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Abstract Protein trafficking or protein sorting in eukaryotes is a complicated process and is

carried out based on the information contained in the protein. Many methods reported prediction

of the subcellular location of proteins from sequence information. However, most of these predic-

tion methods use a flat structure or parallel architecture to perform prediction. In this work, we

introduce ensemble classifiers with features that are extracted directly from full length protein

sequences to predict locations in the protein-sorting pathway hierarchically. Sequence driven fea-

tures, sequence mapped features and sequence autocorrelation features were tested with ensemble

learners and their performances were compared. When evaluated by independent data testing,

ensemble based-bagging algorithms with sequence feature composition, transition and distribution

(CTD) successfully classified two datasets with accuracies greater than 90%. We compared our

results with similar published methods, and our method equally performed with the others at

two levels in the secreted pathway. This study shows that the feature CTD extracted from protein

sequences is effective in capturing biological features among compartments in secreted pathways.
Introduction

Eukaryotic cells contain complex compartments called organ-
elles enclosed within membranes. Protein trafficking or protein
sorting is a biological process where newly formed proteins get
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sorted and delivered to various organelles in the intracellular
and secretory pathways [1]. Prediction of these protein locali-

zation sites in the pathways from the full length amino acid
sequence is a complex process, which has not been fully eluci-
dated yet. In 1982, Nishikawa et al. [2] reported that amino
acid composition correlates with localization sites and each

localization site in a cell has a unique set of functions. Hence
protein localization prediction has implications both for the
function of the protein and its possibility of interacting with

other proteins in the same compartment [3,4].
Major protein sorting pathways can be divided hierarchi-

cally into secretory and intracellular types [5,6]. In a secretory

pathway, all non-secretory proteins are delivered to the endo-
plasmic reticulum (ER) and then transported to other related
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locations, which is controlled by ER signal sequences located
in the N-termini. On the other hand, in an intracellular path-
way, proteins with organelle-specific signal sequences are im-

ported into the nucleus or mitochondria, according to their
signal sequence type. The remaining proteins lacking sorting
signals are located in the cytosol [7,8].

The success of computational prediction relies on the
extraction of biological features from the sequence and the
computational technique used [9–13]. A wide variety of meth-
ods have been tried throughout the years in order to predict
the subcellular localization of proteins from full length se-
quence features. Methods reported differ in terms of input
data and the technique employed to make the prediction about
subcellular location. According to studies reported by Naka-
shima and Nishawa [14], intracellular and secretory proteins
differ significantly in their amino acid compositions and in res-
idue pair frequencies. Therefore, in this study simpler and less
expensive methods that can extract features from full length
protein sequence were given priority. The main advantage of
our feature extraction methods over existing techniques is that
features are extracted from the full length protein sequence
based on various coding schemes without referencing external
databases. For computation, we used hierarchical ensemble
learning [15–19] (Figure 1) by mimicking the protein trafficking
phenomenon which is incorporated from the location descrip-
tions provided by the Gene Ontology (GO) Consortium [20]
with the sequence features as input.

Results and discussion

Two basic ensemble based classifiers, bagging and AdaBoost
M1 were trained to classify the location compartment of pro-
teins in the intracellular and secretory pathways using the Wai-

kato environment for knowledge analysis (WEKA) [21]. Two
tests were carried out with two datasets for performance evalu-
ation. These include a 6-fold cross validation test, which means

randomly partitioning the dataset into equally sized training
and test sets, training on 5 sets and testing with the 6th set
and averaging the results, and an independent data test, which
means training on one set and testing with another set by divid-

ing the dataset into two random groups. The performance eval-
uation parameters specificity (Sp), sensitivity (Sn), accuracy
Level 0

Level 1

Level 2

Figure 1 Hierarchical structures of compartments in protein

trafficking

Adopted from [15–19]. Level 0, root of hierarchy; Level 1, first

division; Level 2, second division.
(Acc), Mathew’s correlation coefficient (MCC), positive predic-
tive value (PPV), negative predictive value (NPV) and receiver
operating characteristic (ROC) were calculated at all levels for

comparing our results with the published results.
Tables S1 and S2 show the average of the classifier perfor-

mance parameters obtained from the two datasets at various

levels of the pathway hierarchy in 6-fold cross validation and
independent data test. These results were compared with the
similar work of LOCtree [15] in Table S3. Table S4 shows

the comparison of our classifier performance parameters with
the LocTree2 [16] dataset for 5-fold cross validation.

Comparison with existing methods

Our method provides a hierarchical system for the prediction of
protein subcellular localization with features generated exclu-
sively from the full length sequence without using any server

generated inputs. Similar classification work was reported by
LOCtree [15] and LocTree2 [16]. LOCtree used the amino acid
composition (20 units), composition of the 50 N-terminal resi-

dues (20 units) , amino acid composition from three secondary
structure states and SignalP server [22] outputs as a feature vec-
tor on a support vector machine, whereas LocTree2 used the

profiles created by BLAST-ing [23].
Although the results reported by LOCtree [15] are not di-

rectly comparable to ours in terms of features, selection of data,
sizing of the data, and method of accuracy calculation, PPV,

NPV and MCC reported by our method proved to be better at
Level 0 and Level 1 of the hierarchy in the secreted pathway.
The overall accuracy mentioned in LOCtree [15] is the PPV re-

sult based on the 6-fold cross validation experiments from a sin-
gle dataset. At Level 0, our independent data testing results
based on AdaBoost M1 and bagging reported average accura-

cies above 95% (Table S3) between the intracellular and secre-
tory pathways with four of the sequence features. Bagging
reported accuracy above 91% for classifying proteins between

the secretory and organelle pathways with independent data
testing. Because there is no result published for independent
data tests by LOCtree [15], results obtained by this method can-
not be compared.

For the 6-fold cross validation test (Table S3), our method
reported accuracies above 92% at Level 0 for both bagging
and AdaBoost M1 with an average MCC of 0.87, which was

reported as 0.73 when using the LOCtree method. At Level
1, AdaBoost M1 and bagging reported PPVs above 90% with
MCC above 0.70 while LOCtree reported an MCC of 0.55.

Classifier bagging with sequence feature CTD performed bet-
ter than LOCtree in differentiating the cytoplasm and mito-
chondrial pathways at Level 2.

LocTree2 is developed using a different hierarchical path-

way and hence we could do the testing only for two levels using
a LocTree2 dataset under 5-fold cross validation. Our method
reported accuracies above 88% at Level 0 (Table S4) for all fea-

tures under bagging while LocTree2 reported 90%. For level 1,
bagging with feature vector CTD reported an accuracy of 82%,
which is also comparable to that reported by LocTree2, 83%.

Conclusion

Previous protein localization prediction methods have been

implemented using standard machine learning algorithms with
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parallel architecture as a common practice in computer science
[24–26]. Here novel systems of ensemble learners using hierar-
chical architecture from features extracted directly from full

length protein sequences that can predict localization have
been tested and the results have been compared.

Our testing results at the secretory pathway of hierarchy

show that the prediction accuracy can be significantly im-
proved by using the classifier bagging with feature vector
CTD. The system achieved an overall accuracy above 90%

with this sequence signature using bagging on independent
data tests, suggesting that the native protein localization for
each compartment is imprinted onto the features extracted
from protein sequence. Feature generation methods described

in this paper works independently and no server/external data
reference is required for its extraction. Methods are based on
the composition of amino acid. Additionally, this hierarchical

structure has provided insights into the sorting process, such as
the accurate distinction between the intracellular and secretory
pathways. However, we observed that, as one descends the

hierarchical path, the prediction accuracy progressively de-
creases as the classification task complexity increases. The best
scoring decisions reported are at the top, and the worst are at

the bottom. Thus, hierarchical model classification is unable to
correct a prediction mistake made at the top node.

This study supports the hypothesis reported by Nakashima
and Nishawa [14] that intracellular and secretory proteins dif-

fer significantly in their amino acid compositions. Both classi-
fiers performed well using three sequence features at the top
levels of hierarchy.

In the future, this classification method could be potentially
extended to any level in the hierarchy using these sequence fea-
tures and with the location descriptions provided by the Gene

Ontology Consortium [20]. This method can predict the final
localization of the protein as well as the mechanism underlying
such localization. Our result may aid the development of more

accurate predictors of protein function.
G C A T G G T G C G A A A C T T T G G C T G

Zero skip - c0TG= 4, c0GC=3,  c0AT=1

G C A T G G T G C G A A A C T T T G G C T G

One skip - c1TG =3, c1GC =1, c1AT =1

G C A T G G T G C G A A A C T T T G G C T G

Two skips - c2TG=3, c2GC =1, c2AT =2

Figure 2 Amino acid di-peptide (GC, TG, AT) count with skips in

a sample sequence

c0 indicates count of dipeptides with zero skip, c1 indicates count

of dipeptides with one skip and c2 indicates count of dipeptides

with two skips.
Materials and methods

Dataset construction

Two datasets (Table S5) were compiled for this study, which
are denoted as ASN_G 1756 (Human) and ASN_G 1008
(Eukaryote). ASN_G (Human) is collected from a manually

curated database for the subcellular localizations of proteins
in human [27] and ASN_G (Eukaryote), which is from eSLDB
[17], is a database for eukaryotic organisms. These are the only
two manually curated public databases with experimental

annotations reported in www.psort.org [28] for eukaryotes.
ASN_G (Human) and ASN_G (Eukaryote) is maintained by
the Rost lab of Columbia University Bioinformatics Centre

and the Bologna Biocomputing Group, University of Bologna,
respectively. These experimentally annotated proteins were
finalized by verifying with UniProt (www.uniprot.org, release

2011-02 Sept–Oct) and by selecting the sequences that had a
determined single subcellular location. Entries in the subcellu-
lar location that were annotated as ‘‘putative’’, ‘‘potential’’,
‘‘possible’’ and ‘‘by similarity’’ were eliminated to remove se-

quences with ambiguous and uncertain annotations.
We used the Cluster Database at High Identity with Toler-

ance (CD-HIT-2D) [29] web server to eliminate sequences in
both datasets that displayed a similarity greater than or equal
to 30%. The program (CD-HIT) takes a fasta format sequence
database as input and produces a set of ‘non-redundant’ repre-

sentative sequences as output by removing the highly similar
sequences.

For comparing our results with the LocTree2, we down-

loaded 1682 sequences from the LocTree2 publication site
[16] and generated a dataset with 1677 sequences (Table S7)
after verifying the subcellular localizations with UniProt

(March 2013).

Sequence feature formation

The features extracted from protein full length sequence can be
classified into three groups. The first group consists of se-
quence driven features, which are generated directly from se-
quence through converting the protein sequence into a

numeric sequence by replacing each amino acid with equiva-
lent numeric values, counts, etc. The second group consists
of sequence mapped features, which are generated by mapping

amino acids into sub groups and the third group contains se-
quence autocorrelation features, which are obtained from cal-
culations based on three types of spatial autocorrelation

(Moreau-Broto, Moran and Geary).

Sequence driven features

There are two composition features considered, which include

amino acid dipeptide composition (dipeptide descriptors) and
composition of physico-chemical properties (amino acid in-
dex). Properties of dipeptides are determined by the amino

acids forming the dipeptide. Dipeptide composition, which
gives a fixed pattern length of 400 (20 · 20), encapsulates the
global information about each protein sequence and the order
it contains [30]. For example, in the sample protein sequence

GCATGGTGCGAAACTTTGGCTG, 400 pairs of dipeptide
occurrence frequency with no skips c0, are calculated by count-
ing its presence in the sequence with no gaps. In Figure 2, the

count of c0GC is 3, one skip c1GC is 1 and two skips c2GC is 1.
The dipeptide count, ‘cNxx’, counts pairs with N skips between
them. The feature vector using the dipeptide occurrence fre-

quency count for a protein sequence is represented as three
separate numeric counts of its dipeptide c0, c1 and c2, each
having 400 components. The final feature vector of 1200 com-

http://www.uniprot.org
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ponents is formed by concatenating the corresponding vectors
c0, c1 and c2.

The Amino Acid Index (AAindex -1,2,3) is a database of

numerical indices representing various physico-chemical and
biochemical properties of amino acids and pairs of amino acids
[31]. Physico-chemical properties derived from the AAindex1

database having 544 indices are used to compute the features.
Feature vector having 544 components is represented as {f1 f2
f3 . . . f544} where f1 is the physico-chemical property value for

all residues of the sequence divided by the length of the
sequence.
Sequence mapped features (CTD descriptors)

Structural variation in the R groups of amino acids is con-
sidered as the main factor for its difference in properties.
From side chains we can classify amino acids into four

groups (1) non-polar and neutral, (2) polar and neutral,
(3) acidic and polar, and (4) basic and polar. The 20 amino
acids forming the protein sequence can also be divided into
several groups based on their other properties like (5)

charge, (6) hydrophilicity or hydrophobicity, (7) size, and
(8) functional groups. Twenty amino acids can be mapped
into 1–3 groups by replacing each amino acid code with

its group code. From the mapped sequence, features called
composition, transition and distribution (CTD) can be calcu-
lated. Composition is determined as the number of amino

acids of a particular property divided by total number of
amino acids, whereas transition is determined as the number
of transition from a particular property to different property

divided by (total number of amino acids � 1). Distribution is
the chain length within which the first, 25%, 50%, 75% and
100% of the amino acids of a particular property are
located.

According to the property types, amino acids are divided
into three groups and are marked as numeric indices 1, 2
and 3 (Table S6). Properties whose attributes can be

grouped perfectly into three sets like charge, hydrophobicity,
normalized van der Waals volume, polarity, polarizability,
secondary structure and solvent accessibility are used for this

mapping [32–35]. For example, according to secondary
structure property grouping, the sample protein sequence
HEAMRQLTIFVCYWNSPDDG is coded as ‘‘222222233
33333111111’’. In this example with the property of second-

ary structure, the total count of the coil is 6, the helix is 7
and the strand is 7. Hence the composition is calculated as
6/20, 7/20 and 7/20, where 20 is the total length of the se-

quence. Three numbers of composition descriptors are
formed from three groups.

The transition from class 1 to 2 is the percentage frequency

with which class 1 is followed by class 2 or class 2 is followed
by class 1 in the encoded sequence, likewise the transition from
class 3 to class 1 or class 1 to class 3, etc. For the sample se-

quence, the sum of transition from 2 to 3 and 3 to 2 is 1. Hence
transition = 1/19.

The distribution descriptor describes the distribution of
each property in the sequence. Five distribution descriptors

are formed for each group, including the position percentages
in the sequence for the first residue, 25% of the residues, 50%
of the residues, 75% of the residues and 100% of the residues.

Fifteen distribution descriptors are formed from three groups.
In total 21 CTD descriptors are formed from a sequence.
For this study, CTD calculation is performed for 7 proper-
ties for each protein sequence after dividing each sequence into
three equal segments. In total, 21 · 3 attributes for a sequence

and 441 attributes for 7 properties compose the final feature
vector.

Sequence autocorrelation features (autocorrelation descriptors)

Sequence autocorrelation-based features are based on the To-
bler’s first law of geography – ‘‘everything is related to every-
thing else but nearby things are more related than distant

things’’ [36]. Sequence autocorrelation-based features also as-
sume that ‘‘the disturbances in each area are systematically re-
lated to those in adjacent areas’’ [37]. Spatial autocorrelation is

the correlation of the variable with itself through space. Spatial
autocorrelation measures the degree to which near and distant
things are related, which is positive when nearby things are

similar and negative when they are dissimilar. This concept
helps to analyze the dependency among the features of se-
quences in each location.

Autocorrelation features are calculated based on the distri-

bution of amino acid properties along the sequence. Thirty
nine amino acid indices related to hydrophobicity are used
for calculation after replacing each amino acid with its equiv-

alent normalized index as Pi. Three autocorrelation descriptors
are used as features, including normalized Moreau-Broto auto-
correlation descriptors [38], Moran auto-correlation descrip-

tors [39] and Geary autocorrelation descriptors [40].
The Moreau-Broto autocorrelation descriptor is defined as

MBðdÞ ¼
XN-d

i¼1
PiPiþd where d ¼ 1; 2; 3 upto Max:lag

where d is the lag of the autocorrelation, N is the length of the

sequence, and Pi and Pi+d are the amino acid index value of
the selected property at position i and i + d, respectively.
Max.lag is the maximum value of the lags.

The normalized Moreau-Broto autocorrelation descriptors
are defined as MB(d)/(N � d).

The Moran autocorrelation descriptor is defined as

Moran ðdÞ ¼
1

N-d

PN-d
i¼1ðPi � �PÞðPiþd � �PÞ
1
N

PN
i¼1ðPi � �PÞ2

d ¼ 1; 2; 3 . . . ; 30

�P ¼
PN

i¼1Pi

N

where Pi and Pi+d have the same meaning as above.

The Geary autocorrelation descriptor is defined as

Geary ðdÞ ¼
1

2ðN-dÞ
PN-d

i¼1ðPi � PiþdÞ2

1
N�1
PN

i¼1ðPi � �PÞ2
d ¼ 1; 2; 3 . . . ; 30:

where �P, Pi and Pi+d have the same meaning as above. 3510

attributes from 39 amino acid properties with 30 lags compose
the sequence feature vector for autocorrelation.
Computational techniques used

Among prediction algorithms, ensemble learning is a process
by which multiple models such as classifiers are generated
and combined to improve overall prediction accuracy [41].

Multiple learners (base learners) are trained to solve the same
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problem by averaging over multiple classification models with
different input feature vectors. These ensemble techniques re-
duce the small sample size problem which is critical in biolog-

ical applications. This method reduces the over fitting of data.
The three most popular classifiers based on the ensemble meth-
od, are bagging [42], AdaBoost M1 [43] and Random Forest

[44]. In this study, two methods bagging and AdaBoost were
used to predict protein trafficking at all levels of protein sort-
ing pathway.

Bagging is the name derived from ‘‘bootstrap aggregation’’.
This method uses multiple versions of a training set on differ-
ent models by using the bootstrap (sampling with replace-
ment). The outputs of the models are combined (average or

vote) to create a single output. AdaBoost M1 adopts an adap-
tive sampling by using all instances of each iteration. In bag-
ging, each classifier has the vote of the same strength,

whereas AdaBoost M1 assigns different voting strengths to
classifiers based on their accuracy.

Performance evaluation parameters

The classifier performance evaluation parameters specificity,
sensitivity, accuracy, MCC [45], PPV [46], NPV [46] and

ROC [47] were calculated at all levels as per the below equa-
tions. Specificity (Sp) is determined as (TN)/(TN + FP), where
TN indicates true negative and FP means false positive. Sensi-
tivity is defined as (TP)/(TP + FN), where TP means true po-

sitive and FN means false negative. Accuracy is defined as
(TP + TN)/(TP + TN + FP + FN). PPV and NPV is calcu-
lated as (TP)/(TP + FP) and (TN)/(TN + FN), respectively.

MCC is calculated as TP�TN�FP�FN
sqrtððTPþFNÞ�ðTP�FPÞ�ðTN�FNÞ�ðTN�FPÞÞ.
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