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Abstract Though a relatively young discipline, translational bioinformatics (TBI) has become a key
component of biomedical research in the era of precision medicine. Development of high-throughput
technologies and electronic health records has caused a paradigm shift in both healthcare and
biomedical research. Novel tools and methods are required to convert increasingly voluminous
datasets into information and actionable knowledge. This review provides a definition and contex-
tualization of the term TBI, describes the discipline’s brief history and past accomplishments, as

well as current foci, and concludes with predictions of future directions in the field.

Introduction

Though a relatively young field, translational bioinformatics
has become an important discipline in the era of personalized
and precision medicine. Advances in biological methods and
technologies have opened up a new realm of possible observa-
tions. The invention of the microscope enabled doctors and
researchers to make observations at the cellular level. The
advent of the X-ray, and later of magnetic resonance and other
imaging technologies, enabled visualization of tissues and
organs never before possible. Each of these technological
advances necessitates a companion advance in the methods
and tools used to analyze and interpret the results. With the
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increasingly common use of technologies like DNA and
RNA sequencing, DNA microarrays, and high-throughput
proteomics and metabolomics, comes the need for novel meth-
ods to turn these new types of data into new information and
that new information into new knowledge. That new knowl-
edge, in turn, gives rise to action, providing insights regarding
how to treat disease and ideally how to prevent it in the first
place.

Translational bioinformatics

Defining translational bioinformatics

According to the American Medical Informatics Association
(AMIA), translational bioinformatics (hereafter “TBI”) is
“the development of storage, analytic, and interpretive meth-
ods to optimize the transformation of increasingly voluminous
biomedical data, and genomic data, into proactive, predictive,
preventive, and participatory health” (http://www.amia.org/
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applications-informatics/translational-bioinformatics).  Put
more simply, it is the development of methods to transform
massive amounts of data into health. Dr. Russ Altman from
Stanford University delivers a year-in-review talk at AMIA’s
summit on TBI. In his 2014 presentation he provided the fol-
lowing definition for TBI: “informatics methods that link bio-
logical entities (genes, proteins, and small molecules) to clinical
entities (diseases, symptoms, and drugs)—or vice versa’
(https://dl.dropboxusercontent.com/u/2734365/amia-tbi-14-final.
pdf). Figure 1 gives a visual depiction of the way in which TBI
fits within the bigger picture of biomedical informatics and
transforming data into knowledge [1]. Along the X axis is
the translational spectrum of bench-to-bedside, while the Y
axis from top to bottom represents the central dogma of infor-
matics, transforming data to information and information to
knowledge. Toward the discovery end of the spectrum (the
bench) is bioinformatics, which includes storage, management,
analysis, retrieval, and visualization of biological data, often in
model systems. The discovery end of the spectrum has some
overlap with computational biology, particularly in the context
of systems biology methods. Toward the clinical end of the
spectrum (bedside) is health informatics. TBI fits in the middle
of this space. On the data-to-knowledge spectrum, data collec-
tion and storage are the beginning steps. After that comes data
processing, analysis, and then interpretation, thereby trans-
forming the information that has been gleaned from the data
into actual knowledge, useful in the context of clinical care,
or for further research. In that way the data go from just being
“bits”—1’s and 0’s—to new knowledge and actionable
insights.

Where do we come from? A relatively short past
TBI as a field has a relatively short history. In the year 2000,

the initial drafts of the human genome were released, arguably
necessitating this new field of study (http://web.ornl.gov/sci/
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Figure 1  Translational Bioinformatics in context

The Y axis depicts the “central dogma” of informatics, converting
data to information and information to knowledge. Along the X
axis is the translational spectrum from bench to bedside. Trans-
lational bioinformatics spans the data to knowledge spectrum, and
bridges the gap between bench research and application to human
health. The figure was reproduced from [1] with permission from
Springer.

techresources/Human_Genome/project/clintonl.shtml). In
2002, AMIA held its annual symposium with the name
“Bio*medical Informatics: One Discipline”, meant to recog-
nize and emphasize the spectrum of subdisciplines. In 2006,
the term itself was actually coined by Atul Butte and Rong
Chen at the AMIA annual symposium in a paper entitled
“Finding disease-related genomic experiments within an inter-
national repository: first steps in translational bioinformatics”
[2]. In 2008, AMIA had its first annual AMIA summit on TBI,
chaired by Dr. Butte. Year 2011 saw the first annual TBI Con-
ference in Asia, held in Seoul, Korea. Finally, an online text-
book on TBI was published in 2012 by PLoS Computational
Biology, edited by Maricel Kann. Initially intended to be a tra-
ditional print textbook, this resource was published using an
open source model, making it freely available on the Internet
(http://collections.plos.org/translational-bioinformatics).

What are we? TBI today

A 2014 review article [3] categorized recent themes in the field
of TBI into four major categorizations: (1) clinical “big data”,
or the use of electronic health record (EHR) data for discovery
(genomic and otherwise); (2) genomics and pharmacogenomics
in routine clinical care; (3) omics for drug discovery and repur-
posing; and (4) personal genomic testing, including a number
of ethical, legal, and social issues that arise from such services.

Big data and biomedicine

As technology enables us to take an increasingly comprehen-
sive look across the genome, transcriptome, proteome, efc.,
the resulting datasets are increasingly high-dimensional. This
in turn requires a larger number of samples in order to achieve
the statistical power needed to detect the true signal. The past
decade or so has seen an increasing number of large-scale bio-
repositories intended for clinical and translational research all
over the world. These projects comprise both information and
biospecimens from individual patients, enabling researchers to
reclassify diseases based on underlying molecular pathways,
instead of the macroscopic symptoms that have been relied
on for centuries in defining disease. Examples are listed in
Table 1. These various projects involve different models of
participation, ranging from explicit informed consent to use
of de-identified biospecimens and their associated clinical
information from EHRs (also de-identified). The informed
consent is the most ethically rigorous model, but also the most
expensive. The use of de-identified specimens and data is more
scalable, and financially feasible. However, as complete geno-
mic data are increasingly used, it is impossible to truly de-
identify these data [4]. This raises ethical issues regarding
patient privacy and data sharing. In the United States, legisla-
tion known as the “Common Rule” addresses these issues. In
2015, a notice of proposed rule-making (NPRM, http://www.
hhs.gov/ohrp/humansubjects/regulations/nprmhome.html) was
released to solicit feedback on some major revisions to the
law, which was originally passed in 1991. Much has changed
within biomedical research in the intervening years [5].

In order to accrue the numbers of samples required for the
“big data” discipline that biomedical research is becoming, the
ability to use patient data and samples in research would
be of significant benefit. One major point addressed in the
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Table 1

Large-scale research initiatives integrating human specimens with clinical annotation

Name

Link

Description

Million Veteran Program
Personal Genome Project
MURDOCK Study

UK Biobank

Genomics England

Framingham Heart Study

China Kadoorie Biobank
Kaiser Permanente/UC San
Francisco Research Program on

Genes, Environment, and Health

Google Baseline

US Precision Medicine Cohort

http://www.research.va.gov/mvp/
veterans.cfm
http://www.personalgenomes.org/
http://www.murdock-study.com

http://www.ukbiobank.ac.uk

http://www.genomicsengland.co.uk/
t=)

https://www.framinghamheartstudy.org/

http://www.ckbiobank.org/site/

https://www.dor.kaiser.org/external/
DORExternal/rpgeh/index.aspx

http://www.wsj.com/articles/google-to-
collect-data-to-define-healthy-human-
1406246214"
http://www.nih.gov/precision-medicine-

US Veterans Affairs (VA)-sponsored research program to
partner with veterans to study how genes affect health

Based at Harvard University with an emphasis on open access
sharing of genomic, environmental, and human trait data

A community-based registry and biorepository aimed at
reclassifying disease based on molecular biomarkers
UK-based national health resource aimed at improving the
prevention, diagnosis, and treatment of disease

Company formed to sequence samples in the UK-based
100,000 Genomes Project, focused on rare diseases, cancer,
and infectious disease

A long-term, ongoing study started in 1948, based in
Framingham, Massachusetts. The study is now on its third
generation of participants

Focused on genetic and environmental causes of common
chronic diseases in the Chinese population

A collaborative resource that will link electronic medical
records, behavioral and environmental data, and biospecimens
to examine the genetic and environmental factors that
influence common diseases

Designed to collect numerous different types of clinical and
molecular data to help define what a “healthy” individual
looks like

A United States population-based research cohort that aims to

initiative-cohort-program

The eMERGE Consortium

National Biobank of Korea

Estonian Biobank
biobank

https://emerge.mc.vanderbilt.edu

http://www.nih.go.kr/NIH/eng/contents/
NihEngContentView.jsp?cid = 17881

hl[p: ““\\V\VW'.gCCl’li\’ill“d mu.e¢/e€n/access-

engage a million or more volunteers over many years to
improve health outcomes, fuel new disease treatments, and
catalyze precision medicine

An NIH-funded national research network that combines
DNA biorepositories with EHRs for large-scale, high-
throughput genetic research to enable genomic medicine

A collection of well-annotated, high quality human
biospecimens for distribution to Korean scientists, and to
facilitate international cooperation toward personalized
medicine

An Estonian population-based cohort recruited at random by
physicians. Significant data beyond medical information is
collected: places of birth and living, family history spanning
four generations, educational and occupational history,
physical activity, dietary habits, smoking, and alcohol
consumption, among others

Note: “a database weblink for Google Baseline is not available; the link to a news report about the project is provided instead. eMERGE, electronic

medical records and genomics; EHR, electronic health record.

aforementioned NPRM is the ability for patients to give broad
consent for future use of data and samples, without knowing
the specifics of research studies ahead of time. As we move
toward the learning healthcare system (LHS) model [6] in
which every encounter is an additional data point, explicit
research registries will become less relevant. They will be too
expensive to maintain, and larger numbers of patients/partici-
pants will be available through federated initiatives that allow
a researcher to query across institutions regionally, nationally,
and even internationally. The National Patient-Centered
Clinical Research Network (PCORnet) takes this approach,
enabling clinical outcome research through federated prag-
matic clinical trials. Importantly, this initiative emphasizes
partnership with patients and their advocates, so that they
are empowered as collaborators, with a say in what research
questions matter most [7].

LHS is about moving from evidence-based practice, i.e.,
clinical care decisions based on conscientious use of current

best evidence, to practice-based evidence, i.e., the generation
of evidence through collection of data in the real-world as
opposed to the artificially-controlled environment of random-
ized clinical trials [8]. In recent decades, the biomedical enter-
prise has strived to practice medicine in a way that is supported
by the best possible evidence from randomized clinical trials.
But clinical trials have their own issues. They are expensive,
and they tend to be very different from real life scenarios [9].
Criteria for inclusion in a trial often include the absence of
common comorbidities or use of common medications.
Compliance tends to be high, but the cohort being studied is
often not representative of the target population for the treat-
ment in question. In LHS, translation becomes bi-directional.
Research is used to inform practice, whereas data that are gen-
erated in the course of clinical care can in turn be used for both
hypothesis generation and validation through pragmatic trials.
Data derived from clinical care can thus inform clinical guide-
lines and future practice.
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Secondary use

Secondary use of data refers to data that are created or col-
lected through clinical care. In addition to use in caring for
the patient, these data may also be crucial for operations, qual-
ity improvement, and comparative effectiveness research.
Some assert that the term “secondary use” should give way
to the term “‘continuous use.” They argue against the notion
that data collected at the point of care are solely for clinical
use, and everything else is secondary. We should be maximally
leveraging this valuable information. Nonetheless, there is a
legitimate concern about data quality. Data in the EHR are
often sparse, incomplete, even inaccurate [10]. This makes
these data wholly unsuitable for certain purposes, but still suf-
ficient for others. For instance, Frankovich et al. described a
case in which an adolescent lupus patient was admitted with
a number of complicating factors that put her at risk for
thrombosis [11]. The medical team considered anti-
coagulation, but were concerned about the patient’s risk of
bleeding. No guideline was available for this specific case,
and a survey of colleagues was inconclusive. Through the insti-
tution’s electronic medical record data warehouse, Frankovich
and colleagues were able to look at an “electronic cohort” of
pediatric lupus patients who had been seen over a 5-year per-
iod. Of the 98 patients in the cohort, 10 patients had developed
clots, with higher prevalence in patients with similar complica-
tions as the patient in question. Using this real-time analysis
based on evidence generated in the course of clinical care,
Frankovich and colleagues were able to make an evidence-
based decision to administer anti-coagulants [11]. Subse-
quently, researchers at Stanford University have proposed a
“Green Button” approach to formalize this model of real-
time decision support derived from aggregate patient data
and data capture to help inform future research and clinical
decisions [12].

TBI tends to focus on molecules, newly accessible in high
dimensions based on novel high-throughput technologies.
Phenotyping is a closely-related challenge, more complex than
it might seem. Disease is not binary: even within a very specific
type of cancer, a tumor’s genomic profile may be quite
different among the precise sampling locations and sizes [13].
There are a number of groups focusing on this problem: the
Electronic Medical Records and Genomics (eMERGE)
Network  (http://www.genome.gov/27540473), the NIH
Collaboratory (https://www.nihcollaboratory.org/), PCORnet
(http://www.pcornet.org/), and the MURDOCK Study
(http://murdock-study.com/), among others [14-17]. The
Phenotype KnowledgeBase website (https://phekb.org/) is a
knowledge base of phenotypes, offering a collaborative envi-
ronment to build and validate phenotype definitions. The phe-
notypes are not (yet) computable, but it serves as a resource for
defining patient cohorts in specific disease areas [18]. Riches-
son et al. looked at type 2 diabetes, a phenotype that one might
expect to be fairly straightforward [19]. But defining type 2 dia-
betes mellitus (T2DM) using the International Classification of
Disease version 9 (ICD9) codes, diabetes-related medications,
the presence of abnormal labs, or a combination of those fac-
tors resulted in very different counts for the number of people
diagnosed with T2DM in Duke’s data warehouse [19]. Using
only ICD9 codes gave 18,980 patients, while using medications
yielded 11,800. Using ICD9 codes, medications, and labs all

together yielded 9441 patients. Note that the issue is not just
a matter of semantics and terminology, where if everyone
could agree to a single definition and use the same code, then
the terms would become uniform. For different purposes, dif-
ferent definitions of diabetes may be needed, depending on
whether the use case involves cohort identification or
retrospective analysis. In different cases, one might care more
about minimizing false positives (e.g., retrospective analysis)
or maximizing true positives (e.g., surveillance or prospective
recruitment).

Thousands of papers have been published describing
genome-wide association studies (GWAS), in which researchers
look across the entire genome to find SNPs that are statistically
enriched for a given phenotype (usually a disease) compared
with healthy controls [20]. Researchers at Vanderbilt Univer-
sity turned this approach on its head, developing a method
known as phenome-wide association studies (PheWAS,
https://phewas.mc.vanderbilt.edu/). Instead of looking at the
entire genome, PheWAS evaluates the association between a
set of genetic variants and a wide and diverse range of pheno-
types, diagnoses, traits, and/or outcomes [21]. This analytic
approach asks, for a given variant, do we see an enrichment
of a specific genotype in any of these phenotypes? Figure 2 illus-
trates results using this approach [22]. In standard GWAS anal-
yses, the different color bands at the bottom represent the
different chromosomes. In the case of PheWAS, they are differ-
ent disease areas, e.g., neurologic, cardiovascular, digestive,
and skin. Pendergrass et al. [23] used a PheWAS approach
for the detection of pleiotropic effects, where one gene affects
multiple different phenotypes. They were able to replicate 52
known associations and 26 closely-related ones. They also
found 33 potentially-novel genotype—phenotype associations
with pleiotropic effects, for example the GALNT2 SNP that
had previously been associated with HDL levels among Euro-
pean Americans. Here they detected an association between
GALNT?2 and hypertension phenotypes in African Americans,
as well as serum calcium levels and coronary heart disease phe-
notypes in European Americans.

Another aspect of big data in biomedicine is the use of non-
traditional data sources. These were well illustrated, both liter-
ally and figuratively, in a 2012 paper by Eric Schadt [24]. A
complex and detailed figure (Figure 3) showed various data
types that could be mined for their effects on human health:
weather, air traffic, security, cell phones, and social media
among others. But strikingly to those reading the paper just
a few years later, the list did not include personal activity
trackers, e.g., FitBit, Jawbone, or even the Apple watch. This
omission of such a popular technology today is indicative of
what a fast-moving field this is.

Genomics in clinical care

One sees a number of examples of how genomic data are used
in clinical care in the context of pharmacogenomics [25]. But
molecular data, and genomic data derived from next-
generation sequencing (NGS) in particular, have been used
in a number of other contexts as well. One example took place
at Stanford’s Lucile Packard Children’s Hospital, where a
newborn presented with a condition known as long QT
syndrome. (http://scopeblog.stanford.edu/2014/06/30/when-
ten-days-a-lifetime-rapid-whole-genome-sequencing-helps-criti-
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Figure 2 A PheWAS Manhattan plot for a given SNP

This plot shows the significance of association between SNP rs965513 and 866 different phenotypes. Along the X axis different disease
groups are shown in different colors. This is in contrast to an analogous plot for GWAS in which the X axis would represent the different
chromosomes. The Y axis reflects the P value for each phenotype. Blue and red horizontal lines represent P value of 0.05 and Bonferroni
corrected P value of 5.8 x 1077, respectively. PheWAS, phenome-wide association studies; GWAS, genome-wide association studies. The

figure was reproduced from [22] with permission from Elsevier.

cally-ill-newborn/). In this specific case, the manifestation was
unusually severe—the baby’s heart stopped multiple times in
the hours after its birth. Long QT syndrome can be caused
by mutations in a number of different genes [26]. It is necessary
to know which gene harbors the mutation in order to know
how to treat the condition [26]. In this case, a whole-genome
sequencing (WGS) was performed enabling identification of
a previously-studied mutation, as well as a novel copy number
variation in the 77N gene that would not otherwise have been
detectable through targeted genotyping alone. Moreover, NGS
enabled the answer to be obtained in a matter of hours to days
instead of weeks.

Another example of DNA sequencing in clinical care
involved diagnosis of infectious disease. A 14-year-old boy
with severe combined immunodeficiency (SCID) had been
admitted to the hospital repeatedly. He had headache, fever,
weakness, nausea, and vomiting. His condition continued to
decline to the point where he was put into a medically-
induced coma. A normal diagnostic work up was ‘“‘unreveal-
ing” and the doctors were unable to determine the etiology
of his condition. The patient was enrolled in a research study
for pathogen detection and discovery in hospitalized patients.

The protocol for this study involved performing NGS on the
subject’s spinal fluid. The results included detection of 475
reads corresponding to leptospira infection. Of note, the nor-
mal test for leptospirosis involves detection of the patient’s
antibody response to the infection. In this case, the patient’s
SCID status prevents such a response, so the infection was
not detectable through standard means [27].

Cancer has been one of the most active areas for the trans-
lation of genomic discoveries into changes in clinical care. One
of the biggest players in this space is Foundation Medicine,
which makes the FoundationOne test, a targeted panel that
uses NGS to test all genes known to harbor mutations in solid
tumors. Johnson et al. [28] looked retrospectively at approxi-
mately 100 patients who had undergone FoundationOne,
and found that 83% of them had potentially actionable results
from that test, of which 21% received genotype-directed treat-
ment. Explanations for why the indicated treatment was not
given in 79% of those cases included the decision to use stan-
dard therapy and clinical deterioration. These results indicate
that application of genomic technology has transcended the
research domain. In many cases, the findings are clinically
actionable. Mirroring this fact, it is worth noting that some
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Technological advances have enabled the collection and storage of big data beyond biomedicine, including everything from credit card
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became pervasive in the years that followed. The figure was reproduced from [24] under Creative Commons Attribution license.

medical insurance companies in the United States started to
offer coverage of the FoundationOne test in late 2014
(http://www.clinicalinformaticsnews.com/2014/10/17/foundation-
medicine-wins-insurance-coverage-priority-health.html).

In addition to targeted panels, deep cancer sequencing can
help shed light on drug sensitivity and resistance. Wagle et al.
[29] describe a case of a 57-year-old woman with anaplastic
thyroid cancer. Her specific tumor was initially sensitive to
everolimus, a mammalian target of rapamycin (mTOR) inhibi-
tor. Her doctors were able to sequence the tumor before it
became resistant, revealing a mutation in TSE2, which encodes
a negative regulator of mTOR. Normally mTOR is down-
regulated by TSE2, but the mutation caused TSE2 not to
down-regulate mTOR to a sufficient level. Therefore, everoli-
mus, which inhibits mMTOR, was effective in treating this speci-
fic cancer. Later this patient’s cancer became drug-resistant,
whereupon the newly drug-resistant part of the tumor was
sequenced again. It was discovered that an mTOR mutation
had cause mTOR not to be inhibited by allosteric inhibitors
like everolimus. An allosteric inhibitor binds to the protein
in question somewhere other than on the active site of the
molecule. Knowing the specific cause for the newly-acquired
resistance leads to other treatment options. They were able
to switch to mTOR kinase inhibitors, in order to down-
regulate the pathway through other mechanisms.

Despite these compelling cases, it is worth noting that at
this point, tumor sequencing is the exception in clinical oncol-
ogy, and not one of the routine procedures. Only after ““first
line” treatment has failed are tumors sequenced, and even that
is largely confined to large academic medical centers. It will be
interesting to see if, when, and how that changes.

While blood clotting and cancer are the areas where most
actionable pharmacogenomics findings have been made, a
notable exception is work by Tang and his colleagues [30], in

which they describe the identification of a genotype-based
treatment for T2DM with an alpha,a-adrenergic receptor
antagonist. A specific genetic variant causes over-expression
of the alpha,a-adrenergic receptor, and impaired insulin secre-
tion. They hypothesized that if they could block the over-
expressed receptor, they could increase insulin secretion. The
authors looked at patients with and without the mutation in
question. Those with the mutation showed a dose response
to the drug as measured through levels of insulin. Participants
without the mutation showed no such response. This research
is especially interesting because it goes beyond cancer and
blood thinners, into a chronic disease that is affecting an
increasing portion of the world’s population.

One of the earliest and best known DNA sequencing suc-
cess stories was that of Nic Volker, who at age 2 developed sev-
ere gastro-intestinal issues resembling Crohn’s disease, for
which a diagnosis could not be determined. His story was cov-
ered in the Milwaukee Journal Sentinel in 2011 in a piece that
was later awarded a Pulitzer Prize for explanatory reporting
(http://www.jsonline.com/news/health/111641209.html). After
multiple life-threatening situations and a protracted diagnostic
odyssey, Volker’s genome was sequenced to look for a causal
mutation. Doing so enabled the discovery of a mutation in
the gene X-linked inhibitor of apoptosis (X74P). Equally
important, there existed a known therapeutic intervention for
disorders caused by X/4 P mutations. A progenitor cell trans-
plant was performed and the patient’s condition improved.
Though Nic is not without ongoing health challenges, he cele-
brated his 11th birthday in October, 2015.

Despite the successes described above, there is also reason
for caution regarding use of NGS sequencing in clinical care.
Dewey et al. [31] performed Illumina-based WGS on 12 differ-
ent participants. Confirmatory sequencing was formed on 9 of
those participants by Complete Genomics Inc. Their findings
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included the fact that 10%—19% of inherited disease genes
were not covered to accepted standards for SNP discovery.
For the genotypes that were called, concordance between the
two technologies for previously-described single nucleotide
variants was 99%-100%. However, for insertion and deletion
variants, the concordance rate was only 53%-59%. Approxi-
mately 15% were discordant, and approximately 30% of the
variants could not be called by one technology or the other.
In addition, inter-rater agreement for whether findings should
be followed up clinically was only 0.24 (“fair”) by Fleiss’
kappa metric. Rater agreement was even worse for cardio-
metabolic diseases, with the rate at which the two experts
agreed on the need for clinical follow-up worse than random
in those cases. Notably, the estimated median cost for sequenc-
ing and variant interpretation was about US $15,000, plus the
price of the computing infrastructure and data storage. This
means the cost of interpretation is significantly more than
the proverbial US $1000 genome goal, but is also significantly
less than the US $100,000 or $1 million some had feared [32].

Omics for drug discovery and re-purposing

Much has been said about the protracted process involved in
getting a drug through the FDA approval pipeline. Estimates
are that the process can take on average 12 years between
lead identification and FDA approval. This makes the pro-
spect of drug repurposing an appealing one. Drug repurpos-
ing refers to taking an existing, FDA-approved compound
and using it to treat a disease or condition other than the
one for which it was originally intended [33]. In the past,
inspiration for this type of “off label use” has been largely
serendipitous. For example, Viagra was initially aimed at
treating heart disease, and turned out to be useful for erectile
dysfunction [34]. By using a pre-approved compound, early
phase clinical trials can be avoided, which can save significant
time and money.

Computational approaches to drug repurposing may take a
number of different forms as described in two recent reviews
[33,35]. One is to look for molecular signatures in disease
and compare those to signatures observed in cells, animal
models, or people who have been treated with different drugs.
If anti-correlated signatures can be identified between diseases
and drugs, administration of that drug for that disease may
help cure the condition, or at least to alleviate the symptoms.
One of the prominent early examples of a computational
approach to drug repositioning was the Broad Institute’s Con-
nectivity Map (CMap) [36]. The authors identified gene expres-
sion signatures for disease states and perturbation by small
molecules and then compared those signatures. They made
the data available as a resource intended to enable the identi-
fication of functional connections between drugs, genes, and
diseases. Another example is work by Jahchan et al. [37], in
which they identified anti-depressants as potential inhibitors
of lung cancer. The authors looked at numerous disease and
drug profiles and found an anti-correlation between gene
expression seen after administration of anti-depressants and
the pattern of expression observed in small cell lung cancer.
They next transplanted these types of tumors into mice
and found that with the drug, those tumors either shrunk or
didn’t even grow. They also used indigenous tumors in the
mouse model for this type of cancer and found that the

anti-depressant had promising results on those tumors and
for other endocrine tumors as well. They were able to start a
clinical trial, much faster than would have been possible by
chance or by various other traditional methods, though unfor-
tunately that trial was ultimately terminated for lack of
efficacy. A similar approach was used by Sirota et al. to iden-
tify the anti-ulcer drug cimetidine as a candidate agent to treat
lung adenocarcinoma and validate this off-label usage in vivo
using an animal model of the lung cancer [38].

An alternative to the largely computational methods
described above is an experimental approach to drug reposi-
tioning. For example, Nygren et al. screened 1600 known com-
pounds against 2 different colon cancer cell lines [39]. They
used Connectivity Map data to further evaluate their findings,
and identified mebendazole (MBZ) as having potential thera-
peutic effect in colon cancer. Finally, Zhu et al. mined data
from PharmGKB [40] and leveraged the web ontology lan-
guage (OWL) to perform semantic inference. They were able
to identify potential novel uses and adverse effects of approved
breast cancer drugs [41].

Personalized genomic testing

The year 2008 saw the founding of several companies that
offered direct-to-consumer (DTC) genetic testing, reporting
on a variety of genes for both health and recreational pur-
poses. As of 2016, 23andMe was the last major player standing
in the United States, with other companies having been
acquired and/or changing their business models.

DTC genetic testing raises a number of interesting ethical,
legal, and social issues. For several years, there was an open
question as to whether or not these tests should be subject to
government regulation. In November 2013, the US FDA
ordered 23andMe to stop advertising and offering their
health-related information services. The FDA considered these
tests to be “medical devices” and as such to require formal test-
ing and FDA approval for each test. In February 2015, it was
announced that the FDA had approved 23andMe’s application
for a test for Bloom syndrome (http://www.fda.gov/News
Events/Newsroom/PressAnnouncements/UCM435003), and
in October 2015 it was announced that the company would once
again be offering health information in the form of carrier status
for 36 genes [42]. Note that a 23andMe customer is able to down-
load his or her raw genomic data and to use information from
other websites to interpret the results, including Promethease
(http://www.snpedia.com/index.php/Promethease), Geneticge-
nie (http://geneticgenie.org/), openSNP (https://opensnp.org/),
and Interpretome (http://interpretome.com/) for health-
related associations.

Another important question raised by DTC genetic testing
include whether the consumers are ready for this information.
Traditionally, patients receive troubling health-related infor-
mation in a face-to-face conversation with their doctor. There
is some concern that patients are not competent or well-
equipped to receive potentially distressing news through an
Internet link [43]. To help mitigate this concern, 23andMe
“locks” certain results, making them accessible only if the user
clicks through an additional link, indicating they truly want to
know.

What about the healthcare providers? Are they ready to
incorporate genomic data, patient-supplied or otherwise,
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into treatment decisions? In a case described in 2012, a
35-year-old woman informed her fertility care provider that
her 23andMe results revealed a relatively common (1 in 100)
blood clotting mutation [44]. She was surprised when her pro-
vider responded by saying that, were she to become pregnant,
she would need to be put on an injectable anti-coagulant
throughout her pregnancy. With no family history of blood
clotting disorders, nor personal history of recurrent miscar-
riage, this mutation would have gone untested, had it not been
for the DTC results. However, when this patient did become
pregnant and consulted with a specialist whose expertise was
in blood clotting disorders in pregnant women, the anti-
coagulant was indeed prescribed. Note that the guidelines have
since changed, and the prophylactic treatment for clotting
would not be prescribed today. It is also worth noting that
in the United States, the Genetic Information Nondiscrimina-
tion Act (GINA) prevents employers and health insurers from
discriminating against anyone based on their genetic informa-
tion. It does not, however, cover long-term care, disability, or
life insurance. Therefore when this woman applied for life
insurance after her twins were born, the rate she was offered
was more than twice what it would have been had she not
known about the blood clotting mutation and been treated
prophylactically for the increased risk it conferred [Tenen-
baum and colleagues, unpublished data].

A more positive example of where genetic testing is helping
patients is a case presented at the American Neurological
Association conference in 2014. A patient had a history of
Alzheimer’s disease on her mother’s side of the family. She
did not know if she was a carrier, nor did she want to know.
But she wanted to ensure that she did not pass that mutation
to her future children. Preimplantation genetic diagnosis
(PGD) testing enabled her doctors to select embryos that did
not have that Alzheimer’s disease gene mutation. The patient
herself was never tested, nor was she informed how many
(if any) of the embryos contained the mutation. (http://www.
wsj.com/articles/genetic-testing-for-alzheimerswithout-revealing-
the-results-1413221509).

Privacy

A 2013 Science paper from the Erlich lab at Massachusetts
Institute of Technology (MIT) generated much controversy
when the authors demonstrated the ability to re-identify a
number of individuals using publicly-available genealogy data-
bases and genetic data [45]. The researchers used the short tan-
dem repeat (STR) data from the Y chromosome, year of birth,
and state of residence, combined with information from public
genealogy websites to identify individuals. They did this by
starting with publicly-available STRs and entering them on
genealogy websites to identify matches. Note that their accu-
racy was not 100%. Though they were able to identify Craig
Venter based on his genomic data, they failed to identify sev-
eral other individuals, particularly those with more common
last names. Overall, they reported a 12% success rate in recov-
ering surnames of US males. They were also able to recon-
struct Utah family pedigrees based on 1000 Genomes Project
data and other publicly-available sources. Due to a number
of cultural and historical factors, families in Utah tend to be
large and genealogically well-documented, and an unusually
high proportion of the Utah population has participated in

scientific studies involving genomic data. It is worth noting
that the researchers did not release any names that were not
previously public, nor did they use the information for any
nefarious purposes. Their primary interest was to demonstrate
that such re-identification was possible. Interestingly, and
somewhat surprisingly, the terms of use for the datasets did
not prohibit re-identification.

Where are we going? The road ahead

Though we cannot know what the future holds, we can make
some informed guesses based on events to date. The author
believes that in the not-too-distant future, newborns will be
sequenced at birth, just as we currently test for a more limited
number of genetic issues. With the cost of sequencing a gen-
ome still at or above US $1000, such widespread sequencing
is not yet realistic. But researchers are already performing pilot
studies in this area, to better understand and anticipate the
issues that are likely to arise. As an example, the MedSeq pro-
ject at Harvard University is a study designed both to integrate
WGS into clinical care and to assess the impact of doing so
[46]. In addition, the Geisinger Health System has partnered
with Regeneron on a project known as MyCode, which aims
to sequence the exomes of 250,000 patients in the Geisinger
system. In late 2015, the project began returning results to
patients for 76 genes (https://www.genomeweb.com/sequenc-
ing-technology/geisinger-begins-returning-clinically-actionable-
exome-sequencing-results).

Even clearer is that tumor sequencing will be performed as
part of standard of care for cancer. Currently sequencing is
performed at certain tertiary and quaternary care facilities,
particularly for metastatic tumors. As more is discovered
about the various dysregulated pathways in cancer, and about
the therapeutic implications for different genetic variations,
the blunt mallet that is chemotherapy will be phased out in
favor of far more precise and targeted therapies.

The microbiome has seen increasing attention in recent
years, a trend that will certainly continue for the foreseeable
future. It is not surprising that the make-up of the microbial
communities that likely outnumber the cells of the human
body [47] can have significant impact on human health, partic-
ularly in metabolic and gastro-intestinal disease. The more
surprising trend is the connection between the microbiome
and other, more unexpected phenotypes, for example, anxiety,
depression, and autism [48,49]. This is likely to continue as this
area of research continues to grow.

We will continue to see an increase in analyses of different
“omic” types. Genomics has been by far the most popular area
of focus to date. As technologies mature, we will continue to
see biomarker discovery in proteomics, metabolomics, and
other as-yet-unnamed “omic” modalities. We will also see
increasingly integrated analysis, taking a systems approach
to human biology where to date systems biology has been
focused on model organisms, often single cellular ones, in
which the system can be methodologically, and ethically, per-
turbed. Early examples of integrative, multi-modal analysis
include the integration of microRNAs and transcription fac-
tors to determine regulatory networks underlying coronary
artery disease [50], integrative analysis of genomics and tran-
scriptomics to look at cardiovascular disease [51], and the


http://www.wsj.com/articles/genetic-testing-for-alzheimerswithout-revealing-the-results-1413221509
http://www.wsj.com/articles/genetic-testing-for-alzheimerswithout-revealing-the-results-1413221509
http://www.wsj.com/articles/genetic-testing-for-alzheimerswithout-revealing-the-results-1413221509
https://www.genomeweb.com/sequencing-technology/geisinger-begins-returning-clinically-actionable-exome-sequencing-results
https://www.genomeweb.com/sequencing-technology/geisinger-begins-returning-clinically-actionable-exome-sequencing-results
https://www.genomeweb.com/sequencing-technology/geisinger-begins-returning-clinically-actionable-exome-sequencing-results

Tenenbaum JD | TBI: Past, Present, and Future 39

use of metabolomics data with GWAS to elucidate molecular
pathways [52].

The coming decade will see more biomarker-based research
and insights into mental health disorders. To date, cancer and
cardiology have received significant attention, to great advan-
tage. But those disease areas are, by comparison, relatively easy
to identify, to distinguish, and even to quantify. This is not the
case for neurological and psychiatric disorders. Mental health
is an area where diagnosis, and phenotyping more generally,
is as much art as science. It is an area that poses enormous
burdens on society, both financial and quality-of-life related,
and is also ripe for a deeper, more physiologically-based under-
standing [53]. Even if therapy is still a long way away, having
some concrete, quantifiable biomarkers, by which we could
classify conditions such as depression, bi-polar disorder, and
manic-depressive tendencies, would be a great leap.

Finally, major changes will be required to effectively and
efficiently train the workforce of tomorrow. These changes will
not simply entail adding a few quantitative courses into med-
ical and graduate level biomedical research training, though
that too will be important. The need for more informatics pro-
fessionals is being addressed to some extent by the significant
number of training programs being created at multiple differ-
ent levels, from certificates to master’s to PhD programs. In
addition to the informatics workforce, more genetic counselors
are needed. It is estimated that there are only approximately
3500 genetic counselors in the entire United States (http://
www.abgc.net/About ABGC/GeneticCounselors.asp). As
genomic sequencing becomes increasingly widespread, this
number needs to increase both in the US and around the globe.
Genetic counselors today may be compared to pathologists in
the early days of the microscope, or radiologists in the early
days of X-rays. The respective numbers will never need to be
equal—except in the case of cancer, the genome need only be
sequenced once in a person’s lifetime. Moreover, pathologists
and radiologists detect and describe what is. Even as we learn
more about our genomes, they primarily tell us what is more or
less likely to be. Still, many genetic findings are already action-
able today, and this number will continue to increase.

There are two areas where we need to do better, but I am
less optimistic that we will see real progress in the next decade
or so. The first is in adoption of data standards. We need
better resources for understanding, navigating, and using exist-
ing standards [54]. We also need more impactful incentives for
adoption, and disincentives for failure to do so. In the current
landscape, standards are too difficult to identify and adopt,
and the benefit of doing so tends to be realized by people other
than those doing the hard work.

Lastly, we need to establish more inter-interdisciplinary
coordination and collaboration. Perhaps meta-interdisciplinary
isa better term. As biomedical informaticians, we are by definition
interdisciplinary, including training and perspectives from medi-
cine, biology, and computer science. But there are a large number
of different communities around the world who are working on
these problems, talking mostly among themselves. The various
professional societies, even the interdisciplinary ones, have their
respective meetings. There is some cross pollination, and some
overlap in who attends the respective events but still not enough.
There could be so much more, and we could make significant
progress, reduce redundancy, and increase return on investment
for research funding if these groups could be more consciously
and proactively in sync.

Conclusion

In summary, we are entering a new era in data-driven health
care. Translational bioinformatics methods continue to make
an actual difference in patients’ lives. The infrastructure, infor-
mation technology, policy, and culture need to catch up with
some of the technological advances. For researchers working
at the cutting edge of translational bioinformatics, opportuni-
ties abound, and the future looks bright.
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