I(x € E) (6)

SAMC for Bayesian peak picking

In this section, we use M to denote the proposed model, use M
to denote the current model, use 9" to denote the parameter vec-
tor proposed for the model M”, and use 9 to denote the param-
eter vector of the current model. At each iteration, SAMC
randomly chooses to make one of the following moves with
equal probability: position update, birth move and death move.

Position update

In this move, we randomly choose one component from the
current model, say, the i-th component
9 = (uff),,u,z Jlog (73) “ log (t ,2) ) then we propose to re-
place it by 9" = (u, Q,log( 2),10g (t37)). which is gener-
ated by one of the following w1th equal probability:

L= 1953) +un x S, for onej randomly drawn from {1,2,3,4}
9 =9\ funx Sxe,
(7
where un is a random variable generated from the standard

normal distribution, S is called the step size, and e is a vector
randomly drawn from a unit sphere of dimension 4.

The proposal is accepted with probability

. exp{ 0,0, }P(O", [M*|| V) T(9" — 9)
o =minAq I, (8)

eXp{@](ﬂ*)}P(ﬁ(’)7 |M(z>H Y) T(ﬁ(’) — )
where J(19) denotes the index of the subregion that the corre-
sponding model belongs to and T(ﬁ(’) — 9") denotes the pro-
posal distribution that is determined by Eq. (7).

Birth move

This move is to randomly choose a pole from the list of unse-
lected peak candidates to add to the current model. For exam-
ple, the peak {P;;, P;} is chosen, then the related parameters
are proposed as follows:

Wy = Py +uny xS, (9)
[y = Pis+uny xS, (10)
log (t;7) = Ullog(Ls), log(Us)), (11)
log (t77) = U(log(Ls),log(Us)), (12)

where unl and un2 are random samples drawn from the stan-
dard normal distribution. The acceptance probability of the
move is given by

oc:min{l,Q
0

e {H o >>} PO M DT )
exp{0,9+) P, | MO || V) T —07)
for position update move. where J(1#) denotes the index of the
subregion that the corresponding model belongs to;
oM — M) /Q(M" — M*) = |'Py|/(‘P] + 1) accounts for
the probability of adding a pole/component to the current
model; T(- — ) denotes the proposal distribution determined
by Egs. (9)-(12); P(BirthIM®) = 1/3 if 1 <MY < mpu.
P(Birthl M) = 2/3 if M =1, and P(BirthlM®) =0 if
M@ = and  P(Death|M") if 1 <M1 < myu

(1m] — |M"))
(|M0] — |ar])

P(Deatl1|M)R }
PU (>

13
P(Birth| M) (13)

where Rpy = is the acceptance rate

Wlma.\‘;
P(Death|M™) = 0 if | M1 =1, and P(Death|M") = 2/3 if
|M*| = Mpygx-

Death move

This move is to randomly delete one component from the
model (Eq. (1)). The acceptance probability of this move is gi-

ven by
oc:min{l,Q P(Birth\M") Rpu} (14)
0 P(Death|M")

exp {9

(|m] — |M"))
(|M0] — |pr])

P, | M*|| V) T —9)

DTS is the acceptance rate

J(0)
exp {9,(1)*) }P('ﬂ(')
for position update move. where J(¢) denotes the index of the
subregion that the corresponding model belongs to;
oM — M) /Q(M"Y — M) =|P}|/(‘Pk + 1) accounts for
the probability of removing a component from the current
model; 7(- — -) denotes the proposed distribution determined
by Egs. (9)-(12); P(BirthIM™) =13 if 1 <IM1 < mpans
P(Birth|M") = 2/3 it M1 =1, and P(BirthiM") =0 if
M = myu; and P(Death|M”)) =13 if 1<| MY <
Miaxs P(DeathlM®) = 0 if MY = 1, and P(Death|lM”) =
2/3 i MY = myp .

where Rpy =
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Peak identification

At the end of the SAMC run, the peaks can be identified
according to the marginal inclusion probability, that is, the
posterior probability of each pole. Since SAMC is essentially
a dynamic importance sampling algorithm [10], the marginal
inclusion probability for a given pole can be estimated by
C i exp(0,0)
Z;'ffilexp( J(M’J)) 7
where ¢, denotes the number of burn-in iterations, ¢, denotes
the number of iterations used for posterior calculation, and
I is an indicator variable which is 1 if the i-th candidate peak
is included in the model M and 0 otherwise. In this paper, we
set t; = t, = 50,000 for the simulation study and
t1 = t, = 250,000 for the real data examples. Alternatively,
the peaks can be identified based on the maximum a posteriori
(MAP) model. In our examples, the peaks identified by these
two methods tend to be identical.

If a pole is identified as a peak, the related parameters can
be estimated by

. Z;'f]’ilﬂ ) exp(0,))
i — 1+
Py z.til exp(0 /(M'J))

It follows from the theory of SAMC, both 7, and 19,—1,- are
consistent.

1= i=1,2,...,N, (15)

(16)

Post-processing of simulation results

When applying the proposed method to NMR spectrum
data, several issues need to be taken care for post-processing
the simulation results. (1) As aforementioned, we did not re-
strict the peak intensity parameter vector a to be positive for
the reason of computational efficiency. If the simulated mod-
el contains some components of negative intensities, we can
directly eliminate them from the model. Those components
capture the outrageous noise of the data, and removing them
corresponds to a denoising step employed by other methods.
(2) It is believed that the spreads of true peaks are relatively
small as compared to the range of the spectrum. In model
(Eq. (1)), the spreads of components are measured by t;
and 1, for i = 1, 2,...,N. Hence, for a component, say com-
ponent i, if 1;; or 1,5 is large, then it is reasonable to treat it

A .

Intensity
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0, 00 o e

as an overall trend rather than a peak. This suggests us to
remove it from the model. In our study, we found that it
is good enough to set the threshold for t;; and 7, to be
VL/2 and /W/2, respectively; that is, removing the peaks
with t;; > /L/2 or 1 > /W/2. (3) In the practice of
NMR peak picking, the tolerance limit for N dimension is
0.5 and that for H dimension is 0.05. Hence, if the simulated
model contains two components that are close to each other
in the sense that the difference between their locations is
within the tolerance range, then we will combine them into
a single peak.

Numerical results

Simulation study

In the simulation study, we generated an image of size 50 x 50
with 5 peaks. The volumes of the 5 peaks are 452293.9,
532729.6, 719234.05, 403184 and 215974.5, respectively. Their
intensities are 14353.41, 15907.05, 18044.68, 43738.34 and
23187.57, respectively. Extra noises are added to the image.
To study the sensitivity of our method to the noise, two situa-
tions are considered. (1) The noise follows a normal distribu-
tion with mean 0 and standard deviation 4000 and (2) the
noise follows a normal distribution with mean 0 and standard
deviation 4000; in addition, some extra negative spikes are put
around the point (10,20) with the volume 100,000.

Figure 2 shows the example for situation 1. The image with
noises added is shown in Figure 2A, for which the true peaks
are hard to detect using naked eyes, whereas the recovered im-
age by SAMC, and the pure image without noises added are
shown in Figure 2B and C. The comparison of the recovered
image and the pure image shows that we have successfully
denoised the image and recovered the locations and shapes
of the peaks. As shown in Figure 3, the results for situation
2 is similar.

Table 1 shows the peak position estimation by our method
for the simulated example with the noise as simulated in
situation 1. It is easy to see that the estimation is rather
accurate. In this table, we also include the marginal inclusion
probability of candidate poles. The poles corresponding to
the true peaks have a marginal inclusion probability of 1 and

o
0°
«\0
o

Figure 2 A simulated image of 5 peaks with the noise simulated as in situation 1
A. The image with noises added, for which the true peaks are hard to detect using naked eyes. B. The recovered image by SAMC. C. The

pure image without noises added.
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Intensity

Cc

Figure 3 A simulated image of 5 peaks with the noise simulated as in situation 2
A. The image with noises added, for which the true peaks are hard to detect using naked eyes. B. The recovered image by SAMC. C. The

pure image without noises added.

Table 1 Peak position estimation for the simulated example in situation 1
True position Estimated position
Peak — — MIP
31 2 1 7]

1 40 24 40.80 24.14 1

2 10 37 9.70 36.94 1

3 20 12 20.16 11.91 1

4 5 23 4.84 22.94 1

5 30 46 30.23 46.01 1

Note: (1, i) is the location of the peaks and (1, 11;) is the estimation using Bayesian peak picking method. MIP refers to the marginal inclusion

probability of the corresponding pole.

all others have a marginal inclusion probability of 0. This im-
plies that our method has converged to true peaks.

NMR peak picking

We have applied the proposed method to six proteins along
with a comparison with an existing method. We used 2D
'>N-HSQC spectra for the experiment. For the N dimension,
a peak is considered correct if its distance from the truth is less
than 0.5. For the H dimension, a peak is considered correct if

the distance is less than 0.05. In the 2D space, a peak is consid-
ered correct if both the N and H dimensions are within the tol-
erance ranges when compared to the true peak.

Let N7 denote the number of true peaks in a given spec-
trum, let Np denote the number of peaks being picked and
let Tp denote the number of true peaks being picked. Then
the recall rate is defined as Tp/Nz, which is the identification
rate of a true peak; and the precision is defined as 7p/Np,
which is the proportion of true peaks among the identified
peaks. Figure 4 shows the results of our method for protein

500 T T T T
& oe 80 ©
450+ =
€
400 ® L 5 29 .
<3 = L4 o o
® ®
350 . -
®
® ® ®
S 300+ 0’ o 1
2 o ® , ©
§ 250 2 o o° {o pe ]
£ ®C @ e ®
S ® o & o
> 200 ® = . e®
L ®
®
150 o ¥ ® i
®
o . ® ®
100+ o o o i
* True peaks
50+ @ O Peaks found
o . . ‘ ‘ [m} False negatives
0 50 100 150 200 250 300

H dimension

Figure 4  Results of Bayesian peak picking method for protein HACS1

One unit in H dimension represents 0.0148 ppm and one unit in D

dimension represents 0.0873 ppm.
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SAM domain, SH3 domain and nuclear localization signals
1(HACS1), where the asterisk (*) denotes the true peaks and
the circle denotes the identified peaks using the proposed meth-
od. The only peak that was not identified by our method is the
one around the grid point (109,200). The contour plot given in
Figure 5 shows that the intensity around the grid point
(109,200) is very low.

Figure 6 gives the peak picking results using our method for
protein coilin. Figure 7 shows the contour plot of the NMR
spectrum for coilin. It is obvious that in the region of
[240,320] x [110, 140], there are lots of peaks with very high
intensities. However, there are no true peaks residing in this re-
gions. Results show that our method is able to exclude a big
portion of false peaks in that suspicious region, although not
all of them.

Table 2 summarizes the results of our method for 6 proteins
along with a comparison with PICKY [6], a newly developed
powerful peak picking method. Table 2 reports the recall

and precision and F-score [13] values for PICKY and the pro-
posed method. On average, the proposed method is 1.0% more
accurate in recall and 3.9% more accurate in precision for
these 6 proteins.

Taking a closer look at Table 2, we can see that the pro-
posed method has made improvements over PICKY under dif-
ferent situations. Our method has made the most significant
improvements over PICKY on proteins vancomycin resistance
associated regulator (VraR) and HACSI1. For these two pro-
teins, PICKY gives high recall rates but low precision values.
Compared to PICKY, our method works well in eliminating
false peaks. However, our method does not improve the results
of PICKY for Thermotoga maritima enzyme protein TM1112,
for which PICKY already did a good job. From this example,
we find that our method can fail to identify overlapping peaks
as other existing methods do. Table 2 reported the results
with the candidate poles selected according to the intensities
and according to the preliminary results of PICKY. Overall,

600 T T T T T T 400
500 o i 350
o o - oo
A - <« 300
400} e & & S, Fs g i
5 © = TR
9 o
g pt ©
g 300 ° B
T <@ @ 200
: e %o s =
200+ L °@0 ce 8
o @vo i e
& o o+
o> -
100+ o ) o 100
&
0 : . ; : O Peaklnot identified
50
0 50 100 150 200 250 300 350
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Figure 5 Contour plot for the '"N-HSQC spectrum of protein HACS1
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Figure 6  Results of Bayesian peak picking method for protein coilin
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Figure 7 Contour plot for the "N-HSQC spectrum of protein coilin

One unit in H dimension represents 0.0118 ppm and one unit in D dimension represents 0.1508 ppm. Red square box marks the true peaks

that are not detected by our method.

Table 2 Numerical results for the 6 proteins tested

PICKY SAMC1 SAMC2
Protein name Protein length
Recall Precision  F-score Recall Precision F-score Recall Precision F-score

T™I1112 89 96 89 92.4 94 89 91.4 95 85 89.7
RP3384 64 94 86 89.8 91 83 86.8 93 91 92.0
ATC1776 101 78 82 80.0 83 84 83.5 87 76 81.1
Coilin 98 97 70 81.3 94 77 84.7 94 80 86.4
VraR 72 87 93 89.9 93 98 95.4 91 98 94.4
HACSI1 74 95 67 78.6 98 81 88.7 98 81 88.7
Average — 91.2 81.2 85.3 92.2 85.3 88.4 93.0 85.2 88.7

Note: SAMCI, results of SAMC with peak candidates selected by intensities in a descending order; SAMC2, results of SAMC with peak candidates

from the results of PICKY.

our method does not perform differently under the two
aforementioned settings, since the self adjustment mechanism
of SAMC makes the simulation less dependent on the starting
point.

Discussion

In this paper, we proposed a Bayesian method to tackle the
problem of NMR peak picking. Our numerical results indicate
that the proposed method tends to produce more accurate re-
sults than the existing methods. To the best of our knowledge,
this is the first effort in the literature that tackles the NMR
peak picking problem using a Bayesian method. Our method
has a few advantages over the existing methods. (1) Through
choosing appropriate prior distributions, our method auto-
matically penalizes the models with too many or too few
peaks. (2) Our method can automatically distinguish true
peaks from false ones without preprocessing the data. While
the existing methods need to first remove the noise by setting
a threshold at a risk of signal deletion. (3) Our method has
the ability to estimate the spread and volume of each peak dur-
ing the process of peak picking. This helps to reconstruct the
denoised spectrum as compared to the existing methods which
just give the peak positions.

A drawback of our method is that it is computationally
intensive. This difficulty can be alleviated through parallel
computing. We can partition the spectrum into multiple subre-
gions and then process each of the subregions in parallel. For
instance, for TM 1112, we partition the spectrum into 6 subre-
gions, and the run of SAMC takes only a few hours for each
subregion. This is acceptable to most NMR laboratories.

Our method can be improved in various ways. For example,
we can improve the fitting of the model to the spectra by replac-
ing the Gaussian density function with a skew Gaussian density
function, as the latter has a much more flexible density shape
than the former. Other different prior distributions can also
be tried for the model parameters, e.g., the mixture g-prior
[14], which can leads to the consistency of variable selection.
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