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Abstract In the past decades, advances in high-throughput technologies have led to the generation

of huge amounts of biological data that require analysis and interpretation. Recently, nonnegative

matrix factorization (NMF) has been introduced as an efficient way to reduce the complexity of

data as well as to interpret them, and has been applied to various fields of biological research. In

this paper, we present CloudNMF, a distributed open-source implementation of NMF on a

MapReduce framework. Experimental evaluation demonstrated that CloudNMF is scalable and

can be used to deal with huge amounts of data, which may enable various kinds of a high-through-

put biological data analysis in the cloud. CloudNMF is freely accessible at http://admis.fudan.

edu.cn/projects/CloudNMF.html.
Introduction

The explosion of biological data brought about by the high-
throughput technologies poses a great challenge to bioinfor-

matics research. In order to learn the hidden structures of these
high-dimensional data, nonnegative matrix factorization
(NMF) [1] was introduced into biological research. NMF
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was quickly applied to various fields of biological data analy-

sis, such as capturing expression pattern in microarray data [2],
discovery of cancer subtypes [3], clustering of gene expression
data [4,5], identification of histone modification modules [6],

biological text mining [7,8], etc. The intrinsic nature of the
NMF method makes it very suitable for an integrative analysis
of multi-dimensional genomics data [9]. Devarajan presented a
comprehensive review of the application of NMF to computa-

tional biology [10].
With the increasing dimensionality of biological data, it is

foreseeable that the application of NMF to biological research

will continue to grow. For example, sequencing technologies
are generating terabytes (TBs) or even petabytes (PBs) of data
for a multi-dimensional analysis. However, current implemen-

tations of NMF in the biology area can only deal with matrices
of thousands-by-thousands size. For example, bioNMF [11],
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Table 1 Algorithm for CloudNMF

Input: nonnegative matrix A, dimension k, iteration number i

Output: nonnegative matrices W and H

1: initiate W and H using random nonnegative values

2: for each iteration:

3: calculate X1 =WTA using two MapReduce steps

4: calculate Y1 =WTWH using two MapReduce steps

5: update H with H =H.\X1/Y1 using one MapReduce step

6: calculate X2 = AHT using two MapReduce steps

7: calculate Y2 =WHHT using two MapReduce steps

8: update W with W=W.\X2/Y2 using one MapReduce step

9: output W and H
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an implementation of NMF for bioinformatics analysis, can
only handle matrices of 4096 · 512 (according to the documen-

tation of bioNMF server), and thus would fail to process data
with more attributes or samples. Another implementation
using R [12] fails to work when data size reaches gigabytes

(GBs) in a standalone machine. In their original papers, both
implementations were used to analyze a microarray dataset
represented by a 5000 · 38 gene expression data matrix [13].

However, a much more scalable implementation will be needed
to deal with data of a significantly greater size such as protein–
protein interaction (PPI) data or sequencing data.

To facilitate biological data analysis in the ‘‘Big Data’’ era

[14], we present CloudNMF, an open-source implementation
of NMF in MapReduce framework. The implementation
was developed on the Hadoop platform and can enable the

nonnegative factorization of sparse matrices up to million-
by-million size. Furthermore, CloudNMF is provided as a
JAR file ready to be deployed anywhere. In particular, Cloud-

NMF can be easily deployed on Amazon Elastic MapReduce
to utilize the power of cloud computing for biological data
analysis.
Methods

NMF was first introduced by Lee and Seung as a method for

learning the substructure of data matrix [1]. It was defined as
the factorization of a nonnegative matrix A into the multipli-
cation of two other nonnegative matrices W and H, where A

is a m · nmatrix,W andH are m · k and k · nmatrices, where
Figure 1 Using CloudNMF w
k is the target dimensionality to be reduced to, which is a num-
ber smaller than the minimum of m and n. NMF was aimed at
minimizing the Euclidian distance between A and WH, and

can be used as an effective technique for dimension reduction
and unsupervised clustering. In 2010, Liu et al. proposed an
algorithm to perform NMF in the MapReduce framework

[15] and showed that the algorithm can be used to factorize
huge nonnegative matrices up to millions-by-millions size.
However, this algorithm was aimed at Web applications, and

no source code of the algorithm is available for public use.
Our work is the first open-source implementation of NMF in
the MapReduce framework, targeted at dealing with the explo-
sion of biological data.

Our work follows the method previously reported [15],
which is based on the well-known iterative updating rule of
W and H described by Lee and Seung [16].

H H : � WTA

WTWH
ð1Þ

W W : � AHT

WHHT
ð2Þ

Here, .\ denotes dot product and T denotes transpose of
matrix.

Similar to the method used in [15], for each iteration, the

updating of H and W are both factorized into five MapReduce
steps; the computation of each step can be easily distributed
into multiple machines to achieve speedup, please see Table 1

for the details of the algorithm.
The program was implemented using Java and was pack-

aged as a JAR file which can run on local Hadoop clusters

(Figure 1). We offered a command-line interface for the pro-
gram; the usage of the command-line interface is also provided
in our website (http://admis.fudan.edu.cn/projects/Cloud-
NMF.html). Moreover, Amazon Elastic MapReduce service

(http://aws.amazon.com/cn/elasticmapreduce/) offers on-de-
mand computing clusters preinstalled with Hadoop, and pro-
vides a web interface to run Hadoop JAR files using only a

web browser (see http://docs.aws.amazon.com/ElasticMapRe-
duce/latest/DeveloperGuide/CLI_JobFlowUsingCustom-
JAR.html). For those inexperienced users who find it hard to

build their own Hadoop clusters, it is possible to upload their
data and CloudNMF into the cloud and perform their analysis
remotely (Figure 2).
ith a local Hadoop cluster
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Experimental evaluation

In order to test the performance of our program, we applied
the program to both real data and simulated matrices. The

PPI data matrix from the STRING database [17] was used
for performance testing, which includes 108,133,799 protein
interactions from 1134 species. The dataset can be represented

by a 1,349,909 · 1,349,909 matrix, where 1,349,909 is the num-
ber of distinct proteins in the dataset. Since the interactions be-
tween proteins are both nonnegative and sparse, the dataset is
quite suitable for the application of NMF.

Based on the STRING dataset, three submatrices of differ-
ent sizes were generated. The four datasets are described in
Table S1 and the performance of CloudNMF for these four

datasets is summarized in Table S2. We also generated three
simulated matrices of different sizes but containing the same
number of nonzero elements to test the impact of matrix size

on the performance of the program (Table S3). The experi-
ments were performed on an 8-machine Hadoop cluster, and
each machine has a Duo Core CPU and 4 GB memory.

From Figure 3 we observed a very interesting feature of
CloudNMF: the runtime actually increases in proportion to
the number of nonzero elements (the number of PPIs) in the
matrix (Figure 3A). This may be attributed to the MapReduce

implementation of the algorithm: only nonzero elements are
stored and distributed for computation. As the size of the ma-
Figure 2 Using CloudNMF w

Figure 3 Performance of CloudNMF

A. Performance of CloudNMF on four real datasets shows the linea

elements in the matrix. B. Performance of CloudNMF on simulated

elements shows that the runtime per iteration is linear to the logarithm
trix grows, the computation time increases logarithmically
(Figure 3B). These features make the algorithm better to deal
with sparse nonnegative matrices in comparison with the tradi-

tional implementations.

Discussion

CloudNMF is the first open-source implementation of
MapReduce-based nonnegative matrix factorization, and is

capable of handling significantly a greater size of data than
existing NMF implementations in bioinformatics. Besides
being deployed in local Hadoop clusters, CloudNMF can also
be easily used on cloud computing platforms such as Amazon

Web Services via only a web browser. Moreover, experimental
results show that the algorithm can effectively deal with sparse
matrices such as protein–protein interaction networks.

CloudNMF also has some limitations. Although the pro-
gram achieved considerable performance when dealing with
large-size matrices, with the high overhead of MapReduce par-

adigm, it may be less efficient than existing implementations to
deal with small-size matrices. In addition, while bioinformatics
analyses using NMF may involve many pre-processing or
post-processing steps, we only implemented the basic NMF

algorithm. However, the code of CloudNMF is freely accessi-
ble at our website; users can integrate the code into their own
pipelines to perform more specific analyses.
ith Amazon Web Services

r correlation of runtime per iteration with a number of nonzero

matrices of different sizes but with the same number of nonzero

of matrix size. Note that the X-axis is on a logarithmic scale.
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To sum up, CloudNMF is the first open-source implemen-
tation of a MapReduce-based NMF algorithm and can be
easily used to process large amounts of data. With the explo-

sion of biological data and the wide application of NMF to
biological research, we expect that CloudNMF will play more
important roles in bioinformatics in the upcoming ‘‘Big

Data’’ era.
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