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Abstract Neurological disorders comprise a variety of complex diseases in the central nervous

system, which can be roughly classified as neurodegenerative diseases and psychiatric disorders.

The basic and translational research of neurological disorders has been hindered by the difficulty

in accessing the pathological center (i.e., the brain) in live patients. The rapid advancement of

sequencing and array technologies has made it possible to investigate the disease mechanism and

biomarkers from a systems perspective. In this review, recent progresses in the discovery of novel

risk genes, treatment targets and peripheral biomarkers employing genomic technologies will be dis-

cussed. Our major focus will be on two of the most heavily investigated neurological disorders,

namely Alzheimer’s disease and autism spectrum disorder.
Introduction

Neurological disorders include a wide spectrum of diseases in
the central nervous system (CNS). Up till now, hundreds of
neurological disorders have been classified, with symptoms

varying from cognitive dysfunction to manic behavior or
depression [1]. Due to the complex nature of this group of
diseases, it is difficult to identify the mechanisms using conven-
tional methodologies, where only small pathways around

specific target genes are investigated. The advent of systems
biology approaches has made it possible to study these
complex problems from the whole-genome perspective. In
the recent years, genomic technologies have been increasingly

applied to the investigation of neurological disorders [2]. Excit-
ing discoveries have thus emerged including novel risk genes,
peripheral biomarkers and treatment targets. For the conve-

nience of the limited space, we will mainly focus on two of
the most studied neurological disorders, Alzheimer’s disease
(AD) and autism spectrum disorder (ASD).

AD is a major form of neurodegenerative diseases [3].

AD starts from memory loss and cognitive deficit in the
early stage and gradually evolves into severe dementia in
the late stage. The pathological hallmarks of AD include

extracellular deposit of amyloid plaques and intra-neuronal
neurofibrillary tangles (NFT). Although the disease-causing
mutations have been identified for the familial early-onset

AD (FEOAD), the genetic landscape has been perplexing
nces and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gpb.2014.07.002&domain=pdf
mailto:leihx@big.ac.cn
http://dx.doi.org/10.1016/j.gpb.2014.07.002
http://dx.doi.org/10.1016/j.gpb.2014.07.002
http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.gpb.2014.07.002
http://creativecommons.org/licenses/by-nc-nd/3.0/


Han G et al / Genomics in Neurological Disorders 157
for the late-onset AD (LOAD) that constitutes �95% of all
AD patients [4]. The prevailing hypothesis for the disease
mechanism of AD has been primarily based on the studies

of FEOAD, which advocates the central role of amyloid-b
(Ab) in the chain of events leading to neuronal death and
cognitive and behavioral symptoms. However, Ab-based
interventions have not been successful in the clinical trials
so far [5]. Due to the lack of effective treatment for curing
or slowing down AD, it becomes imperative to search for

novel risk genes and drug targets, as well as biomarkers
for early diagnosis.

Autism spectrum disorder is a neurodevelopmental disorder
characterized by social and communication deficit as well as

stereotyped and repetitive behaviors [6]. According to a recent
survey, 1 in 68 US children has ASD. In contrast to AD, the
disease onset for ASD starts from 3 years of age to early child-

hood. The gender ratio is approximately 4:1 disfavoring boys.
Like other psychiatric disorders, there are no clear pathologi-
cal hallmarks for ASD [1]. It is believed that brain wiring is

altered in ASD children, although the exact interplay between
gene and environment has not been clarified. In terms of the
genetic factors, some types of ASD may be caused by rare

mutations, while others may be due to the combination of
common variations [7]. The genetic alterations in ASD are also
more complex than those in AD, which include copy number
variation, insertion, deletion and single nucleotide polymor-

phism (SNP). In addition to the genetic and environmental
factors, prenatal and perinatal factors may also contribute to
the development of ASD.

Genomic studies of neurological disorders involve the
investigation of the genome, transcriptome and epigenome
(Figure 1). There are two types of technologies available for

genomic studies, including sequencing and various array plat-
forms. For the investigation of genomic variation, the samples
Figure 1 Application of genomic technologies to the investigation of n
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reprogrammed or trans-differentiated into neurons for comprehensive
generally come from peripheral blood, although saliva has also
been used. For the investigation of transcriptome, brain tissue
is the most studied since it is more relevant to the disease

mechanism. The peripheral blood and cerebrospinal fluid
(CSF) have also been investigated, mostly for the discovery
of novel biomarkers. These three tissues have also been utilized

in the investigation of epigenomic alteration. In addition, skin
fibroblast has been increasingly used in induced pluripotent
stem cell (iPSC) technologies. Recent advances in these fields

will be summarized in the following sections.
Brain transcriptome studies

Since the disease mechanism for most of the neurological
disorders is still under debate, it is necessary to conduct inves-
tigation from a systems perspective. In brain transcriptome

studies, information regarding gene expression at the whole
genome level can be extracted, and the dysregulation of gene
expression in a disease condition can be revealed by comparing
the gene expression with that from the matched healthy con-

trols. Microarray platforms have been the main workhorse
for brain transcriptome studies due to the mature technology
and low cost. Sequencing technology has been increasingly

used since 2008, but generally limited to small sample size
due to the high cost. Although it is extremely challenging to
collect relevant brain tissues for transcriptome studies consid-

ering the stringent requirement of short post mortem delay,
dozens of brain transcriptome studies have already been per-
formed and much of the original data have been released to
the public [8,9].

Aberrations in the control of gene expression might
contribute to the initiation and progression of AD [10] and
other neurological disorders. In a recent work, Zhang et al.
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conducted a brain transcriptome study employing hundreds of
brain samples covering three distinct brain regions, namely
prefrontal cortex, primary visual cortex and cerebellum [11].

Based on the comprehensive analysis of the gene co-expression
network, functional modules were identified, especially those
with gain-of-function or loss-of-function in AD, compared to

the control group. TYROBP was identified as one of the most
important causal factors. Most importantly, this study pro-
vided to the public a rare resource of genome-scale measure-

ment including both genome and transcriptome on a large
cohort of AD patients and elderly controls.

In addition, several small-scale studies on AD have been
conducted in recent years. A transcriptome study of astrocytes

in the aging brain provided information regarding the correla-
tion between APOE genotype and AD pathology [12]. In
another study, distinct regions of AD brain were examined

by RNA-seq, and the alternative splicing and promoter usage
of APOE was found to be correlated with AD progression [10].
A network model integrating the AD proteome and transcrip-

tome revealed key proteins, protein interactions, and the regu-
lation between genes and their protein products in the disease
pathology [13].

Compared to AD transcriptome studies, much fewer ASD
transcriptome studies have been conducted due to inaccessibil-
ity of brain samples from young ASD patients. In a study by
Geschwind and coworkers, the dysregulation of gene expres-

sion in the autistic brains was investigated [14]. The difference
in gene expression between the frontal cortex and temporal
cortex in normal brains diminished in autistic children. Critical

modules were revealed by gene co-expression analysis, includ-
ing a neuronal module and an immune and glia module. Based
on comparison with risk genes from genome-wide association

studies (GWAS), the neuronal module was highly enriched in
risk genes, whereas the immune and glia module was not.
These data suggest that genes in the neuronal module are likely

causal factors while those in the immune and glia module
merely reflect the secondary response during disease
development.

GWAS studies

Brain transcriptome is generally considered as a consequence
of the disease progression, because most of the brain samples
come from the late stage of the disease. Discovery of the causal
genetic factors requires the examination of genetic variations

in patients. Since the human genome became available a dec-
ade ago, genome-wide association study gradually became
the predominant method for the discovery of risk genes/varia-

tions, as compared to the traditional target gene/loci approach.
Several SNP array platforms have been developed and
constantly improved through the past decade. The general

analytical procedure consists of genotyping, quality control,
imputation, association test and meta-analysis.

In addition to APOE, recent large-scale GWAS studies on

LOAD have identified nine other genes/loci, including CR1,
BIN1, CLU, PICALM, MS4A4/MS4A6E, CD2AP, CD33,
EPHA1 and ABCA7 [15]. For example, in the work by
Lambert and his colleagues [16], two loci showed evidence of

association with AD in two independent sample pools [16]:
one within CLU (also called APOJ) on chromosome 8
(rs11136000, P = 7.5 · 10�9) and the other within CR1 on
chromosome 1 (rs6656401, P = 3.7 · 10�9). In another work,
Harold et al. undertook a two-stage GWAS study involving
over 16,000 individuals including AD patients and controls

[17]. In the first stage, two loci with significant P value included
CLU (rs11136000, P = 1.4 · 10�9) and PICALM (rs3851179,
P = 1.9 · 10�8). These associations were recapitulated in stage

2, producing compelling evidence for association with AD in
the combined dataset. A three-stage design was adopted in a
recent work [18] and several novel risk loci were discovered.

These include MS4A4A (rs4938933; P = 8.2 · 10�12), CD2AP
(rs9349407; P= 8.6 · 10�9), EPHA1 (rs11767557;
P = 6.0 · 10�10) and CD33 (rs3865444; P = 1.6 · 10�9). The
same group also replicated previous associations at CR1,

CLU, BIN1 and PICALM. Similarly, Seshadri et al. also used
a three-stage design [19] and found two loci with significant
association, including rs744373 near BIN1 and rs597668 near

EXOC3L2/BLOC1S3/MARK4. These two loci, together with
the previously identified loci in CLU and PICALM, were fur-
ther confirmed in the Spanish sample.

In the most recent large-scale GWAS study of AD, 74,046
individuals were included in the meta-analysis where a two-
stage design was adopted [20]. In addition to APOE, 19 loci

were found to be significantly associated with AD, among
which 11 were newly discovered in this study. The new risk loci
included INPP5D (rs35349669), MEF2C (rs190982), NME8
(rs2718058), ZCWPW1 (rs1476679), CELF1 (rs10838725),

FERMT2 (rs17125944), CASS4 (rs7274581), SORL1 (rs11218343),
PTK2B (rs28834970), HLA-DRB5/DRB1 (rs9271192) and
SLC24A4/RIN3 (rs10498633). This work clearly demonstrated

the power of large sample size in GWAS studies.
Due to the high heritability of ASD, GWAS studies of ASD

usually involve families rather than case-control design

adopted in most GWAS studies of LOAD. In an earlier study,
a SNP between CDH10 and CDH9 (rs4307059) was found to
be significantly associated with ASD in both discovery and

replication stages [21]. In another study, a significant associa-
tion of SEMA5A with ASD was found, which was further sup-
ported by the reduced expression of SEMA5A in autistic
brains [22]. In a later study, MACROD2 (rs4141463) was

found to be significant in the discovery stage and was then
reasonably replicated [23]. In a study of rare copy number vari-
ants (CNVs), it was found that the ASD group carried a higher

burden of rare CNVs compared to the control group [24]. The
implicated genes included SHANK2, SYNGAP1, DLGAP2
and DDX53/PTCHD1.

Whole exome/genome sequencing studies

The heritability of LOAD has been estimated to be 58%–79%

[25]. The classical SNP association studies have identified
dozens of genetic variants associated with AD [20]. But the
genetic alterations of AD found by GWAS studies cannot fully
explain the estimated heritability [26]. The potential sources of

the ‘‘missing heritability’’ include large number of ‘‘small
effect’’ variants, rare genetic variants, structural genetic
variations and possible gene–gene interactions. To explore

the missing heritability, rare variants associated with AD have
been extensively examined with whole genome/exome sequenc-
ing technology.

TREM2 is a gene located on chromosome 6, which encodes
a membrane protein that plays a role in immune response.
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TREM2 on microglial is also important for the clearance of
neuronal debris produced by the impaired CNS [27,28]. Jons-
son et al. reported that a missense mutation (rs75932628,

R47H) within TREM2 is strongly associated with AD [29].
Similar results were obtained in another study with a smaller
discovery dataset [30]. In this study, the functional relevance

of TREM2 was demonstrated by the higher mRNA expression
level in an AD mouse model compared to the wild type con-
trol. Later, the prevalence of R47H mutation was examined

in a Spanish population comprising 180 EOAD, 324 LOAD
patients and 550 controls [31] and R47H mutation was
found in 1.4% of the AD patients but not in the controls.
Significant risk conferred by rs75932628 was also revealed in

another EOAD related study examining 726 patients and
783 controls [32].

Besides association studies based on large sample size of

case-control design, family-based studies have also been car-
ried out for AD. Guerreiro et al. reported a mutation of
NOTCH3 (R1231C) in a Turkish family [33], whereas muta-

tions in SORL1 were identified as associated with FEOAD
[34]. In this study, 7 samples in a total of 29 FEOAD cases car-
ried SORL1 mutations, while none of 1500 controls carried

those mutations. SORL1 gene is located on chromosome 11,
and the protein product is involved in the Ab production. It
is of note that common SNPs of SORL1 were also reported
to be associated with AD [35]. PLD3, which encodes a

membrane protein catalyzing the hydrolysis of membrane
phospholipids, was also reported to be associated with AD
[36]. It was found that PLD3 mutation V232M was segregated

with disease status in two independent families. Furthermore,
overexpression of PLD3 led to a significant decrease in intra/
extra-cellular APP related species, whereas knockdown of

PLD3 gene led to an increase in extracellular Ab level.
Besides novel genes reported to be associated with AD,

novel mutations in classical AD genes, such as APP and

MAPT have also been reported. A missense mutation in the
APP gene, which leads to an alanine to threonine substitution
at position 673 (A673T), was significantly associated with AD
(0.62% in control vs. 0.13% in AD, odds ratio (OR) = 5.29,

P = 4.78 · 10�7) in a study with 1795 samples [37]. The asso-
ciation was further confirmed with 3661 additional samples in
the same study. This is one of the very few rare mutations

found to be protective against AD. In another work, a rare
mutation residing in MAPT (A152T) was found to increase
the risk of AD (OR = 2.3, P = 0.004) [38]. However, further

replication would be needed to validate this association due
to the less significant P value.

In the first trio-based (parents plus child) whole exome
sequencing (WES) study for ASD, 21 de novo mutations were

found [39]. Among them, four mutations were predicted to be
causative, including mutations in FOXP1, GRIN2B, SCN1A
and LAMC3. In a large-scale WES study of ASD with 928

individuals [40], 279 de novo coding mutations were discovered,
with the strongest evidence showing SCN2A to be causative. A
WES study of 16 families [41] identified candidate recessive

mutations in four genes including UBE3B, CLTCL1,
NCKAP5L and ZNF18. Genes disrupting de novo mutations
were twice as frequent in probands compared to unaffected

siblings and many of these genes were targets of FMRP gene,
as revealed by a WES study of 343 families [42]. Moreover,
rare complete gene knockout was found to contribute to a
small portion of ASD in a large WES case-control study
[43], whereas partial loss-of-function in several genes was
found to contribute to ASD in another WES study that com-
pared consanguineous to non-consanguineous families [44].

Compared to WES, whole genome sequencing (WGS) can
provide variations in the non-coding regions of the genome,
which may also have major contribution to the disease devel-

opment. In the first large-scale WGS study of ASD, it was
found that risk genes tended to reside in hypermutability
regions [45]. Later on, seven candidate genes were found with

the recessive model and 59 candidate variants were found with
the model free approach in a WGS study of a large pedigree
with two probands [46]. In another WGS study with 32
families [47], deleterious de novo mutations were found in six

families and X-linked autosomal inherited alterations were
found in ten families. With the richer information from
WGS and fast dropping sequencing cost, WGS may soon

replace WES as the main deep-sequencing technology for
genetic studies.
Epigenomic studies

Neurological conditions are not only reflected on genomic
mutations and transcriptomic dysregulations, but also on

the change of epigenome. Among the various types of epige-
nomic modifications, DNA methylation and histone modifi-
cations have attracted high attention and been the most

widely studied. Additionally, the expression level of microR-
NA (miRNA) adds another layer of complexity in the epige-
nomic landscape. During human brain development,

widespread methylome reconfiguration occurs and the highly
conserved non-CG methylation accumulates in the neuronal
genome [48]. Dynamic alterations in the epigenome play a

critical role in regulating cellular phenotype during differen-
tiation, and distinct tissue-specific patterns of DNA methyla-
tion have been identified across multiple human brain
regions [49].

Several studies have been conducted on the change of DNA
methylation and other types of modifications in AD. In a
recent investigation of four types of cytosine modifications

[50], it was found that the abundance of 5hmC is lower in
the entorhinal cortex and cerebellum of AD patients compared
to healthy elderly controls. In an earlier study on hippocampus

[51], both 5mC and 5hmC were found to be lower in AD
patients. However, in another study focusing on 5mC and
5hmC, a global hypermethylation was observed in the middle

frontal gyrus and the middle temporal gyrus [52]. Nevertheless,
due to the small sample size in most of the epigenomic studies,
some of the results should be interpreted with caution.

The dysregulation of miRNA has been investigated in AD

brains, blood and CSF. A pioneering miRNA study on AD
was done by Cogswell and his colleagues [53]. They examined
miRNA expression in both brain and CSF and showed that

expression of let-7i was significantly altered in both comparing
AD patients with controls. Further pathway enrichment anal-
ysis suggested that deregulated miRNAs might be related to

amyloid processing, neurogenesis, insulin resistance and
immunity. miRNA profiling has also been performed in the
hippocampus and prefrontal cortex and miR-132a-3p was
down regulated in both brain regions [54]. As for the function

of critical miRNAs in the AD brains, it has been reported that
miR-124 may have a role in regulating the APP alternative
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splicing [55], and miR-15a was reported to be associated with
neuritic plaque score [56].

Other works on miRNAs are focused on the discovery of

biomarkers. In Villa’s work, an inverse relationship between
SP1 mRNA and miR-29b levels in PBMCs was observed
[57]. This was of particular interest because SP1 is a dysregu-

lated transcription factor in AD brains [58]. In a recent study
on serum, six miRNAs were identified as peripheral biomark-
ers for AD [59], whereas a 7-miRNA signature displayed

>95% accuracy in discriminating AD from controls in
another peripheral biomarker study [60]. In yet another study,
a panel of 12 miRNAs was identified from blood samples,
which showed 93% accuracy in differentiating AD from

controls and 74%�78% in discriminating AD from other neu-
rological diseases, such as Parkinson’s disease [61]. In a study
on CSF, the level of hsa-miR-27a-3p was found to be lower in

AD patients [62].
Compared to AD, few epigenomic studies have been con-

ducted on ASD. In a study of DNA methylation in autistic

brains, four differentially methylated regions were discovered,
with three of them independently validated [63]. In addition,
several differentially methylated regions were identified in a

recent study on monozygotic twins discordant for ASD
[64], among which some were strongly correlated with
quantitative behavioral traits. Different DNA methylation
patterns were also observed in monozygotic twins with Rett

syndrome (a subtype of ASD) when no distinct difference
could be found in SNP mutations and number of indels
and CNVs [65].
iPSC technology in neurological disorders

The iPSC technology is an attractive approach to model a live
neuron in neurological disorders. iPSCs provide researchers

with a source of patient-specific stem cells and potential
applications including cellular modeling, drug discovery and
cell-based therapy [66]. Direct reprogramming of fibroblasts

to neurons could be a promising approach in neurological
disease modeling [67].

iPSC as an experimental research tool is now widely used in
the neurological disorders including AD [68–72]. Fibroblasts

reprogrammed to neuron cells could offer clues to the mecha-
nisms related to Ab production and processing [68]. By
increasing gene regulation of GSK-3b, phosphorylated tau

protein was found in the neurons derived from familial and
sporadic AD (fAD and sAD) patients. Levels of early endo-
some and synapse were also found to be different in patient

derived neurons. The development of AD pathology could also
be studied in iPSC using the Down syndrome induced neurons
with much shorter duration of pathology development
compared to in vivo [70]. Despite all the promising progress,

we shall note that several pitfalls exist in the application of
iPSC technology to neurological disease research. For exam-
ple, neurons might not fully mature and different phenotypes

may exist between in vivo and cultured neurons [73].

Database resources for AD and ASD

To facilitate the discovery of novel risk genes, the research
communities of AD and ASD have formulated policies for
genetic data sharing. As a pioneer, the National Institute on
Aging (NIA) has set up the NIA Genetics of Alzheimer’s Dis-
ease Data Storage site (NIAGADS), a national genetic data

repository which provides access to genotypic data for the
study of the genetics of LOAD upon approval by the data
access committee (Table 1). Currently, NIAGADS has col-

lected about 20 AD GWAS datasets.
Compared to the SNP-array technology, next-generation

sequencing technology can provide a deeper insight into the

missing heritability of AD. Currently, there are two ongoing
sequencing projects for AD: the Alzheimer’s Disease Neuroim-
aging Initiative (ADNI) and Alzheimer’s Disease Sequencing
Project (ADSP) [74]. The ADNI project has made publicly

available the whole genome sequencing data of about 818 par-
ticipants including AD, mild cognitive impairment (MCI) and
control. The ADSP project plans to complete whole genome

sequencing of about 111 AD families and whole exome
sequencing of about additional 11,000 subjects, where the first
batch of data has been released to the public.

Autism Genetic Database (AGD) is a comprehensive data-
base for autism susceptibility [75]. It currently contains the full
list of autism susceptibility genes as well as CNVs related to

autism. Additionally, all non-coding RNA molecules, such as
small nucleolar RNA (snoRNA), miRNA and Piwi-interacting
RNA (piRNA), and chemically induced fragile sites are
archived as well. The information in this database can be

accessed through a human genome browser focusing specifi-
cally on the chromosomal features associated with autism or
a tabular format broken down by chromosome.

Autism Database (AutDB) supports an integrated resource
for the autism research community [76]. The main focus of this
database is to provide an up to date, annotated list of ASD

candidate genes in the form of reference datasets for interro-
gating molecular mechanisms underlying the disorder. The
information in AutDB is extracted from the published scien-

tific literature on molecular genetics and biology of ASD and
organized to optimize its use through experts. The database
provides users four modules for free, including information
on human genes, animal models, protein interactions and copy

number variants.
The National Database for Autism Research (NDAR) is an

NIH-funded research data repository that aims to accelerate

progress in ASD research through data sharing, and reporting
of research results. NDAR also serves as a scientific
community platform and portal to multiple other research

repositories, allowing for integration and secondary analysis
of data. Comparing with the two above-described databases,
this database is mainly aimed at supporting an open access
platform that allows researchers to obtain and integrate the

public data, so as to facilitate novel discoveries for the preven-
tion and cure of the disease.

Concluding remarks

The human brain remains to be one of the biggest mysteries in

biological sciences. Preventing and curing neurological disor-
ders require better understanding of the brain. The ongoing
big brain initiatives in Europe, USA and China will take this
grand challenge, where the main focus is future computing,

brain wiring and brain disorders, respectively. The genomic
approaches described in this review together with the
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state-of-the-art brain imaging technologies will be the main
workhorses in the foreseeable future for the investigation of
neurological disorders. Mapping out the 100 billion neurons

and 100 trillion connections in the human brain is certainly
not a trivial task. Efficient integration with genomic technolo-
gies will undoubtedly lead to breakthroughs. The exciting new

progress in this field will be closely followed. In addition, stem
cell technology may be a viable option in the future for treating
neurodegenerative disorders especially for patients at the mid-

dle or late stage of the disease. Nevertheless, much of the focus
in this field is to detect the disease early and intervene before
massive neurodegeneration occurs. As for the childhood disor-
ders such as autism, non-invasive diagnosis of mutations and

genome correction are the technologies to watch.
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