
Available online at www.sciencedirect.com

GENOMICS
www.elsevier.com/locate/gpb

Genomics Proteomics Bioinformatics 10 (2012) 58–73

PROTEOMICS &
BIOINFORMATICS
Review

Review of General Algorithmic Features for Genome Assemblers
for Next Generation Sequencers

Bilal Wajid 1,2,⇑, Erchin Serpedin 2

1 Department of Electrical Engineering, University of Engineering and Technology, Lahore 54890, Punjab, Pakistan
2 Department of Electrical and Computer Engineering, Texas A & M University, College Station, TX 77843-3128, USA

Received 5 January 2011; accepted 26 October 2011
Available online 9 June 2012
Abstract

In the realm of bioinformatics and computational biology, the most rudimentary data upon which all the analysis is built is the sequence
data of genes, proteins and RNA. The sequence data of the entire genome is the solution to the genome assembly problem. The scope of
this contribution is to provide an overview on the art of problem-solving applied within the domain of genome assembly in the next-
generation sequencing (NGS) platforms. This article discusses the major genome assemblers that were proposed in the literature during
the past decade by outlining their basic working principles. It is intended to act as a qualitative, not a quantitative, tutorial to all working
on genome assemblers pertaining to the next generation of sequencers. We discuss the theoretical aspects of various genome assemblers,
identifying their working schemes. We also discuss briefly the direction in which the area is headed towards along with discussing core
issues on software simplicity.
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Introduction

Genome assembly is very similar to solving a jigsaw puzzle.
In a jigsaw puzzle, one has a large number of pieces and
access to the final picture that essentially tells where each
piece must be placed. In spite of having the complete pic-
ture, which is the prior knowledge that tells us how each
and every individual piece connects to one another, we
all know how difficult and time-consuming it is to solve this
very jigsaw puzzle. Imagine now that we do not know the
final product, the complete picture. Rather all we have are
the individual pieces. Imagine how difficult would it be now
to solve this problem. Genome assembly is the exact same
problem. Here we have a vast number of individual pieces,
called reads, and we do not know how to connect them all
together since we do not know the final product, the
sequence.
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The data associated with genome assembly comes from
a variety of platforms. Development of the next-generation
sequencing (NGS) platforms sparked the need for algo-
rithms that could cater for the immense amount of data
produced by these platforms. Figure 1 sketches chronolog-
ically the major developments in the last decade. As sug-
gested by Figure 1, the scope and aim of this paper is to
qualitatively communicate all the problem-solving strate-
gies and algorithms that are employed by NGS platforms.
Earlier assembly algorithms, not related to NGS, like
AssemblyLIGN [1], CCG (http://www.health.usf.edu/
library/gcg.html), GeneWorks [2], AutoAssembler [3], Seq-
man [4], Sequencher [5], GENeration (Intelligenetics), PC/
Gene (Intelligenetics) (ftp://193.62.192.4/pub/databases/
info/ig_prod.txt), FAB [6] and XBAP [7] are surveyed in
[8], while algorithms developed for Sanger technology [9]
like Phrap [10], TIGR [11], Celera [12], Arachne [13] and
CAP3 [14] are surveyed in [15]. It is also intended that
the readers of this paper could tap from the gold mine of
algorithms that can solve jigsaw problems, fine tune them
cademy of Sciences and Genetics Society of China. Published by Elsevier
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Figure 1 Leading advancements in sequencing schemes during 2000–2010

Please note that this figure is not an exhaustive list, but it lists the major developments.
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and solve the task of genome assembly in a much better
fashion.

The rest of this paper is organized as follows. The types
of genome assembly and the problems it faces are described
under Genome assembly paradigms. Fundamental schemes
section discusses the various schemes used by different
algorithms to solve the genome assembly problem and pro-
vides an insight into the working schemes of the algorithms
shown in Figure 1. The direction in which this area is mov-
ing and core issues in software simplicity will be briefly dis-
cussed at the end of this review.

Genome assembly paradigms

The strategy adopted by genome assemblers can be widely
divided into two categories: comparative assembly and de

novo assembly. Looking back at the analogy with the jig-
saw puzzle, if no knowledge is available about the end
product, i.e., the complete final picture which is made by
putting all the pieces together in the right order, then that
is de novo assembly. However, if one has access to the com-
plete or partial picture of the final product, e.g., only this
time a toddler has colored over, distorted or torn apart
the puzzle’s pieces from some edges, then that is compara-
tive assembly. Even though the toddler distorted the image,
in the case of genome assembly, the specimen happens to
be the reference sequence, may be distorted, yet it provides
a great help to the scientists because it eases the task of
putting the pieces together in the right place given the fact
that there are a massive number of reads that need to be
ordered properly. In other words, comparative assembly
uses a reference sequence for genome assembly whereas
de novo assembly does not. Thus de novo assembly is more
complicated than comparative assembly.

The question that remains is how to choose a reference
sequence? If the DNA to be sequenced is a unique genome
unlike others that have been referenced or the only one in
its class, then it is best to adopt a de novo assembly scheme.
However, if the DNA to be sequenced has closely related
strains whose sequences are already known, then it is best
to use the known sequences as its reference template. What
defines a closely related strain can be explained from where
the DNA in question comes from. If the DNA comes from
a laboratory strain then sequencing is generally done on
mutant strains which are derived from some parental
strain. All these strains, parental and mutant, are isogenic
in nature, meaning they present the same genes. If the
DNA is a clinical isolate, wild type DNA, isolated directly
from nature and not modified in any manner, then the ref-
erence can come from other DNA sequences belonging to
the same species or closer DNA having the same spoligo-
type information. Spoligotype is the equivalent of a finger-
print of the family of strains that share the same repeat
units of a DNA. The reference sequence, if possible, should
belong to the same family of strains. However, spoligotyp-
ing is only applicable for tuberculosis [16–20].

Genome assembly could also be categorized in accor-
dance to the sequencing platform it uses to generate the
data. Some platforms are Sanger, Illumina, Roche 454
and Applied Bio-systems [21–24]. The Sanger method
was the de facto standard for DNA sequencing. It was also
used in the Human Genome Project. NGS has five plat-
forms that are available. Still newer platforms are under-
way since the US National Human Genome Research
Institute (NHGRI) announced funding for a series of pro-
jects to achieve sequencing of a human genome for under
$1000. The input to these platforms is the DNA whose
sequence is unknown. The output, amongst other things,
is a massive set of reads that need to be ordered and com-
bined in order to identify the unknown sequence. The read
itself is a sequence of letters: A, T, G, C or N, whose length
is fixed and is determined by the platform used for
sequencing.

Not only is the jigsaw puzzle difficult to resolve, but
also, there are other problems that genome assembly faces.
Genome assembly is plagued with low coverage areas,
avoiding false positive read-read alignments (caused by chi-
meric reads), avoiding false negative alignments (missing
read–read alignments), poor sequence quality, polymor-
phism (having multiple alleles, or slightly modified versions
of the same gene) and repeated regions in genome. These
problems can be reduced by using similar genomes.
Another issue that all assemblers have to face is that a read
consists of two strands that are reverse complements of
each other. Whenever DNA is sequenced, the molecule is
always read in the same direction, from 50 to 30, but it is
impossible to know from which of the two strands the
sequence is read. In this regard, two popular paradigms
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known amongst the designers of these assemblers are ‘over-
lap-layout-consensus’ and ‘alignment-layout-consensus’.

Fundamental schemes

The most fundamental schemes used in genome assemblers
are the overlap-layout-consensus, alignment-layout-con-
sensus, the greedy approach, graph-based schemes and
the Eulerian path. Figure 2 lists the respective algorithms
and their associated schemes. However, it should be noted
that these schemes are not exclusive and one algorithm can
be categorized in more than one scheme. An example of
different yet not exclusive schemes is the comparative and
the de novo assembly mechanism. Although comparative
assembly uses the reference sequence for alignment of
reads, yet reads corresponding to the areas of the novel
genome that differ significantly with respect to the reference
genome need to be connected via de novo assembly [25].
The remainder of this section explains these basic schemes
one by one.

The greedy approach works by making the locally opti-
mal choice at each stage with the hope of finding the global
optimum [26]. It starts with a contiguous sequence, a con-
tig, by taking an unassembled read, and extends it by using
the current read’s best overlapping read on its 30 end. If the
Figure 2 Schemes and their associated algorithms

The figure depicts the most fundamental schemes adopted by assembly algo
concepts; however, the same algorithm can be categorized into more than one
categorized under graph-based schemes. However, assisted assembly can be
consensus approach since it uses concepts from both.
contig cannot be extended further, the process is repeated
at the 50 end of the reverse complement of the contig.

The overlap-layout-consensus, as the name suggests,
consists of three steps (see Supplementary section, [27]).
In the first step an overlap graph is created by joining all
the reads by their respective best overlapping reads. This
step is similar to the greedy approach. The layout stage,
ideally, is responsible for finding one single path from the
start of the genome traversing through all the reads exactly
once and reaching the end of the sequenced genome. This
ideal scenario is not always achievable and is the reason
why we have so many algorithms trying to find the solution
using the same scheme. The layout stage is carried out in a
hierarchical fashion. Celera Assembler [12], for instance,
starts by identifying all unique contigs called ‘unitigs’.
These unitigs are regions of the genome that are generated
perfectly via the assembly process. Unitigs connect equally
well with more than one contigs. There are various ways to
settle potential disputes as to which contig the unitig would
connect to in order to elongate the size of the contig. For
example, Celera and Arachne [13] use mate-pair informa-
tion to merge sets of unitigs to form larger contigs. In the
consensus stage, groups of reads that overlapped now cast
their votes in order to identify which base should be present
at a particular location of the novel genome. A major part
rithms. The algorithms have been listed in order to clarify fundamental
approach. For instance, all Eulerian path approach algorithms could be
categorized under both comparative assembly and the overlap-layout-
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of the literature is dedicated to using the overlap-layout-
consensus paradigm via the concepts of graph theory.
Therefore, the graph theory approach is not an indepen-
dent approach as it shares common grounds with other
schemes to solve the genome assembly problem.

Concepts like string graphs, bidirected graphs and de
Bruijn graphs have had a deep impact on assembly algo-
rithms [28–35]. The aim of all assemblers based on graph
theory is to represent reads as a set of nodes, and overlaps
between these reads as directed edges which connect these
nodes to form a complete graph via a Hamiltonian path
or an Eulerian path [36,37]. For a Hamiltonian path, each
node in the graph is traversed only once, while for an Eule-
rian path, all edges but not nodes are traversed exactly
Figure 3 Graph correction techniques

(A) Disambiguation: the loop edge is unrolled and integrated in the continuous
have four possible options as shown in panel (C–F). However, it is assumed here
to black, and shaded region going to shaded region respectively, in which case th
made. (C–F) Eulerian super-path to eulerian path transformation: solving repea
path whether the path is shown is (C, D, E or F), respectively. Two paths ar
possibilities: (i) Path X, shown above, is consistent with exactly one of the sets i
paths shown in (C or D); (iii) X is consistent with both (C and D). (ii) and (iii) a
quality reads. (G) Removing nodes: nodes that have an indegree = outdegree =
an edge between (A and C) is removed if edges between (A and C), or (C and C)
disconnected at one end. Tips are removed based upon length and minority cou
suggests the point at which the tip connects to the graph (the parent from which
path, then the tip is removed. In this case c is removed. Edena-dead-end path r
node is checked to see whether its depth is greater than � or not. Heuristically, �
are removed. These short paths are normally caused by base calling errors. (J)
directs all paths from Vin to Vout. (K) Removal of transitive edges: if E1 < E2

removed.
once. So an Eulerian path may traverse a given node more
than once.

However, whenever graph theory is employed to resolve
genome assembly, it faces certain dilemmas. It is one thing
to make a graph, and it is another thing to simplify it. Ide-
ally speaking, one should obtain one graph where there is
only one path from root to child node and that path should
signify the genome sequence itself. However, it is never the
case. The initial phase of the assembly provides, not one,
but several smaller disjoint graphs. These smaller disjoint
graphs need to be connected to one another to form one
large graph. A path from a root node to a child node in
each one of these disjointed graphs corresponds to a contig.
Each disjointed graph is composed of many branches.
edge from left to right. (B) Pulling apart operation: the case shown could
that there are only two possible paths as shown in (C) and (F), black going
e middle sequence (black) is duplicated and the two disconnected paths are
ts. Repeats create difficulties since the algorithm cannot identify the correct
e consistent if their union is a path again. For multiple edges there are 3
n (C or D), as there is only one solution; (ii) X is consistent with neither of
re resolved after determining (i) for the entire graph and removing all poor
1 are collapsed to form one giant node called unitig. (H) Removing edges:
, exist. (I) Velvet – removing tips: a tip is defined as a chain of nodes that is
nt. If a tip is smaller than 2 k, then it is removed. Minority count property
initial branching took place); if there is a longer path, or a more common

emoval: similar to removing tips, here each path starting from a branching
= 10. If not, then all the nodes in the path, excluding the branching node,

E1 � E2 – detachment: edges E1 and E2 are replaced by a new edge E3 that
such that edge E1 is overlapped by E2, then E1 is a transitive edge and is
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Every branch or loop in the graph is a potential hazard for
the program as it could signify repeat regions in the gen-
ome. If these loops do signify repeat regions then one has
to decide where to place them along the genome. Some
branches are short and can be discarded while others are
responsible for longer paths which end up competing with
one another in defining the contig. The branches are usu-
ally caused by read data which present errors, as the
NGS platforms do not provide perfect read data from
the genome sequences. Furthermore, these disjointed
graphs, or contigs, need to be connected in some manner,
an operation called scaffolding, in order to converge to
the final assembly of the genome sequence (see Supplemen-
tary section) [27]. Therefore, all assemblers that exploit
graph theory inherently employ an extensive graph simpli-
fication process in order to simplify identifying the contigs
and subsequently implementing scaffolding [38–40].
Figure 3 discusses various ways via which graph simplifica-
tion is carried out.

The last scheme that needs to be discussed is the com-
parative assembly, which uses the alignment-layout-con-
sensus paradigm. The use of reference sequence, if
available, allows relatively easy construction of the novel
genome. Scaffolding is inherent in the procedure. Location
along the reference genome where the contigs align defines
the relative placement of the contigs [25,27].

Celera

Graph theory has been extensively used for genome assem-
bly. A graph is a data structure G consisting of a set of
nodes N ¼ fN 1; . . . ;N ng and a set of edges e. A graph
may be directed, if all the edges are oriented Ni! Nj. It
is undirected if all edges do not assume any orientation
Ni�Nj or Ni � Nj. Genome assembly is looked upon as
a graph structure with known nodes and unknown edges.
The nodes are the reads and how they are connected is
denoted in terms of the graph edges [41].

Celera Assembler [12] is a de facto standard in promot-
ing large-scale genome assembly of reads. Each assembly
process starts with a filtering process where low quality
reads are removed. This is necessary in order to keep the
rate of false overlap low [12]. The screening process by Cel-
era involved matching reads with known ribosomal and
heterochromatin DNA. Reads that matched were removed
whereby these regions of DNA were not assembled.

Reads were then compared with one another to find
overlapping reads that matched more than s number of
bases. For a high s, such as s = 94%, it meant that such
overlap is either true or is caused by a repeat. Unique over-
lapping reads were combined together to form contiguous
sequence called U-unitigs if the overlap was a true-overlap
and just unitig if they may belong to repeat regions, where
a unitig is a maximal interval subgraph [42–45].

Repeats resolution is done at this stage by dynamic pro-
gramming [46–49]. Repeats are detected by finding if unitig
X happens to overlap both Y and Z [27]. Thereafter, scaf-
folding is done which identifies the relative placement and
ordering of the unitigs with respect to one another. Scaf-
folding is done by mate-pair information when left and
right reads happen to be present in different unitigs fol-
lowed by aggressive repeat resolution measures.

The consensus sequence is generated by looking at the
base calls in each column and the confidence of each
base-call is identified using the quality values (Q values)
provided by each base (see Supplementary section, [27]).

Eulerian path approach

An Eulerian approach uses the reads to form a de Bruijn
graph (see Supplementary section, [27]). Since each read
has a fixed number of bases or nucleotides l, they are inter-
changeably referred to as a l-tuple or a l-mer. If two
l-tuples N1 and N2 overlap such that the last l � 1 bases
of N1 overlap with the first l � 1 bases of N2, then a direc-
ted edge is formed N1! N2. Repeating the same process
over the collection of reads S1, . . . , Sn and its reverse com-
plement Sc

1; . . . ; Sc
n, called the spectrum S, generates a

graph, a process referred to as the spectral alignment prob-
lem. As S contains a complement of every read, the graph
can be partitioned into two subgraphs: one corresponding
to the set of reads S1, . . . , Sn and the other one pertaining
to the complement set Sc

1; . . . ; Sc
n. This helps in eliminating

the false edges in the graph greatly. Furthermore, employ-
ing multiple alignments of l-tuples as opposed to pairwise
alignments helps also to reduce the number of errors.

In graph theory language, the set of nodes N1, . . . , Nk

forms a path if for every i 2 {1, . . . , k � 1} we have either
Ni! Ni+1 or Ni Ni+1, i.e., an edge exists between any
two consecutive nodes in the path. The path is directed if
there exists at least one directed edge between any two con-
secutive nodes Nj! Nj+1. Genome assembly via EULER
[50] presumes to identify an Eulerian path, which traverses
all the edges of G exactly once as described previously. In
the attempt to resolve the genome assembly problem via
the Eulerian path one does not end up with a single path
but with multiple paths. Therefore, the solution to the
problem lies in finding an Eulerian super-path that con-
tains all these Eulerian paths as sub-paths (see Supplemen-
tary section) [27].

De novo assembly with A-Bruijn graphs

A follow up to the Eulerian path approach which uses de
Bruijn graphs is the usage of A-Bruijn graphs, which are
a generalized version of de Bruijin graphs for genome
assembly [51]. An A-Bruijn graph is formed using a similar-
ity matrix (see Supplementary section, [27]).

In genome assembly, the l-tuple or l-mer is basically the
read or its reverse complement. After removing low quality
reads, the similarity matrix is then employed to define the
adjacencies to all perfect l-mers. If the genomic sequence
of length n is unknown, yet a set of sub-strings
S1;S2; . . . ;Sk that span the entire length n is known, an
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n � n similarity matrix A can be made from the kðk�1Þ
2

pair-
wise alignments [51–56]. Using this similarity matrix A, an
A-Bruijn graph G(V,e) is constructed. Herein V denotes the
set of connected vertices or nodes. All vertices that are sim-
ilar to one another are collapsed into one vertex, as illus-
trated by Figure 4. An Eulerian path traversing from
vertex1 to vertexn represents the edges, and it is indicated
in the form of the set e in the graph G. All these operations
are graphically depicted in Figure 4.
Graph simplification and genome assembly
The pair-wise alignments A and the graph G present mis-
matches as illustrated in Figure 4 in terms of whirls and
bulges. A whirl is a small cycle that has edges in the same
direction, whereas bulges are small cycles that contain
edges in either direction. Graph simplification helps in
removing these ailments.

Whirls are caused by ambiguities in pair-wise align-
ments. Whirls can be removed by putting gaps or removing
some matches in the alignment [27]. Bulges are more diffi-
cult to remove. They can be resolved by adopting the max-
imum weighted spanning tree strategy [27,57–60].

Thereafter, tips and branches that are shorter in length
are removed (Figure 3I). This process is also called erosion
in EULER, EULER-SR and A-Bruijn graph assembly ter-
minology [38,51–53,61]. The graph obtained after all these
simplification techniques presents some long simple paths
Figure 4 Making the A-Bruijn graphs

(A) Using pair-wise alignments an A-Bruijn graph G is built from the sequence.
AT versus AAG and ATG versus AAG. (D) Final assembly of the A-Bruijn gra
and bulges which need to be rectified. Herein, A! T A is a whirl. (E) In the
Figure was adapted from [51].
yet an important question remains unresolved. What is
the consensus sequence of these individual paths? Basically
the most frequently occurring base happens to be the con-
sensus base which helps to define the consensus sequence of
these long simple paths. To identify that, the coverage of
each path or the average coverage of each vertex is evalu-
ated, which helps in identifying the consensus sequence
for each path. The coverage of the vertex is the number
of reads that traverse through that vertex. Note that there
may be different bases that occur at any one given position
due to mismatches within different copies of repeats and so
a consensus for every position is required to determine the
right nucleotide at that position. These simple paths are
then collapsed to form a repeat graph whose edges are
the consensus sequences of the corresponding simple paths.
These edges are basically the contigs. Scaffolding of these
contigs is done in the same manner as in EULER [50].
EULER-SR

EULER-SR [52] fine tunes EULER to assemble short reads
more efficiently. Its extensive pre-processing stage and more
thorough graph correction schemes make EULER-SR
more efficient to handle short read assemblies than
EULER. In the pre-processing stage, reads that are not
valid are removed. In EULER-SR, the pre-processing stage
is called the “error correction stage” because it focuses not
(B) Pair-wise alignments are calculated: ATG versus AT, while in (C), it is
ph G after collapsing all similar nodes. Resultant graph may contain whirls
event of a mismatch, two nodes are collapsed and both instances are kept.
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only on removing reads that are not valid but also, if possi-
ble, removing errors from the reads and making them useful
in the genome assembly process. Q values are used to dis-
card low-quality reads. In the absence of Q values, the spec-
trum S [27] is employed for error correction. All reads
(k-mers) in S are divided into l-tuples, a sub-string of size
l. All l-tuples whose frequency in S is above a certain thresh-
old are kept and the rest are discarded. The reads which
these tuples belong to are modified to account for the
remaining tuples. If the number of changes required for
any read is greater than a certain threshold, it is discarded.

After error correction, the remaining reads are used for
the formation of the de Bruijn graph. In EULER-SR, the
de Bruijn graph obtained at the end of the entire assembly
process contains O(L) nodes and O(L) edges for a target
genome of length L, regardless of the number of reads in
the data set. Graph construction is similar to EULER.
Edges between two nodes, adjacencies, are found by doing
a binary search for every adjacent pair of nodes in spec-
trum S [62–66]. Since reads are used in the formation of
the de Bruijin graph, a weight equal to the number of reads
mapped to the edge is assigned to each edge. This weight
helps in eliminating chimeric reads (see Supplementary sec-
tion, [27]). After simplification, every l + 1 tuple in the read
maps to a unique position and edge in the graph.

The graph needs to be corrected after being made.
Graph correction can be defined as the process where a
graph G is transformed into a graph bG which contains a
subset of the vertices and edges of the graph G. Individual
reads were divided into l-tuples, therefore, a single muta-
tion in a read causes l extra edge in the de Bruijn graph.
The scope of graph correction is to eliminate extra edges
and nodes, and to obtain a graph containing O(L) nodes
and O(L) edges for a target genome of length L.

Graph simplification also, involves repeat resolution
(Figure 3C–F, J, K)), which is similar to EULER. Repeats
that are very similar are merged into a single edge corre-
sponding to the repeat consensus sequence. Graph correc-
tion contains a separate path for each distinct repeat
sequence, so in terms of graph theory it removes all errone-
ous edges.

Tandem repeats are identified by areas of the genome
where a particular sequence repeats itself over and over
again in tandem. Identifying the number of copies (multi-
plicity) in a tandem repeat is a difficult problem for any
assembler. For de Bruijn graphs, the multiplicity of perfect
tandem repeats of length longer than half of the read length
cannot be inferred. Therefore, only two copies of the per-
fect tandem repeat are allowed and a path is constructed
that traverses the repeat twice [52].

In addition, reads that were mapped to edges deleted
during the graph correction stage are threaded through
the nearby remaining edges by finding a path P that is suf-
ficiently similar to the deleted edge and then putting P in
place of the deleted edge. Chimeric reads are eliminated
via erosion [51]. Erosion involves removing short branches
that terminate quickly (Figure 3I), and removing low-
weight edges. The resultant paths in the graph after graph
correction are the contigs.

ALLPATHS

ALLPATHS [67,68] assembler is amongst the list of assem-
blers that rely on graph theory for de novo genome assem-
bly. It uses the spectrum to generate the graph, also called
the ‘sequence graph’. The sequence graph follows a thor-
ough and extensive simplification mechanism to reduce
the graph so that there are only a few or no branches.
Lastly, scaffolding is done to connect all sub-graphs or con-
tigs to achieve global assembly.

Error correction
Error correction schemes aim to use only a subset of all the
reads for assembling the genome. It first identifies low qual-
ity reads and then improves them using some heuristics. If
the quality of these reads improves, they are retained for
assembly. Otherwise, they are discarded. ALLPATHS has
a unique method for keeping, modifying or discarding
reads. It creates a list of all k-mers from the reads. It then
calculates the following function f ðmÞ ¼

Pn
i¼1l

½Number of times k-meri occurs� ¼ m. It means that for
any given k-mer if it occurs m times then it is counted in
the sum f(m). f(m) = n means that there are n distinct k-
mers which occur ‘m’ times. The essence behind using such
a function, f(m), is to identify k-mers that occur more fre-
quently. For f(m) = n, the aim is to use all n distinct k-mers
that occur m times. A simple graph is made with x = m and
y = f(m) to identify the confident k-mers from the weak k-
mers, where confident k-mers are the ones that occur more
frequently, while weaker k-mers are the one that occur less
frequently. Let m1 be the first local minimum of the graph,
then all k-mers above m1 are kept whereas all lower k-mers
are updated by making one or two substitutions. If the
change is measured probabilistically and only if the change
is probabilistically ten times better than not making the
change, then the read is updated, otherwise it is discarded.

Generating unipaths

k-mer numbering, acting as a coding scheme, provides a
compact representation of the k-mer paths. It is an assign-
ment of a unique integer to each k-mer that appears in a
DNA. If the same k-mer appears more than once, each
instance must be assigned the same integer [27]. This sim-
plification also helps in creating a database with entries
(X, Y), where X are k-mer path intervals and Y are where
they come from. This helps in the multiple local alignment
(Figure 5) of all the reads identifying the k-mers that they
share their orientation and location within them. This
methodology is adapted from ARACHNE [13]. This fur-
ther helps in making unipaths, as illustrated in Figure 5.

Building the graph
Multiple alignment and unipath generation pave the way
for generating graphs which are then combined and



Figure 5 Multiple local alignments

(A) Spectrum: collection of all reads. (B) Collection of all k-mers derived from the reads. (C) The multiple alignment algorithms take a collection of unique
k-mers. Then for each k-mer it does a local alignment with all the reads identifying the reads in which it is present, along with the starting position of the
alignment within the read and also the orientation of its alignment. Using this, an overall alignment of the entire spectrum is obtained. (D) Unipath
intervals: set of all k-mer path intervals. (E) Creating unipaths: take the first k-mer path interval, and its predecessor and concatenate it. Similarly take the
last k-mer in the unipath, and its successor and concatenate it. Repeat iteratively this process to create unipaths. The unipath interval that is obtained using
several k-mer path intervals in this example is [C, H]. (F) Branches: a branch in a graph is the point in the genome where there is a k-mer that appears in
two or more places for which the next (or previous) bases are different. Here ([A, Z]), [A, H]) and ([Z, B], [H, B]) form a branch.
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cleaned up for the genome assembly. Most of the assem-
blers that rely on graph theory end up creating many
graphs or contigs. These graphs could also be referred to
as local assemblies whereas the complete graph obtained
after scaffolding and graph simplification could be called
the global assembly or the target genome.

After finding all minimal extensions and subsumptions
for each read in the spectrum (see Supplementary section,
[27]), local assembly is done by first finding all potential
seeding unipaths. These seeds are found by filtering all uni-
paths that can be overlapped on either of its sides by other
unipaths. The unipaths that remain are the seeders. The
seed and 10 kb extension of genomic data on either side
of the seed represents its neighbourhood. These seeds are
extended, and their neighbourhood is built by making use
of unipath intervals that define the most compact represen-
tation of individual unipaths. Assembling the neighbour-
hoods together yields the sequence graph whose edges are
the unipaths.

These multiple local sequence graphs are connected to
one another to form one global sequence graph which
might have many parts, depending on the number of chro-
mosomes in the genome or the success of the assembly pro-
cess. The global assembly can be simplified or improved by
(a) Disambiguation (Figure 3A), (b) Pulling-apart (Fig-
ure 3B) and (c) Clean-up, as depicted in (Figure 3I).
Velvet

Velvet [61] comes in line with all the other de novo assemblers
that use de Bruijn graphs for genome assembly. The graph
assembly process of Velvet is unique. Contrary to EULER
where each node was a (k � 1) mer, a node N is a collection
of overlapping k-mers that overlap by (k � 1) nucleotides,
as shown in Figure 6. The complementary node of N and
Nc is formed by the same process but using the reverse com-
plements of these k-mers. N and Nc together form a block
(Figure 6). Error correction is done via (a) removing tips
(Figure 3I), and (b) removing bubbles (Figure 7).

Scaffolding and repeat resolution are done using an
inner module called Breadcrumb. It starts by identifying
contigs longer than some threshold, called “long nodes”.
These long nodes are then aligned and paired with other
long nodes. This produces two sets of long nodes. One
set contains long nodes that possibly connect with many
at one end. They are ambiguous and left untouched. The
other set contains only those long nodes that connect with
only one other long node on either side of its ends. This set
is then flagged and used for extension, taking one long
node at a time and going as far as possible until it cannot
be extended further by another flagged long node or it can
have many plausible paired long nodes in which case one
has ambiguity and plausible repeats. Contigs that are still



Figure 6 Velvet – making the database and the graph

Velvet uses two databases (A) and (B) which are combined in a somewhat similar fashion to the database used by Allpaths in Figure 5. A hash table is used in
(A) to store every k-mer, the ID of the first read encountered containing that k-mer and the start position of its occurrence within that read, and additionally
its reverse complement. The second database (B) records, for each read which of its original k-mers are overlapped by other reads. Using (A) and (B), a third
list of ordered original (unique) k-mers is made. The list is compartmentalized each time an overlap with another start or end occurs. The continuous set of
reads in each compartment form the nodes of the graph in (C). Overlap between the last k-mers of one node and the first k-mer of the next node produces a
directed edge (shown as yellow line) (C1). The blue lines represent the overlap of k-1 nucleotides between k-mers in the same node (C2). Furthermore,
whenever an edge exists between a single parent N and its only child node then the two nodes are merged. This figure is adapted from [61].

Figure 7 Velvet – removing bubbles

As we progress along graph simplification, we see that shorter paths are being merged with longer paths. From (A) to (B), C is merged with C0 to form C0,
and B is merged with B0 to form B. A similar process is repeated by merging B and B00 to form graph shown in panel (C) and finally panel (D). p-bubble
fixing in EDENA is similar to that in Velvet. p-bubbles are branches caused by a single base substitution. Each branch is explored up to length d. The
length of the p-bubble is at most d ¼ 4� ðread lengthÞ � 2� ðminimum required overlap sizeÞ � 1. These are resolved by removing nodes on the less
covered side of the bubble.

66 Genomics Proteomics Bioinformatics 10 (2012) 58–73
ambiguously connected or branches in the graph that are
still left unresolved are simplified by looking exhaustively
at all plausible paths connecting two long nodes. This
approach being cumbersome (since the search space is
large), is reduced by identifying a sub-graph that only con-
tains those nodes that are connected to two long contigs
and leaving all the others. Now an exhaustive search
reveals the true paths leading to one giant global assembly.
Edena: Exact de novo assembler

Edena [69] is another de novo graph-based assembler which
follows the same processing schemes as all graph-based
assemblers. In its filtering stage, reads that have ambigui-
ties in base calling are discarded. Only one copy of the
remaining reads is maintained, and the read and its reverse
complement are considered to be the same. Therefore,
paired-end data are not used in graph construction. How-
ever, the frequency of each read occurrence is kept for cal-
culating depth of coverage.

Edena’s graph construction uses suffix arrays [27,70] for
overlapping unique reads, where the minimum overlap size
is determined heuristically. The structure is presented as a
bidirectional graph structure [71], where each read corre-
sponds to a node and an edge represents an overlap
between two reads/nodes. Since the edges are bidirectional
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and the reads can be oriented in either way, so there are
four possible ways to connect nodes.

Graph simplification is done by performing short dead-
end path removal (Figure 3I), removing transitive edges
(Figure 3K) and p-bubble fixing (Figure 7). After graph
simplification, all contigs of minimum size that are unam-
biguously represented in the graph are provided as an
output.

TAIPAN

TAIPAN [72,73], simply put, is a graph-based approach
where the contig extension is based on consensus. TAIPAN
places the entire spectrum in a hash table which allows
quick search of overlapping reads, which is then used to
create a directed graph G. For the consensus-based contig
extension, two parameters k and T are taken, where k is
the minimal overlap parameter and T is the contig length
parameter. Any read can be considered as a seed and then
extended. The seed is extended one base at a time, first
from the 30 end and then from the 50 end. Once the graph
has been constructed and the E1 � E2 – detachment
resolved (Figure 3J), the remaining graph is used to evalu-
ate the set of all vertex-disjoint paths P which help in con-
tig extension. The seed is extended one base at a time if P

has only one path whose length is greater than or equal to
T. Then the first base in the path happens to be the exten-
sion of the seed. However, the seed is terminated in two
cases. The first case occurs if there are insufficient overlap-
ping reads, in which case the length of all paths in P is less
than 1. The second case happens when there is a repeat in
which case P has at least two paths whose lengths are
greater than T and therefore the program cannot choose
which path to extend. Reads that are used in the contig
extension are removed from the hash table, thereby reduc-
ing the search space and speeding up the process.

Greedy approach

Greedy approach towards assembly of genomes is marked
by three algorithms: short sequence assembly by progres-
sive k-mer search and 30 read extension (SSAKE) [74], ver-
ified consensus assembly by k-mer extension (VCAKE) [75]
and quality-value-guided short read assembler (QSRA) [76]
where each algorithm is an extension of the previous
algorithm.

SSAKE proposed for assembly of genomes that were
smaller is size (about 30 kb in length). SSAKE uses a hash
table [27] and a prefix tree (see Supplementary section, [27])
to organize the read data along with its mate-pair informa-
tion. The keys in hash table key are the reads and their
associated values are the number of occurrences of the
read. A consensus sequence is formed by placing in parallel
all reads in such a manner that the prefix of a particular
read matches the suffix of its predecessor read. This is done
with the help of a prefix tree. Reads are composed of bases
{A, C, G, T}. While searching for any particular read, each
transition from parent to child divides the search space by
four. If there are m reads, each of size n, then searching for
a particular read is an O(n) or O(log4 m) operation, since n
steps are required from the root to reach the leaf. Every
node shares common prefixes with its parents right up to
the root node, which is a NULL node. The spectrum is
organized by the prefixes of bases from their 50 end.
SSAKE requires coverage of 20� and a minimum base
ratio of 0.6 to generate the contig [27,74].

VCAKE [75] further improves upon the criterion of
building and developing the contig by focusing on all reads
that allow achieving a certain (coverage or overlap) depth t

in order to achieve a good consensus of the seed. Seed is the
term used sometimes to define the read or the contig which
is being extended. In this regard, VCAKE has three user-
defined measures (n, m, and e), each specifying the length
of the overlap required with the 30 end of the seed in
decreasing level of strictness until a consensus depth of t

is achieved. Each read that overlaps the seed is placed in
the hash table with a value equal to the number of times
it occurs. This process stops until a coverage depth of t

occurs or a minimal overlap e is reached. Once the list of
reads that generate the layout is identified then the exten-
sion proceeds one base at a time. A base is added from
the consensus if it occurs more than c out of t times. How-
ever, if there is another base that exceeds V out of t times,
the contig is terminated, plausibly suggesting a duplication
of the sequence in another part of the genome. After this,
all reads that were retrieved in the process and happen to
occur completely within the contig are deleted both from
the hash table and the prefix tree.

QSRA [76], further improves upon VCAKE by building
and developing the contig by searching for reads whose
bases overhang the overlap and have a Qvalue > m, where
m is a minimal user-defined Qvalue score. It adds these reads
in the consensus providing an overall larger average contig
length. The extension continues until coverage t is obtained
or no more reads are found whose overhanging bases have
Qvalues > m.

The contig is extended at the 30 end by following the
rules described above. Once all plausible extensions and
all contigs are inferred then the complementary strand of
the contig is considered to extend the contig on the 50

end until all reads are exhausted.

Assisted assembly

Up until now, all the assemblers are categorized as being
either comparative or de novo. Assisted assembly [77] lies
between these two paradigms and, as such, adopts a de

novo approach which relies on the assistance of the refer-
ence genome. It loosely adopts the alignment-overlap-lay-
out-consensus scheme.

The reads are initially locally aligned to the reference
genome (alignment phase). This helps to identify groups
of reads that are eventually converted into contigs (overlap
phase), as depicted in Figure 8. As far as the consensus



Figure 8 Assisted assembly

(A) The start/stop point of every read is inferred via local alignment with the reference genome. Reads are allowed to be placed more than once as well, in
order to allow for duplicated regions within the genome. (B) If the start/stop positions of the reads overlap other reads by user-defined X number of bases,
then the reads are grouped in one group. All such reads that overlap based on their positions in the reference genome form groups. (C) All groups are used
to enlarge pre-existing contigs. If the group belongs to one contig, then that contig is enlarged (C1). If the group belongs to two contigs then the closest one
is enlarged (C2). If a group does not belong to any contig, then the group itself becomes a new contig (C3). Once all the groups are dealt with, reads are
taken from the groups one by one and are aligned with the contigs to extend them.
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phase is concerned, the contigs are created looking at both
read alignment with the growing contig itself, and also
alignment of the reads with the reference genome. In other
words, even if the alignment of the read with the contig is
not good, yet it aligns with the reference genome in close
proximity to the contig then this is further evidence that
the read belongs to the growing contig. This may appear
to put some bias on the reference genome. However, the
results of assisted assembly show overall good
performance.

In the scaffolding phase, contigs are joined to one
another via ‘trusted’ links. A link is trusted (or a pair of
reads is valid) if its measure of stretch exceeds a user-
defined threshold, i.e., it aligns to the reference genome
uniquely and properly, and it also joins two scaffolds. Each
read within the pair of reads that form this trusted link ori-
ents the scaffolds onto the reference genome in the same
direction, and such reads are called ‘consistent’ reads.
However, even if the link is not fully trusted, meaning its
measure of stretch does not exceed the given threshold,
yet all the conditions mentioned above are satisfied, in such
cases the contigs are connected and scaffolding is done.

The scaffolding process may produce some chimeric
scaffolds, whose ends belong to nonadjacent parts of the
genome. Such scaffolds are identified as miss-assembled.
These miss-assembled scaffolds are basically made up of
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reads that overlap one another to form consensus
sequences. A search is conducted within these overlaps to
look for such a consensus sequence that is backed up by
just two reads overlapping with one another and not more
than that. The point is that the miss-assembled scaffold,
which is the weakest link, is broken up into two parts to
form two contigs belonging to non-adjacent parts of the
genome. After scaffolding, a series of de novo operations
are done to simplify the graph in order to achieve global
assembly.

A modular open-source comparative assembler

(AMOS-Cmp)

AMOS is a collection of modules and libraries which are
open-source and are useful in developing genome assem-
blers (http://www.sourceforge.net/apps/mediawiki/amos/
index.php?title=AMOS). These AMOS modules, or stages,
interact with one another via an AMOS data structure
called “bank”.

AMOS-Cmp [78] uses the alignment-layout-consensus
paradigm [27]. In the alignment stage, reads are aligned
to the reference genome using maximal unique matching-
mer (MUMmer, http://www.mummer.sourceforge.net)
[79]. However, this alignment does not produce a unique
alignment for every read along the reference genome. Some
reads get aligned to more than one place along the genome
and are called ‘repeats’. The reverse complements of the
reads are used to resolve repeats, thereby aligning them
to only one location on the reference sequence. The reverse
complements of these repeats are also aligned with the ref-
erence genome. The location of the reverse complements
aligned and that of the repeat is compared. If the distance
is large, then those alignment locations are discarded. Fur-
thermore, if the orientation (direction) of the alignment of
the reverse complement and that of the repeats is not com-
plementary, then that alignment location is also discarded.
Otherwise, a random alignment amongst the plausible
alignments for the repeat is chosen.

The alignment of all the reads produces a layout.
Because the reads were derived from the novel (‘unknown’
or ‘target’) genome and were being aligned to a closely
related reference genome, many reads might not align per-
fectly to the reference genome due to some mismatches,
some insertions or deletions, or presence of some divergent
areas (where the reference and the target genome differ
greatly). These issues are resolved in a process called layout
refinement, as illustrated in Figure 9. The divergent areas
are resolved by generating the consensus sequence and then
using that as a template for the alignment of the repeats.
Layout refinement is repeated until the issues identified
above are not faced anymore.

These steps provide a collection of contigs. Scaffolding
uses mate-pair information. Two contigs can be considered
to be adjacent to one another if two or more reads overlap
the end of one contig and the start of the next. The stand-
alone package used in AMOS-Cmp for scaffolding is Bam-
bus [80]. Bambus allows any assembler to incorporate scaf-
folding in its assembly process by using it.

Gene boosted assembly (GBA) with short reads

GBA [81] is a comparative assembly approach that beauti-
fully blends simple yet novel ideas with pre-existing tools to
provide a solution. The method uses AMOS-Cmp, Mini-
mus, Glimmer [82], Blast [83], assembly boosted by amino
acids (ABBA, http://www.amos.sourceforge.net/docs/
pipeline/abba.html), tblastn [84] and MUMmer [79] to
achieve genome assembly of short reads. The simple yet
novel idea is that instead of using one reference sequence
for comparative assembly, two reference sequences are
used to see how this helps the assembler performance.

Like all comparative schemes, GBA also uses the align-
ment-layout-consensus paradigm. Since GBA uses two ref-
erence sequences, the alignment of the reads with the
reference sequence Ref1 is done with the help of MUMmer,
which is fine tuned to allow two mismatches in the align-
ment of every read with Ref1. The results of the alignment
are used to generate the initial target sequence target1 by
using AMOS-Cmp. GBA repeats the same process of using
the reads, MUMmer and AMOS-Cmp to develop the tar-
get sequence target2 only this time using the reference
sequence Ref2 as a template for assembly. The solution
from the two assemblies target1 and target2 is compared
to identify divergent areas of the target genome. This helps
in filling in the gaps, using Minimus, and connecting the
contigs in the right order, as depicted in Figure 9.

Gaps that are still left are filled up by using another sim-
ple yet novel approach of identifying protein-coding genes
using Glimmer [82] and Blast [83]. Protein-coding genes are
much more conserved than non-coding genes amongst gen-
omes that belong to the same taxonomy or class. These
predicted protein-coding sequences are used to align all
the unused reads that were not used in building either tar-

get1 or target2, also called singletons in tblastn [84]. After
alignment, these singletons help in filling up gaps and
merging the contigs that surround these gaps using the
algorithm called ABBA. Lastly, a de novo assembly of all
the reads is done to produce newer contigs. MUMmer
aligns these newer contigs with the contigs already present
in order to fill up all the remaining gaps to produce the
complete genome.

SHARCGS

SHARCGS stands for short-read assembler based on
robust contig extension for genome sequencing [85].
SHARCGS is a de novo assembler which assumes a strong
filtering of the reads to ensure that the assembly process
generates contigs as large as possible. As a consequence
of the filtering measures, the collection of contigs may
not span the entire target genome. To avoid that, SHAR-
CGS relaxes the filtering process in every iteration to
include more and more reads in making the contig. A col-
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Figure 9 AMOS-Cmp with layout refinement and gene boosted assembly

Insertions in the reference (top left): (A) This is identified by reads aligned such that they span across the inserted area of the reference genome and align
perfectly to either side of this inserted area. (B) In such case the ‘seeming gap’ is closed. (C) The genome surrounding the inserted area is considered as one
contig. Insertions in the target sequence (top right): (D). This is identified by reads whose former portions align perfectly yet the latter portions diverge
from the reference sequence. (E) This is resolved by breaking up the target genome at the point of insertion producing two contigs which are then (F)
connected using the singletons of any assembly algorithm. Rearrangement (bottom right): regions 2 and 3 differ in their order and orientation from the
reference and the target. Reads (G) and (H) match disjoint locations of the reference genome, shown as being connected via dashed lines. Insertions in the
target sequence: this is resolved by breaking up the target genome at the point of insertion producing two contigs which are then connected using the
singletons of any assembly algorithm. Figure was adapted from [78]. Gene boosted assembly (bottom left): contigs (A and B) form target 1, while contigs
(C, D and E) form target 2. This method shows how two comparative assemblies can be used to close the gaps that occur in genome assembly. The target
genome merges the contigs (A, B, C, D and E) to achieve the target genome. The shaded regions in the target genome and their corresponding location in
the contigs show how this simple and elegant scheme works.
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lection of contigs produced by different runs are merged
together, by finding exact overlaps at least as long as one
read length, to obtain the final assembly.

As a first step, SHARCGS in its pre-processing stage
employs Q values for filtering data. Assuming that each
base call in a read is independent of another, then the over-
all quality of a read of length r is Pcorrect = (1 � Perror)

r.
SHARCGS uses this overall quality of the read to identify
whether it should be used in the assembly process or dis-
carded. If Pcorrect < q, where q is a user-defined parameter,
then the reads are filtered out and not used in the assembly
process. Even in the absence of Q values, a simple heuristic
would be to count the number of times each read occurs; if
it occurs at least n times then it is retained, otherelse dis-
carded. The method used by SHARCGS to extend its con-
tig is shown in Figure 10.
Discussion

From Euler to Genovo [86], the mathematical and the algo-
rithmic components of these assemblers were discussed.
One simplistic extension to problem-solving would be to
take ideas from previous assemblers, combine them and
make an assembler with a performance overall better than
the individual assemblers. New ideas may spring up by
looking at papers that solve the jig-saw puzzle problem
since genome assembly and the jig-saw puzzle are analo-
gous to one another. This paper discussed extensively
graph theory from the umbrella terms bidirected graphs
and de Bruijn graphs (see Supplementary section, [27]),
towards finding an optimal path such as the Hamiltonian
path or the Eulerian path (see Supplementary section,
[27]). The paper also discussed in detail algorithmic con-



Figure 10 SHARCGS for contig extension

The shaded region in the contig to be extended is used as a prefix to gather all reads that share the same prefix. A prefix tree is employed for efficient search
for all plausible reads having the same prefix. The ‘Extension’ region of the read “R” is the plausible extension sequence of the contig. To determine
amongst all possible reads which one is to be used for extending the contig, a check sequence is employed “M”. This is made by combining the last ‘r’ bases
of the extending contig and the extension region of R. Sub-strings of M are made and act as prefixes for searching other reads in the prefix tree. If all sub-
strings retrieve one possible read whose prefix matches it, then the contig is extended, otherwise it is not.
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cepts like breadth-first search, prefix tree, suffix tree and
suffix array (see Supplementary section, [27]). For the lay-
man, details of the probabilistic distributions, Chinese res-
taurant process and maximum likelihood were also
provided (see Supplementary section, [27]). In short,
although the entire paper discussed in detail the NGS
assemblers, both de novo and comparative schemes, none-
theless careful attention was given to concepts pertaining
to probability theory, graph theory and algorithmic con-
cepts so that the paper could be easily accessible to a wide
audience.

After detailed discussion of the algorithmic components
of various recipes to solve the genome assembler, it is extre-
mely important to identify crucial aspects of scientific
experimentation “reproducibility”, “accessibility”, and
“computational transparency”. The sad facts are that the
genome sequencing community is not very enthusiastic
about reproducibility, accessibility and transparency [87].
Reproducibility of results published by genome analyses
is a task that is tough and often hindered by many hurdles.
Read data is one such hurdle since not all primary data is
deposited in the Sequencing Read Archive (http://
www.ncbi.nlm.nih.gov/sra). Other hurdles include absence
of some tools or even presence of software tools in such
conditions that installing them and making them work
requires considerable expertise. As if things were not bad
enough, the genomes published do not always provide all
the details of which version of the assembler they used,
and more importantly settings used by the assemblers in
deriving the results. Therefore, people involved in making
genome assemblers and the people who are using them
should provide all the details in their papers to make their
work more reproducible, accessible and transparent.
Still moving ahead, the realm of genome assembly
requires a lot of improvement in terms of scalability of
algorithms, especially when one is assembling a very large
genome like that of human. One approach which is being
explored is the use of Hadoop Mapreduce developed by
Google [88]. Mapreduce is extremely scalable, efficient, reli-
able and runs on commodity computers. Genome analysis
toolkit (GATK) is an alternative implementation for NGS
but it is only parallel for one system, meaning that if a sys-
tem presents 5 cores then it provides 5 parallel operations
[89]. However, in its current format, it does not work on
parallel systems. Use of Hadoop in genome assembly needs
to be explored and is being explored by the community to
exponentially speed up the assembly of large genomes [90].
However, time, effort and considerable expertise are
required. Therefore, the realm of genome assembly is still
very fresh in terms of algorithm development and it is still
a place where one solution brings with it many open and
complex questions. Also, since most of the genomes on
the planet are yet to be sequenced, this is one area which
will remain fresh for many years to come.
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