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Abstract

MicroRNAs (miRNAs) are approximately 22-nucleotide-long non-coding RNAs that are important regulators of gene expression in
eukaryotes. miRNAs are first transcribed as long primary transcripts, which then undergo a series of processing steps to produce the
single-stranded mature miRNAs. This article reviews our current knowledge of the mechanism and regulation of mammalian miRNA
expression and points out areas of research that may enhance our understanding of how the specificity and efficiency of miRNA pro-
duction is controlled in vivo.
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The big picture: microRNAs as RNAs

MicroRNAs (miRNAs) are unique due to their small size,
which is approximately 22-nucleotide (nt)-long; but as
RNAs, they are still governed by the same mechanisms that
apply to all the other RNAs in a cell. There are two well
established principles that adeptly explain many findings
regarding miRNA biogenesis, as detailed later, and, some-
times, regarding miRNA function as well.

The first principle is that most RNAs undergo process-
ing before maturation. For example, ribosomal RNAs
(rRNAs) are produced by cropping of their primary tran-
scripts and contain many nucleotide modifications, and
eukaryotic messenger RNAs (mRNAs) undergo 50 and 30

modifications as well as splicing. In fact, the only known
class of RNAs in nature that forgo processing in general
are mRNAs in bacteria. It is natural, therefore, that miR-
NA production also involves processing, which is carried
out by proteins and enzymes with specialized activities.

The second principle is that cellular RNAs associate
constantly with proteins, which can regulate RNA tran-
scription, processing, localization, function and/or
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degradation. There are hundreds of human proteins with
recognizable RNA-binding motifs, and the actual number
of RNA-binding proteins in vivo is likely much higher. Fur-
thermore, additional proteins may be recruited to RNAs via
interaction with RNA-binding proteins. Not surprisingly, a
number of proteins have been identified that impact the
processing or function of specific miRNAs. Nonetheless,
because these proteins are quite often promiscuous, it is
not trivial to ascertain the specific mechanism and function
of such proteins in the miRNA pathway in vivo.
The production of mammalian miRNAs

Complex genomes encode hundreds of miRNA genes; e.g.,
the human genome has over 1000 miRNA genes as catego-
rized by miRBase [1]. miRNA genes are transcribed by
RNA polymerase II (Pol II), or occasionally RNA polymer-
ase III, to produce the primary miRNA transcripts (pri-
miRNAs) [2]. As a result, pri-miRNAs are long and may
contain 50 and 30 modifications identical to those present in
mRNAs or pre-mRNAs. Indeed, many miRNA-coding
sequences are located within or overlap with annotated
genes for mRNAs or other RNAs, which are often referred
to as the host genes for the miRNAs. However, miRNA
cademy of Sciences and Genetics Society of China. Published by Elsevier
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genes are not well defined experimentally and pri-miRNAs
are not as extensively characterized as other transcripts such
as mRNAs. When DNA sequence coding for a mature
miRNA is found situated within or near a known gene, it
is often assumed that transcription of the known gene (host
gene) produces a transcript that ultimately gives rise to the
miRNA. Nevertheless, it is possible that the miRNA has
its own promoter that has nothing to do with the “host”
gene, or that the known host transcript(s) is just one of
two or more possible pri-miRNAs that produce the same
miRNA. There are also instances whereby miRNAs appear
to form their independent transcription units, although it
remains possible that they share transcripts with other genes
as well.

Mammalian miRNAs can be divided into two broad
classes, canonical and non-canonical, based on how the
pri-miRNAs are processed leading to the production of
mature miRNAs. In the canonical pathway (Figure 1), a
pri-miRNA is cleaved by Drosha bound by its regulatory
subunit DGCR8, to liberate a hairpin structured precursor,
or pre-miRNA, of �60–70 nucleotides (nt) in the nucleus
[3–7]. The pre-miRNA often contains a 2-nt 30 overhang,
as a result of Drosha’s RNase III activity, and is exported
to the cytoplasm by Exportin5 (Exp5) associated with its
Ran cofactor coupled to GTP [8–10]. In the cytoplasm,
GTP is replaced by GDP, inducing Exp5 to releases its
pre-miRNA cargo. The pre-miRNA is then cleaved by
another RNase, Dicer, to produce a miRNA duplex inter-
Figure 1 The canonical miRNA biogenesis pathway in animal cells

See text for explanations.
mediate of �22 basepairs [11–16]. An Argonaute (Ago)
protein binds the duplex and incorporates the mature, sin-
gle-stranded miRNA into the Ago:RNA complex, while
the other strand in the original duplex is discarded [17–
19]. Which strand is retained depends on the relative ther-
modynamic stability of the two ends of the duplex interme-
diate [20,21]. Other RNA- and Dicer-binding proteins,
such as TRBP and PACT, may facilitate the production
of miRNA duplexes and/or the transfer of mature
miRNAs to Ago proteins [22–28].

For non-canonical miRNAs, their processing does not
require all of the protein factors mentioned above. For
example, pre-miRNAs of mirtron genes are produced by
splicing, not by Drosha cleavage [29–32]. Pre-miR-451 is
cleaved by Ago2, bypassing Dicer [33,34]. Certain pri-miR-
NAs are small hairpin RNAs that probably serve as pre-
miRNAs and Dicer substrates directly [35]. Such RNAs
may also be defined as the endogenous small interfering
RNAs (siRNAs). Canonical and non-canonical miRNAs
can be distinguished by changes in their expression when
a certain miRNA processing factor is knocked down or
knocked out. Loss of Drosha, DGCR8 or Dicer should
greatly reduce the expression of canonical miRNAs, while
the non-canonical miRNAs would have variable responses
depending on individual proteins [33,35]. Most �22-nt long
RNA species in mammals are canonical miRNAs [35]. It is
unclear whether canonical miRNA genes outnumber non-
canonical miRNA genes, as more and more miRNAs with
low abundance are being identified by deep-sequencing
experiments and deposited to miRBase, although how
these RNAs are processed has rarely been examined.

RNA editing can introduce further variations in miRNAs.
RNA adenosine deaminases convert adenosine into inosine
residues that can form basepairs with cytosines or uracils
[36–38]. Pri-miRNA, pre-miRNA and mature miRNA
sequences might be modified by the deaminases, which poten-
tially impact miRNA processing and target recognition.

What determines how fast and when a mammalian
miRNA is degraded is poorly understood. A mammalian
RNase called MCPIP1 digests pre-miRNAs to block the
Dicer processing step [39]. Once made, most miRNAs are
believed to be stable, although the half-lives of miRNAs
vary as a result of intrinsic stability or treatments [40–
42]. It is unclear whether a mature miRNA can be stripped
away from its Ago partner for degradation, or whether the
decay of a miRNA must be coupled to that of the Ago pro-
tein. miRNAs also undergo tailing and trimming at their 30

end [43,44]. Such modifications are presumably coupled to
miRNA function and degradation, although their signifi-
cance in mammalian systems remains to be determined.

Interactions between the universal miRNA processing factors

and miRNA transcripts

Biochemical and structural studies have provided signifi-
cant insights into how various miRNA transcripts are rec-
ognized by Drosha, Exp5, Dicer and Ago proteins. The
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Drosha/DGCR8 holoenzyme (Drosha in short) recognizes
an extended hairpin structure in a pri-miRNA. Preferably,
the structure contains a large terminal loop (>10 nt), a
mostly double-stranded RNA moiety of � three helical
turns long, and flanking single-stranded RNA [45–47]
(Figure 1). Structures of several putative RNA-binding
domains in Drosha have been solved [48,49], although it
remains unknown how they specify pri-miRNAs. Deter-
mining the structure of an active Drosha complexed with
a substrate will be necessary to understand the mechanism
of pri-miRNA recognition and cleavage.

Exp5 is a member of the karyopherin family, which medi-
ates macromolecular nucleocytoplasmic transport, and is
similar in structure to other karyopherins [50] Exp5 cargoes
are minihelix-containing RNAs with a short 30 overhang
[51], such as the human Y1 RNA, adenovirus VA1 RNA,
and pre-miRNAs. In addition to mediating pre-miRNA
export, Exp5 further protects RNAs from degradation
[52]. These properties are explained by the extensive interac-
tions between human Exp5 and the duplex and 30 overhang
of human pre-miR-30a in a crystal structure [50].

The structure of a simple, Giardia Dicer has been deter-
mined [53]. Giardia Dicer has a PAZ domain that preferen-
tially binds the single-stranded 30 ends of double-stranded
RNAs [54], and as a result, Dicer acts as a molecular ruler
to cleave the RNAs at a set distance from one end. In more
complex organisms such as flies and humans, Dicer has a
pocket around the PAZ domain that binds the 50 end of RNAs
[55]. It is probable that Dicer coordinately recognizes the end
structure formed by both the 50 and 30 ends of a pre-miRNA.
In addition, the duplex region and the terminal loop of a pre-
miRNA modulate Dicer activity [56]. Accessory Dicer cofac-
tors such as TRBP appear to enhance Dicer activity without
significantly impacting its substrate specificity [57,58].

A number of Ago proteins have been studied by X-ray
crystallography. Ago proteins consist of four globular
domains: the amino-terminal N domain, PIWI, PAZ and
MID domains [59]. The PIWI domain folds like an RNase
H, explaining the potential endonuclease activity [60]. The
PAZ domain, like that in Dicer, binds the 30 end, while the
MID domain binds the 50 monophosphate of a small RNA
such as a miRNA [61–64]. In perhaps the only instance
whereby a universal miRNA processing factor interacts with
RNA in a nucleotide-dependent manner, the MID domain
exhibits preferences for certain residues; e.g., human Ago2
binds UMP and AMP much tighter than CMP and GMP
[62]. This finding correlates with the fact that human miR-
NAs often have 50 uridine residues. The binding of a miRNA
protects human Ago2 from proteolytic cleavage, i.e.,
enhances the structural stability of the protein [64].

Regulating the expression of specific miRNAs

miRNA expression levels vary spatially and temporally
in vivo and alter in response to internal and external signals.
In addition, miRNA dysregulation is often associated with
disease states such as cancers. Once a miRNA is produced,
it presumably associates with an Ago protein to regulate the
expression of target genes downstream. Hence, the presence
of a miRNA implies its activity. Consequently, the regula-
tion of miRNA expression is an active area of research.
As in the case of mRNA expression, a number of transcrip-
tion factors have been identified that stimulate or inhibit the
transcription of specific miRNA genes, either constitutively
or under specific conditions. An example is the mammalian
miR-34a/b/c genes, which are transcriptionally activated by
p53, a widely expressed and inducible transcription factor
as well as a master tumor suppressor. The regulation of
miR-34 expression by p53 places the miRNAs under the
p53 signaling pathways that have major implications in nor-
mal physiological processes as well as tumorigenesis [65–
69]. More examples of transcription factors for miRNA
genes are categorized in another review [70].

The levels of pri-miRNAs or pre-miRNAs do not
always correlate with those of the mature miRNAs (e.g.,
[71–73]), suggesting additional post-transcriptional regula-
tion. Several RNA-binding proteins have been reported to
control the processing of specific miRNAs. The most thor-
oughly characterized example is Lin-28 and its close homo-
log, Lin-28B, which inhibit let-7 maturation by binding to
the terminal loop region to inhibit pri-miRNA cleavage by
Drosha, to inhibit pre-miRNA cleavage by Dicer and/or to
induce the modification and degradation of let-7 tran-
scripts [74–79]. Interestingly, Lin-28 and Lin-28B have an
exclusive expression pattern in human cells and inhibit
let-7 biogenesis through different mechanisms due to their
diverse subcellular localization [80]. Lin-28 or Lin-28B is
often overexpressed in several human cancers, consistent
with the tumor suppressing function of let-7 [80].

hnRNP A1, a common RNA-binding protein, enhances
the processing of miR-18a and perhaps other miRNAs as
well, by inducing conformational changes in the pri-miR-
NAs to favor Drosha cleavage [81,82]. The KH-type splic-
ing regulatory protein can activate the maturation of
numerous miRNAs such as let-7 and miR-155, by facilitat-
ing Drosha and Dicer recruitment to the miRNA sub-
strates [83,84]. Other proteins that have been implicating
in specific miRNA processing include the p72 and p68
RNA helicases, SMAD, p53, the estrogen receptor, Ars2
and SF2/ASF [85–90]. Compared to the Lin-28/B example,
these proteins are recruited to RNA via diverse mecha-
nisms and have a broader range of substrates. Because
some of these proteins are known to have many mRNA
ligands or interact with many proteins, it is not surprising
that they would associate with certain miRNA transcripts.
With relatively weak interactions with miRNA or miRNA
processing enzymes, however, whether their mechanisms
and effects on miRNA processing extend definitively
beyond their chaperone-like properties remains to be seen.

Regulating miRNAs, globally and specifically

Some miRNAs are highly tissue-specific, such as miR-1 in
muscles and miR-122 in the liver, while many miRNAs are
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largely ubiquitously expressed, albeit at different levels
in vivo. Imagine one could sample miRNA expression in
every cell at all of its developmental times in the body of
an organism, one would find that miRNAs differ in their
expression in individual cells, at specific time points, and
as a whole in the organism [38,91]. Why miRNAs differ
in their relative expression is an issue that has been mostly
overlooked. An analogous question can be posed for many
fundamental issues in biology: the expression of mRNAs
and proteins, levels of protein modifications, etc. Although
transcriptional activity is commonly assumed to play a
deciding role in determining the overall expression pattern
of miRNAs, the direct evidence is lacking. The identifica-
tion of specific transcription factors for individual miRNAs
in itself does not address the question of why a particular
miRNA is more or less abundant than another.

A simple test of the contribution of transcription to glo-
bal miRNA expression is to examine the correlation
between cellular miRNA levels and the occupancy of Pol
II on miRNA genes, based on CHIP-seq experiments.
Because CHIP-seq experiments sample only partial Pol II
occupancy, a less straightforward alternative is to use
mRNA profiling data from RNA-seq or microarray stud-
ies. We have performed such analyses in a number of
human cell lines using publicly-deposited GEO datasets
and obtained variable results. As shown in Table 1, Pol
II occupancy and host gene mRNA expression positively
correlate with mature miRNA expression in K562 cells.
The same is true in HepG2 and human embryonic stem cells
(data not shown). On the other hand, HeLa (Table 1) and
293 cells (data not shown) do not exhibit such a significant
correlation. Even when a clear correlation exists, the corre-
lation coefficient is relatively small (�0.3, Table 1). These
results suggest that the data available contain a significant
amount of noise and/or that transcription shapes global
miRNA expression only modestly or in a complex manner.

The other mechanism that could regulate global miRNA
expression is the miRNA processing pathway. Expression
changes (e.g., reductions) of the canonical miRNA
processing factors have been reported in certain human
conditions, resulting in a loss of miRNAs [93]. Drosha
Table 1 Correlation between miRNA expression and Pol II occupancy or mRN

K562

Range (kb) Pol II mRNA

n q P n q

1 124 0.12 0.17 244 0.33
5 187 0.13 0.07 292 0.32

10 227 0.19 0.003 327 0.28
20 284 0.23 *** 399 0.27

Note: The expression of a miRNA is defined as the sum of the expression of the
miRNA sequences, ranging from 1, 5, 10, and 20 kb at both ends, according t
within the indicated range of genomic DNA; mRNA: expression of mRNAs
number of the overlapping genes in the miRNA expression dataset and Pol II o
these datasets); q: Spearman rank correlation coefficient; P: P value calculated
correlation in human embryonic stem cells (hESCs), HepG2 and HEK293 cells.
*** P < 0.0001.
and Dicer do not cleave their substrates precisely, leading
to the generation of multiple miRNA isoforms from a
single pri-miRNA, thereby increasing the complexity of
miRNA biogenesis and function [38,94]. More impor-
tantly, however, there are two general considerations or
problems regarding miRNA biogenesis. First, a haploid
human genome has three billion basepairs of DNA, and
assuming that only 50% in one strand is transcribed at
any time or any place in a human body, we will have 1.5
billion nt of RNAs. If any 150-nt-long RNA is subject to
secondary structure prediction, it almost certainly contains
at least a stem-loop structure. In other words, the human
transcriptome encodes likely millions of hairpin elements,
while the miRBase currently documents only �1000
human miRNA genes. So the miRNA processing
machinery must discriminate against a vast majority of
hairpin-containing structures, with potential help from
other mechanisms. Secondly, these �1000 human miRNA
genes produce transcripts with diverse structures that are
unlike to interact with the miRNA processing machinery
identically. In other words, there are both a challenge
and an opportunity to ensure the specificity and efficiency
of miRNA production. A key mechanism is likely through
Drosha action.

Drosha initiates the irreversible pri-miRNA cleavage, so
it may not only differentiate whether a transcript encodes a
miRNA or not, but also dictate how much a mature
miRNA is ultimately produced by controlling how effi-
ciently a pri-miRNA is cleaved. It has indeed been shown
that Drosha cleaves hundreds of human pri-miRNAs dif-
ferentially, at least in vitro, which positively and signifi-
cantly correlates with the expression levels of mature
miRNAs in vivo [95]. Certain secondary structures in pri-
miRNAs, e.g., a flexible terminal loop region and flanking
single-stranded RNAs, predicts how well a pri-miRNA is
cleaved and how well the mature miRNA is expressed in
humans [95]. Obviously, such structural requirements likely
preclude most cellular hairpin-containing RNAs from
entering the miRNA processing pathway. There are
Drosha-independent miRNAs, but their expression is
typically weaker than that of canonical miRNAs, so their
A expression in K562 and HeLa cells

HeLa

Pol II mRNA

P n q P n q P

*** 85 0.11 0.31 122 0.13 0.15
*** 142 0.05 0.55 147 0.05 0.51
*** 179 0.03 0.65 171 0.04 0.57
*** 225 0.07 0.27 217 0 1.0

mature miRNA and miRNA*. Range: genomic DNA flanking the mature
o miRBase release 18 (November 2011). Pol II: total Pol II chip-seq reads
whose transcripts overlap with the indicated range of genomic DNA; n:
r mRNA dataset (we did not add additional zeros to genes not already in
by permutation (Graphpad). As stated in the text, we also examined such
The datasets used for these cell lines are provided in Table S1 and Ref [92].
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presence, in a sense, supports the checkpoint or regulatory
role of Drosha. Dicer also cleaves human pre-miRNAs with
different efficiencies, although such relative specificity does
not significantly correlate with miRNA expression (Zeng
Y, unpublished data). These data suggest that Drosha action
is more discriminatory and rate-limiting than Dicer action in
setting differential miRNA expression in vivo.

How much Exp5 and Ago proteins contribute to the reg-
ulation of miRNA biogenesis is unclear, due to the lack of
large-scale in vitro data. Human Ago2 prefers a 50 uridine
residue in a miRNA [62], although how that transpires to
miRNA expression is unknown. Abundance in Exp5 and
Ago proteins may impinge on the expression of specific
miRNAs, either directly through protein:RNA interac-
tions, or indirectly by altering the expression of other pro-
teins and miRNAs [96,97].

Summary: a microcosm of the RNA universe

Studies of the miRNA pathway have shed new light on how
gene expression is regulated. At the same time, they also
reinforce our notion of how cellular RNAs are produced
and function. miRNAs undergo processing like any other
eukaryotic RNAs do, and miRNA transcripts interact with
proteins with specialized functions as well as proteins with
more generalized functions in a cell. Moreover, the hun-
dreds of miRNA genes in humans and the small number
of proteins required to process these miRNAs provide us
with an opportunity to investigate how the universal pro-
cessing pathway can differentiate the expression of specific
miRNAs. Thus, a general processing factor such as Drosha
can regulate miRNA expression both globally and specifi-
cally [95], and this further illustrates an example to interro-
gate the regulation of other complex biochemical systems
in vivo. Finally, as an added bonus, studying miRNA bio-
genesis enables us to design vectors to express small interfer-
ing RNAs to suppress gene expression in cells or in vivo,
which greatly facilitates gene functional studies and disease
modeling in suitable systems [98–100].
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