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Abstract The ENCyclopedia Of DNA Elements (ENCODE) project is an international research

consortium that aims to identify all functional elements in the human genome sequence. The second

phase of the project comprised 1640 datasets from 147 different cell types, yielding a set of 30 pub-

lications across several journals. These data revealed that 80.4% of the human genome displays

some functionality in at least one cell type. Many of these regulatory elements are physically asso-

ciated with one another and further form a network or three-dimensional conformation to affect

gene expression. These elements are also related to sequence variants associated with diseases or

traits. All these findings provide us new insights into the organization and regulation of genes

and genome, and serve as an expansive resource for understanding human health and disease.
Introduction

The Encyclopedia of DNA Elements (ENCODE) Consortium
is an international collaboration of research groups funded

by the National Human Genome Institute (NHGRI). It aims
to pick up where the Human Genome Project left off, includ-
ing the ‘functional’ DNA sequences that act at the protein

and RNA levels, and regulatory elements that control gene
expression in which cells and when [1]. The first pilot phase,
started in 2003, accrued such information on just 1% of the
.
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genome and determined which experimental techniques were
likely to work best on the whole genome. Researchers found
that many important regulators of gene expression lie some-
where in the ‘deserts’ between the genes and many of them

have evolved rapidly [2]. After the initial pilot phase, scien-
tists started a second round of technology development phase
to apply their methods to the entire genome in 2007 and

closed successfully in September 2012 with the promotion
of several new technologies to generate high throughput data
on functional elements, signaled by the publication of 30 pa-

pers in Nature (5 papers), Genome Research (18 papers), Gen-
ome Biology (6 papers) and BMC Genetics (1 paper). The
productions of 1640 datasets focusing on 24 standard types
of experiment within 147 different cell types reveal that

80.4% of the human genome displays some functionality in
at least one cell type. ENCODE interpreted important fea-
tures about the organization and function of human genome

from the perspective of annotation of coding and noncoding
regions, chromatin accessibility, transcription factor binding,
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Table 1 Summary of ENCODE experiments

Experiment Description

DNA methylation In 82 human cell lines and tissues:

A549, Adrenal gland, AG04449, AG04450, AG09309, AG09319, AG10803, AoSMC, BE2 C, BJ, Brain, Breast,

Caco-2, CMK, ECC-1, Fibrobl, GM06990, GM12878, GM12891, GM12892, GM19239, GM19240, H1-hESC,

HAEpiC, HCF, HCM, HCPEpiC, HCT-116, HEEpiC, HEK293, HeLa-S3, Hepatocytes, HepG2, HIPEpiC, HL-60,

HMEC, HNPCEpiC, HPAEpiC, HRCEpiC, HRE, HRPEpiC, HSMM, HTR8svn, IMR90, Jurkat, K562, Kidney,

Left Ventricle, Leukocyte, Liver, LNCaP, Lung, MCF-7, Melano, Myometr, NB4, NH-A, NHBE, NHDF-neo, NT2-

D1, Osteoblasts, Ovcar-3, PANC-1, Pancreas, PanIslets, Pericardium, PFSK-1, Placenta, PrEC, ProgFib, RPTEC,

SAEC, Skeletal muscle, Skin, SkMC, SK-N-MC, SK-N-SH, Stomach, T-47D, Testis, U87, UCH-1 and Uterus

TF ChIP-seq A total of 119 TFs:

ATF3, BATF, BCLAF1, BCL3, BCL11A, BDP1, BHLHE40, BRCA1, BRF1, BRF2, CCNT2, CEBPB, CHD2,

CTBP2, CTCF, CTCFL, EBF1, EGR1, ELF1, ELK4, EP300, ESRRA, ESR1, ETS1, E2F1, E2F4, E2F6, FOS,

FOSL1, FOSL2, FOXA1, FOXA2, GABPA, GATA1, GATA2, GATA3, GTF2B, GTF2F1, GTF3C2, HDAC2,

HDAC8, HMGN3, HNF4A, HNF4G, HSF1, IRF1, IRF3, IRF4, JUN, JUNB, JUND, MAFF, MAFK, MAX,

MEF2A, MEF2C, MXI1, MYC, NANOG, NFE2, NFKB1, NFYA, NFYB, NRF1, NR2C2, NR3C1, PAX5, PBX3,

POLR2A, POLR3A, POLR3G, POU2F2, POU5F1, PPARGC1A, PRDM1, RAD21, RDBP, REST, RFX5, RXRA,

SETDB1, SIN3A, SIRT6, SIX5, SMARCA4, SMARCB1, SMARCC1, SMARCC2, SMC3, SPI1, SP1, SP2,

SREBF1, SRF, STAT1, STAT2, STAT3, SUZ12, TAF1, TAF7, TAL1, TBP, TCF7L2, TCF12, TFAP2A, TFAP2C,

THAP1, TRIM28, USF1, USF2, WRNIP1, YY1, ZBTB7A, ZBTB33, ZEB1, ZNF143, ZNF263, ZNF274 and ZZZ3

Histone ChIP-seq A total of 12 types:

H2A.Z, H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K9me1, H3K9me3, H3K27ac, H3K27me3, H3K36me3,

H3K79me2 and H4K20me1

DNase-seq In 125 cell types or treatments:

8988T, A549, AG04449, AG04450, AG09309, AG09319, AG10803, AoAF, AoSMC/serum_free_media, BE2_C, BJ,

Caco-2, CD20, CD34, Chorion, CLL, CMK, Fibrobl, FibroP, Gliobla, GM06990, GM12864, GM12865, GM12878,

GM12891, GM12892, GM18507, GM19238, GM19239, GM19240, H7-hESC, H9ES, HAc, HAEpiC, HA-h, HA-sp,

HBMEC, HCF, HCFaa, HCM, HConF, HCPEpiC, HCT-116, HEEpiC, HeLa-S3, HeLa-S3_IFNa4h, Hepatocytes,

HepG2, HESC, HFF, HFF-Myc, HGF, HIPEpiC, HL-60, HMEC, HMF, HMVEC-dAd, HMVEC-dBl-Ad,

HMVEC-dBl-Neo, HMVEC-dLy-Ad, HMVEC-dLy-Neo, HMVEC-dNeo, HMVEC-LBl, HMVEC-LLy,

HNPCEpiC, HPAEC, HPAF, HPDE6-E6E7, HPdLF, HPF, HRCEpiC, HRE, HRGEC, HRPEpiC, HSMM,

HSMMemb, HSMMtube, HTR8svn, Huh-7, Huh-7.5, HUVEC, HVMF, iPS, Ishikawa_Estr, Ishikawa_Tamox,

Jurkat, K562, LNCaP, LNCaP_Andr, MCF-7, MCF-7_Hypox, Medullo, Melano, MonocytesCD14+, Myometr,

NB4, NH-A, NHDF-Ad, NHDF-neo, NHEK, NHLF, NT2-D1, Osteobl, PANC-1, PanIsletD, PanIslets, pHTE,

PrEC, ProgFib, PrEC, RPTEC, RWPE1, SAEC, SKMC, SK-N-MC, SK-N-SH_RA, Stellate, T-47D, Th0, Th1, Th2,

Urothelia, Urothelia_UT189, WERI-Rb-1, WI-38 and WI-38_Tamox

DNase footprint In 41 cell types:

AG10803, AoAF, CD20+, CD34+ Mobilized, fBrain, fHeart, fLung, GM06990, GM12865, HAEpiC, HA-h, HCF,

HCM, HCPEpiC, HEEpiC, HepG2, H7-hESC, HFF, HIPEpiC, HMF, HMVEC-dBl-Ad, HMVEC-dBl-Neo,

HMVEC-dLy-Neo, HMVEC-LLy, HPAF, HPdLF, HPF, HRCEpiC, HSMM, Th1, HVMF, IMR90, K562, NB4,

NH-A, NHDF-Ad, NHDF-neo, NHLF, SAEC, SkMC and SK-N-SH RA

MNase-seq In GM12878 and K562

3C-carbon copy (5C) In GM12878, K562, HeLa-S3 and H1-hESC

GWAS SNP targeting 296 noncoding GWAS SNPs were assigned a target promoter
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DNA methylation and interactions between parts of genome
in three-dimensional space (Table 1). The ENCODE data

were also integrated with single nucleotide polymorphisms
(SNPs) identified by genome-wide association studies
(GWAS) to attack much more complex diseases.
Human genome reference re-annotation

A correctly- annotated gene reference for a particular project is

extremely important for any downstream analysis such as con-
servation, variation and functionality of a sequence. As a sub-
project of the ENCODE project, the GENCODE consortium

aims to annotate all evidence-based gene features, including all
protein-coding loci with alternatively transcribed variants,
non-coding loci with transcript evidence and pseudogenes, in

the entire human genome at a high accuracy using a combina-
tion of computational analysis, manual annotation, and exper-
imental validation. The GENCODE 7 release contained 20,687
protein-coding genes and 33,977 noncoding transcripts that
were not represented in UCSC genes and RefSeq. Among

them, 62% of protein-coding genes have annotated polyA sites
and 35% of transcripts are supported by combinatorial analy-
sis of gene-cluster evolution (CAGE) cluster at the transcrip-

tional start sites (TSSs) (Table 2) [3]. In addition,
GENCODE 7 contains 9640 long non-coding RNA (lncRNA)
genes, representing 15,512 transcripts, consisting of 5058 long

intergenic ncRNA (lincRNA) loci, 3214 antisense loci, 378
sense intronic loci and 930 processed transcript loci, which is
the largest manually-curated catalog of human lncRNAs cur-
rently publicly available (Table 2) [3]. GENCODE also anno-

tated 11,216 pseudogenes, of which 863 were transcribed and
associated with active chromatin (Table 2) [4]. Compared with
non-transcribed pseudogenes, transcribed pseudogenes showed

higher conservation, much more upstream regulatory se-
quences and stronger tissue specificity, indicating that tran-
scribed pseudogenes possess conventional characteristics of

functionality [4].



Table 2 Summary of GENCODE v7 gene annotation

Category Number

Protein-coding genes 20,687

Novel noncoding transcripts 33,977

Long non-coding RNA loci 9640

Linc RNA loci 5058

Antisense loci 3214

Sense intronic loci 378

Pseudogenes 11,216

Transcribed 863

Non-transcribed 10,353
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Landscape of transcription

ENCODE provided a genome-wide catalogue of human tran-

scripts and identified their subcellular localization by sequenc-
ing RNA from 15 cell lines in three subcellular fractions (whole
cell, nucleus and cytosol) and in three additional subnuclear

compartments (chromatin, nucleolus, and nucleoplasm) in
K562 cell [5]. Cumulatively, a total of 62.1% and 74.7% of
the human genome were observed to be covered by either pro-
cessed or primary transcripts, respectively. Coding and non-

coding transcripts are predominantly localized in the cytosol
and nucleus, respectively, with higher expression of protein-
coding genes on average than that of non-coding RNAs.

Approximately 6% of all annotated coding and non-coding
transcripts overlap with small RNAs (sRNAs) and are proba-
bly precursors of these sRNAs. Furthermore, the analysis of

RNA from subcellular fractions obtained through RNA-seq
in the cell line K562 revealed that splicing occurs predomi-
nantly during transcription and is fully completed in cytosolic
polyA+ RNA [6]. In addition, lncRNAs curated manually by

GENCODE have canonical gene structures and histone mod-
ifications, are expressed at lower levels, appear to be subjected
to weaker evolutionary constraint than coding genes and are

preferentially enriched in nucleus of the cell [7]. Meta-analysis
of 737 mouse and human sRNA datasets yielded 237 and 240
splicing-derived microRNAs (miRNAs) in mouse and human,

respectively. These miRNAs comprised three classes: conven-
tional mirtrons, 50-tailed mirtrons and 30-tailed mirtrons. Some
members in each class are conserved, indicating their incorpo-

ration into beneficial regulatory networks [8].

DNA methylation

Methylation of cytosine at CpG dinucleotides is an important
epigenetic regulatory modification in many eukaryotic gen-
omes. Using high-throughput reduced representation bisulfite

sequencing (RRBS), Meissner et al. generated methylation
maps covering most CpG islands in mouse embryonic stem
cells, embryonic-stem-cell-derived neural cells, primary neural

cells and eight other primary tissues [9]. CpGs located in open
chromatin regions are generally lowly methylated, whereas
hypermethylated regions are marked by H3K9me3. Moreover,
changes in DNA methylation patterns during ES cells differen-

tiation were strongly correlated with those in histone methyla-
tion patterns. In human B-lymphocytes, a DNA methylation
map was generated through two methods, bisulfite padlock

probe (BSPP) assay and methyl-sensitive cut counting (MSCC)
assay. DNA methylation was found to be located genome-wise
with a pattern of low promoter methylation and high gene-
body methylation in highly-expressed genes [10]. Moreover,

the DNA methylation landscapes were profiled quantitatively
in total of 82 human cell lines and tissues using RRBS, yielding
1.2 million CpGs on average in each cell type [11]. In pulmon-

ary fibroblasts (IMR90), significantly low methylation was de-
tected at CpG dinucleotides within DNase I footprints,
compared to CpGs in non-footprinted regions of the same

DNase I hypersensitive site (DHS). These data suggest that
occupancy of regulatory factors may be widely connected with
methylation at nucleotide levels [12].

Local chromatin structure

The hallmark of regulatory DNA regions is chromatin accessi-

bility, which is characterized byDNase I hypersensitivity. Stam-
atoyannopoulos and his collaborators mapped 2.89 million
unique non-overlapping DHSs by DNase-seq in 125 cell types.

About one third of them were found in only one cell type, with
only 3700 detected in all cell types, suggesting that the genome is
differentially regulated from cell to cell [13]. Majority (approxi-
mately 75%) of the DHSs identified by ENCODE were located

in distal intronic or intergenic regions, indicating that the previ-
ously-considered ‘junk’ sequences are functional somehow.Fur-
thermore, higherDNase I hypersensitivity andCG content were

enriched in TSSs, of which chromatin state was largely invariant
across multiple cell lines as demonstrated using DNase-seq
across 19 cell types in a genome-wide fashion [14]. A set of puta-

tive distal regulatory elements, up to 500 kb distant from pro-
moters, were generated based on the correlations between
distal DHSs and promoters [13].

Nucleosomes are located in the flanking regions of open
chromatin where DHSs are enriched and post-translational
modification of the histone tails occurs at the core of nucleo-
somes. The nucleosome occupancy in GM12878 and K562

cells that was mapped by MNase-seq was highly heterogeneous
and asymmetry at TSSs and showed a weak correlation with
transcriptional activity [15]. Histone modification is another

regulatory factor that affects the chromatin conformation.
Early studies on individual modifications have shown that they
function in both activation and repression of transcription.

ENCODE examined chromosomal locations for up to 12 his-
tone modifications and variants in 46 cell types. Taking advan-
tage of the wealth of datasets from ENCODE, Dong et al.

established a novel quantitative model to evaluate the relation-
ship between chromatin features (including 11 histone modifi-
cations, one histone variant and DNase I hypersensitivity) and
expression levels. Using this model, they predicted expression

status and expression levels with high accuracy by employing
different groups of chromatin features [16].
Transcription factor binding sites

Transcription factors (TFs) regulate gene transcription by

binding to specific DNA elements such as promoters, enhanc-
ers, silencers, insulators and locus control regions. To predict
and identify TF binding sites throughout genomes is essential
for understanding gene regulation [17]. So far, ENCODE has

sampled 119 of 1800 known TFs in a limited number of cell
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types. Predicted TF binding sites on human promoters from
ChIP-seq data in conjunction with position weight matrix
(PWM) searches of known motifs were mutated to assess their

function using luciferase reporter assays in four different
immortalized human cell lines. Overall, 70% of the binding
sites functionally contributed to promoter activity. These bind-

ing sites were more conserved and located closer to TSSs than
those whose function was not experimentally verified [18].
Three pairs of genomic regions were categorized according

to the binding patterns of 117 TFs in five cell lines: active
and inactive binding regions, promoter-proximal and gene-dis-
tal regulatory modules, and high and low occupancy of tran-
scription-related factors. Intricate differences were revealed

in these regions in terms of chromosomal locations, chromatin
features, binding factors and cell-type specificity. 13,539 poten-
tial enhancers were further identified from the distal regulatory

modules, many of which were validated experimentally [19].
Furthermore, based on their contribution to the regulation
of gene expression, TFs were roughly classified into six differ-

ent categories, including sequence-specific TFs, general or
nonspecific TFs, chromatin structure factors, chromatin
remodeling factors, histone methyltransferases and Pol3-asso-

ciated factors [20]. Binding of different categories of TF varied
substantially in their contributions to predicting gene expres-
sion; sequence-specific TFs were significantly more predictive
than proteins in other groups, whereas Pol3-associated factors

were significantly less predictive [20].
Many eukaryotic genes are coregulated by multiple TFs in

a cell-type specific manner [21]. Two scenarios could occur in

site-specific TF partners: two TFs bind to neighboring sites
(cobinding) or one TF binds to another TF, which then binds
to DNA (tethered binding). An integrative analysis of 457

ChIP-seq datasets on 119 human TFs identified 151 potential
tethered binding pairs and 104 cobinding sequence-specific
TF pairs. Among them, 27 cobinding pairs had physical inter-

actions and 18 of 151 tethered binding pairs were validated by
the mammalian two-hybrid data [22]. TCF7L2, a TF linked to
a variety of human diseases such as type 2 diabetes and cancer,
repressed transcription when tethered to the genome via

GATA3 in MCF7 cells [23]. The ensemble of TF binding in
a combinatorial fashion forms a regulatory network to specify
the on-and-off states of genes and constitutes the writing dia-

gram for a cell. Multiple expectation maximization (EM) for
motif elicitation (MEME) analysis identified three signifi-
cantly-enriched DNA sequence motifs (HSF1, ESRRA and

CEBPB) at PPARGIA-occupied sites in human HepG2 cells.
The binding relationships among these three motifs, PPARG-
C1A, and three additional known co-regulators (HNF4A,
NR3C1 and NRF2) formed a highly connected network, sug-

gesting complex patterns of interdependent regulation [24]. In
summary, in addition to discovering many novel networks,
highly cell-type-specific regulatory networks that recapitulated

many known regulatory sub-networks were also revealed by
co-association networks of TFs [25].

Integration of genomic parts

Gene regulation at functional elements is governed by inter-
play of nucleosome remodeling, histone modifications and

TF binding (Figure 1). Binding of TFs to regulatory DNA
regions in place of canonical nucleosomes triggers chromatin
remodeling. Such binding and remodeling lead to nuclease
hypersensitivity, which forms an open chromatin environment
and in turn facilitates the interplay of functional elements.

Therefore, integrating analyses of these functional elements
can interpret the gene regulation more accurately.

Binding of regulatory factors to genomic DNA protects the

underlying sequences from cleavage by DNase I, thus leaving
nucleotide-resolution ‘footprints’ [12]. A striking enrichment
of motifs, including known motifs and hundreds of novel evo-

lutionarily-conserved motifs, was detected within footprints in
41 cell types examined. Many of the motifs in footprints dis-
play highly cell type selective occupancy patterns that are sim-
ilar to major developmental and tissue-specific regulators [12].

Highly stereotyped, asymmetrical pattern of DNase I hyper-
sensitivity and H3K4me3 modification was invariant across
cell types at the TSSs, and was used to predict 44,853 putative

novel promoters [12].
Both TF binding and histone modification are predictive of

gene expression levels [26]. They are highly enriched at the TSS

regions and can be predicted accurately by each other [20]. It is
well known that transcription has a profound impact on nucle-
osome occupancy. ENCODE data indicated that TF binding

sites were detected in GC-rich, nucleosome-depleted and
DNase I sensitive regions, which were flanked by well-posi-
tioned nucleosomes. Interestingly, many of these features exhi-
bit cell type specificity. These results from TF-centered

analyses were deposited and visualized in a web-accessible tool
called Factorbook (http://factorbook.org) [22].

Furthermore, the regulatory interactions between TFs and

miRNAs constitute an additional layer of information to
investigate the gene regulation of complexity. Correlating co-
associations of 119 TFs with miRNAs from ENCODE, Ger-

stein et al. found that highly-connected TFs tend to regulate
more miRNAs and to be more regulated by miRNAs as well
[25]. Moreover, correlation between occupancy of CTCF, a

ubiquitously expressed polyfunctional regulator in gene
expression, and DNA methylation was detected using ChIP-
seq and RRBS data sequenced in multiple cell lines including
normal primary cells and immortal lines. DNA methylation

occurring at two critical positions within the CTCF recogni-
tion sequence represses CTCF binding. Unexpectedly, CTCF
binding patterns in normal cells were remarkably different

from those in immortal cells. In immortal cells, a widespread
disruption of CTCF binding was noticed, which was associ-
ated with increased methylation [27].

Three-dimensional space interaction

The spatial organization of chromosomes brings genes and

their regulatory elements, which may be dispersed over many
hundreds of kilobases, in close proximity to facilitate their
communication and further regulate gene expression [28].

These long-range interactions between genomic elements can
be detected using chromosome conformation capture (3C)-
based methods [29]. Using a 3C-carbon copy (5C) approach,

ENCODE comprehensively interrogated interactions between
TSSs and distal elements in 1% of the human genome, repre-
senting 44 ENCODE pilot regions in three cell types
(GM12878, K562 and HeLa-S3) [30]. More than 1000 long-

range interactions were generated in each cell line from 628
TSS-containing restriction fragments and 4535 distal restric-

http://factorbook.org


Figure 1 Multi-dimensional regulation of gene expression

The transcriptional regulation is controlled by complicated interactions between regulatory elements. Hypermethylated CpGs are located

in close chromatin regions, whereas CpGs located in open regions are generally lowly methylated, where DHSs and histone modifications

associated with transcriptional activity are enriched. Within DHSs, DNase I cleavage leaves footprints where TFs bind to protect the

DNA from cleavage by DNase I. SNP occurring at the TF recognition sequence (motif) will affect TF binding occupancy. Furthermore,

distal DHSs harboring disease-associated SNPs can be brought into proximity with a promoter to incorporate TF binding complex to

affect gene function through long range chromosomal interaction. Multiple TFs interact to DNA by two scenarios: TFs bind to

neighboring sites (cobinding), and one TF binds to another that binds to DNA (tethered binding).
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tion fragments. Among them, �60% were observed in only

one of the three cell lines, indicating intricate cell-type-specific
three-dimensional folding of chromatin. Constitutive looping
interactions were significantly enriched for distal fragments
that are bound by CTCF, contain open chromatin and/or con-

tain histones with active modifications. Enhancers that loop to
TSSs are significantly more likely to express enhancer RNAs
than enhancers that do not. Long-range interactions displayed

marked asymmetry with elements located around 120 kb up-
stream of the TSS, revealing an unanticipated directionality
in long-range interactions with TSS. However, an overwhelm-
ing number of interactions (�93%) do not occur between ele-

ments and the nearest TSS. Finally, promoters and distal
elements are engaged in multiple long-range interactions to
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form complex networks with cell-to-cell variation. These in-
sights will be critical for interpreting the regulations of regula-
tory elements with their distally located target genes.

Integration with disease-associated variation

Although GWAS studies have generated a large number
(approximately 10,000 as of April, 2013) of SNPs that were
associated with phenotypes, they do not offer any direct evi-

dence about the biological processes that link the associated
variant to the phenotype. Moreover, 88% of those variants
from GWAS studies fall outside of coding regions and have
been difficult to interpret [31]. Integrating functional elements

generated by ENCODE, expression quantitative trait loci
(eQTL) information and disease-associated SNPs from GWAS
studies, Schaub et al. proposed a systemic approach to identify

a functional SNP for up to 80% of previously-reported GWAS
associations [32]. They further developed a novel database,
RegulomeDB, to guide interpretation of regulatory variants

in the human genome by integrating a large collection of reg-
ulatory information [33]. Maurano et al. demonstrated that
77% (3930) of the disease or trait-associated SNPs lie within
DHSs or are in complete linkage disequilibrium (LD) with

SNPs in a nearby DHS, and 296 of them were assigned a target
promoter [34]. Disease-associated SNPs can directly affect TF
binding. Ni et al. identified dozens of novel SNPs that affect

TF binding de novo and accurately from ChIP-seq data gener-
ated in the ENCODE project, which enabled us to examine al-
lele-specific TF binding in any cell type with ChIP-seq data

available even without pre-existing genotype data from the
HapMap project and the 1000 Genomes Project [35]. These ef-
forts demonstrate which variants have potential or demon-

strated regulatory functions and through which mechanisms
those functions might work.
Conclusion

The transcriptional regulation is controlled by complex inter-
actions between the DNA sequence and transcription factors,

as well as nucleosomes, histone tail modifications and DNA
methylation. Such interactions work complexly and dynami-
cally across different types of cells. ENCODE has provided

us an unprecedented number of functional elements as well
as many novel aspects of gene expression and regulation,
which significantly enhances our understanding of the human
genome and human health and disease. However, some of

the mapping efforts are about halfway to completion, not
to mention that deeper characterization of everything the
genome does is probably only 10% finished [1]. A third

phase is getting under way now and will fill in many of
the blanks of human genome by adding additional factors,
modifications and cell types [1]. Although current assays

can be expanded to capture more TFs in more cell lines, they
provide only a single snapshot of cellular regulatory events
without capturing the dynamic aspects of gene regulation.

The development of new technologies to capture multiple
data types, along with their regulatory dynamics in single
cell, would help to tackle these issues. Identifying how geno-
mic ingredients are combined to carry out complicated func-

tions and interpreting the huge data to understand the range
of human phenotypes from normal developmental processes
are future greater challenges.
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