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Abstract 

The identification of functional gene modules that are derived from integration of information from different types 
of networks is a powerful strategy for interpreting the etiology of complex diseases such as rheumatoid arthritis 
(RA). Genetic variants are known to increase the risk of developing RA. Here, a novel method, the construction of 
a genetic network, was used to mine functional gene modules linked with RA. A polymorphism interaction analy-
sis (PIA) algorithm was used to obtain cooperating single nucleotide polymorphisms (SNPs) that contribute to RA 
disease. The acquired SNP pairs were used to construct a SNP-SNP network. Sub-networks defined by hub SNPs 
were then extracted and turned into gene modules by mapping SNPs to genes using dbSNP database. We per-
formed Gene Ontology (GO) analysis on each gene module, and some GO terms enriched in the gene modules 
can be used to investigate clustered gene function for better understanding RA pathogenesis. This method was 
applied to the Genetic Analysis Workshop 15 (GAW 15) RA dataset. The results show that genes involved in func-
tional gene modules, such as CD160 (rs744877) and RUNX1 (rs2051179), are especially relevant to RA, which is 
supported by previous reports. Furthermore, the 43 SNPs involved in the identified gene modules were found to 
be the best classifiers when used as variables for sample classification. 
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Introduction 

It is well-recognized that complex diseases are caused 
by multiple gene-gene interactions, in which each 
gene may have a small effect on disease development, 
rather than by single gene defects (1). As high-density 
single nucleotide polymorphism (SNP) arrays and 
subsequent genome-wide association studies (GWAS) 
were developed, the study of complex diseases has 
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become of widespread interest for researchers. Tradi-
tional methods of genetic analysis are often weak 
when applied to some complex diseases, which are 
most likely to be both genetically multifactorial and 
phenotypically heterogeneous. It is therefore sug-
gested that the study of complex diseases should not 
be restricted to single gene identification, but should 
focus on gene interaction studies. Recently, there have 
been several studies exploring gene-gene interactions 
in different ways (2-5). 

Furthermore, more and more evidence shows that 
investigating gene-gene interactions may lead to the 
development of a functional network and functional 
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modules (6). Iossifov et al (7) predicted pathways or 
networks of interacting genes that contribute to com-
mon heritable disorders by combining standard ge-
netic linkage formalism with whole-genome molecu-
lar interaction data. Similarly, Wang et al (8) demon-
strated pathway-based approaches, which jointly con-
sidered multiple contributing factors in the same 
pathway. In addition, Franke et al (9) developed a 
functional human gene network that integrated infor-
mation on genes and the functional relationships be-
tween genes based on multiple databases. They used 
the network to identify important candidate genes 
from numerous loci on the basis of their functional 
interactions and reduced the cost of pinpointing true 
disease genes in the analyses of disorders. In summary, 
molecular networks can be obtained from many levels 
including co-expression (10), co-regulation (11) or 
protein-protein interactions (6). Depending on the 
different networks, a variety of methods have been 
suggested for the mining of useful functional infor-
mation, such as clustering genes that show high cor-
relation coefficients between gene expression profiles 
(12, 13), identifying functional modules based on the 
structure of transcriptional regulation (14), or pre-
dicting functional modules encoded in a microbial 
genome (15). With the rapid development of GWAS, 
the construction methods of molecular networks pro-
vided us with a potential strategy for obtaining a net-
work at the genetic level by using predicted interac-
tions between SNPs. Networks like this may show 
special features due to the genetic component and 
may aid in the explanation of complex diseases. Ac-
cordingly, by introducing disease information into 
such a network and further analyzing functional gene 
modules, we can learn more about the functional cha-
racteristics of disease etiology. 

As we know, rheumatoid arthritis (RA) is a chronic 
disease that leads to inflammation of the joints and 
surrounding tissues. Recent studies have indicated 
that genetic factors play important roles in the in-
creased risk of developing RA. In the present study, 
we present a novel method for mining functional gene 
modules linked with RA. First, we carried out the 
Haseman-Elston (H-E) test (16) and Random Forest 
(RF) algorithm (17) to screen out disease-related 
SNPs from a whole-genome dataset. Secondly, can-
didate SNPs shared by the H-E test and RF algorithm 

were used to construct the SNP-SNP network with 
polymorphism interaction analysis (PIA) algorithm 
(18), which was developed as a new method to iden-
tify the synergistic contribution of SNPs to diseases. 
Then, sub-networks were extracted by analyzing the 
structure of the SNP-SNP network. Further, using the 
dbSNP database, all of sub-networks were mapped 
onto gene modules. We used a permutation-based 
procedure to evaluate the significance of associated 
SNP pairs. For the five gene modules we discovered, 
Gene Ontology (GO) analysis indicated that genes 
within a common module were likely to be enriched 
on some RA-related GO terms. Furthermore, the 43 
SNPs involved in the identified gene modules, were 
found to be the best classifiers when used as variables 
for sample classification. Finally, we compared the 
results of our method to existing tools including 
GRAIL (19) and GSEA-SNP (20) to evaluate the 
similarity and novelty of our results. 

Results 

Construction of RA-specific SNP-SNP net-
work 

In this study, we defined a total score for each SNP- 
SNP pair as described in the Materials and Methods 
section. We found when we kept the top 1,000 SNP 
pairs obtained using each of seven scores involved in 
PIA, only a small number of overlapping SNP pairs 
were found. However, it is interesting to note that us-
ing the aforementioned total score, we acquired the 
maximum number of overlapping SNP pairs with all 
of seven measures involved in PIA. Therefore, total 
score was a more reasonable measure for evaluating 
cooperating SNP pairs contributing to disease. As a 
result, we used total score to evaluate the interaction 
strength of each SNP-SNP pair (Table S1).   

According to our permutation test as described in 
the Materials and Methods section, the empirical dis-
tribution of total scores was formed from 1,000,000 
scores, and a threshold value of total score 
( 1.3394S  ) was considered as a cut-off value at a 
significance level (P=0.05) to screen out SNP pairs 
(Figure 1). Among the top 1,000 SNP pairs acquired 
with the original dataset, we found that the total 
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scores of the top 100 SNP pairs were all greater than 
the threshold value. We used these significant SNP 
pairs to construct a SNP-SNP network specific to RA. 
This network contains 110 SNPs and 100 edges, 
where an edge indicated a SNP pair. The total scores 
and their corresponding P-values for the top 100 SNP 
pairs are shown in Table S2. The SNP-SNP network 
shown in Figure S1 was generated with MAVisto 
software (21). 

 

Figure 1  The empirical distribution of total scores. By per-
muting sample labels 1,000 times, the PIA algorithm is per-
formed repeatedly for 1,000 new datasets. The empirical dis-
tribution of total scores is formed from all above results. The 
threshold value of 1.3394 corresponds to a significance level of 
0.045. 

Identification of functional gene modules 

According to our rule for extracting hub SNP, five 
hub SNPs with a degree greater than 5 were extracted: 
rs1424903 (degree=18, P=1.5×10-13), rs744877 (de-
gree=9, P=2.3×105), rs164466 (degree=5, P=0.010), 
rs1004531 (degree=5, P=0.010) and rs759382 (de-
gree=5, P=0.010). Then, five sub-networks defined by 
hub SNPs were extracted. To mine functional gene 
modules and high risk genes linked with RA, we 
mapped the SNPs onto genes using a dbSNP database. 
We calculated the distances of all SNPs to the splice 
variants of their nearest genes along chromosomes. 
The highest frequency occurs in the range from 0 to 
4,000 base pairs. This result closely agrees with pre-
vious reports, in which SNPs that are >500 kb away 
from any gene are not considered because most en-
hancers and repressors are <500 kb away from genes, 

and most linkage disequilibrium blocks are <500 kb 
(8). This mapping method allowed us to identify 
genes implicated by SNPs of sub-networks to obtain 
gene-gene interaction modules. As a result, 59 genes 
associated with RA were identified from 110 SNPs 
involved in the SNP-SNP network. A total of 12 genes 
were associated with 19 SNPs in the 
rs1424903-related gene module. The rs744877 
(CD160)-related gene module contained seven genes 
associated with 10 SNPs. five genes corresponding to 
six SNPs were included in the rs1004531 (TNFAIP8) 
related gene module. The rs164466-related and 
rs759382 (SLC9A4)-related gene modules each con-
tained two genes corresponding to six SNPs. 

We identified 59 genes involved in the SNP-SNP 
network as the background set, and genes involved in 
5 gene modules as the test sets. Using a significance 
level of 0.05, most enrichment results were found in 
the rs1424903-related and rs744877-related gene 
modules. At a significance level of 0.1, two enrich-
ment GO terms occurred in the rs1004531-related 
gene module: GO: 0005515 (P=0.08591) and GO: 
0005886 (P=0.0702). However, no distinct enrich-
ment phenomena were seen in other gene modules 
owing to their low number of genes. Those gene 
modules with significant GO terms were considered 
functional gene modules relevant to RA. Two gene 
modules particularly enriched in GO terms (the 
rs1424903-related and rs744877-related gene modules) 
are shown in Table 1. In addition, the enrichment re-
sults for five gene modules are shown in the heat map 
generated by Cytoscape software (22) in Figure S2.  

We found that SNPs [rs2051179 (RUNX1), 
rs164466, rs1424903, rs744877 (CD160) and 
rs759382 (SLC9A4)] involved in functional gene 
modules were previously identified as susceptibility 
loci in a study using ensemble decision trees (4) and 
another study using the BGTA algorithm (14). As 
shown by “Molecular Function” in Table 1, the 
rs1424903-related gene module was relevant to pro-
tein binding (GO: 0005515). Kristensen has previ-
ously reported that there seems to be a qualitative 
rather than a quantitative change in 3H-imipramine 
binding in patients with RA (23). As shown by the 
dimension “Biological Process", a significant GO 
term was regulation of transcription (GO: 0006355).  
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Table 1  Enriched GO terms with P<0.1 in the rs1424903-related and rs744877-related gene modules 

Gene module Category GO term P n# m# Description 

rs1424903-related MF GO:0005515 0.0550 16 5 Protein-binding 

  GO:0003700 0.0523 5 2 Transcriptional activator activity 

  GO:0008270 0.0461 8 3 Zinc ion-binding 

  GO:0005524 0.0729 9 3 ATP-binding 

 BP GO:0006355 0.0461 8 3 Regulation of transcription 

 CC GO:0005634 0.0729 9 3 Nucleus 

  GO:0005622 0.0461 8 3 Intracellular 

  GO:0005737 0.0360 11 4 Cytoplasm 

  GO:0016021 0.0729 9 3 Integral to membrane 

  GO:0005886 0.0919 6 2 Plasma membrane 

rs744877-related MF GO:0005524 0.0401 9 2 ATP-binding 

 BP GO:0007165 0.0182 7 2 Signal transduction 

 CC GO:0016021 0.0401 9 2 Integral to membrane 

  GO:0005886 0.0109 6 2 Plasma membrane 

Note: n#, Number of genes contained in a category counted using 59 background genes. m#, Number of genes contained in a category counted using 
12 genes and 6 genes for the rs1424903-related and rs744877-related gene modules, respectively. MF stands for Molecular Function; BP and CC 
stand for Biological Process and Cellular Component, respectively. Enriched GO terms with P<0.05 are in bold. 
 
Redlich et al have previously found that overexpres-
sion of Ets-1 in RA synovial tissue may be due to tu-
mor necrosis factor-alpha (TNF-) and interleukin 1 
(IL-1). Therefore, they suggested that Ets-1 may be an 
important transcription factor in the cytokine-mediated 
inflammatory pathway and destructive cascade char-
acteristic of RA (24). Aud and Peng also investigated 
whether transcription factors have important roles in 
the pathogenesis of inflammatory arthritis, and they 
have proposed several targets for anti-inflammatory 
therapies to modulate transcription factor activity (25). 
Based on the dimension “Cellular Component”, there 
is also evidence to support the significance of cyto-
plasm (GO: 0005737). Anti-neutrophil cytoplasm an-
tibodies (ANCA) occur occasionally in RA, but their 
incidence and clinical significance are unknown. Sa-
vige et al demonstrated that ANCA may be associated 
with systemic vasculitis, and there is an incomplete 
correlation between indirect immunofluorescence 
patterns and antibody specificity in enzyme-linked 
immunosorbent assay (ELISA) systems (26). 

For the rs744877-related gene module, four sig-

nificant GO terms were found. As shown by “Mo-
lecular Function”, GO: 0005524 (ATP binding) was 
related to the inflammatory response (27). Schimitz et 
al (28) demonstrated that the ATP-binding cassette 
(ABC) transporter, ABCA1, was induced during dif-
ferentiation of human monocytes into macrophages, 
and there was a dual regulatory function for ABCA1 
in macrophage lipid metabolism and inflammation. As 
shown by 'Biological Process', the significance of GO: 
0007165 (signal transduction) is also supported by 
previous studies. Extracellular signals are transduced 
intracellularly via multiple pathways, resulting in al-
terations in the transcription and translation of spe-
cific proteins. Some of these signaling pathways re-
sult in the production of proteins, including cytokines 
and matrix metalloproteinases, which are implicated 
in the pathogenesis of RA (29). 

Further analysis revealed more valuable informa-
tion in the functional gene modules. Among the 12 
genes included in the rs1424903-related gene module, 
zinc-finger protein 238 (ZNF238) is attached to 
zinc-finger proteins that can regulate the human im-
munodeficiency virus type 1 (HIV-1) long terminal 
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repeat (LTR) (30). In the rs744877-related gene mod-
ule, hub gene CD160 is a potential RA association 
gene. The CD160 receptor represents a unique trig-
gering surface molecule that is expressed by cytotoxic 
NK cells, participates in the inflammatory response 
and determines the type of subsequent specific immu-
nity (31).  

In addition, it is interesting to observe two links 
among five hub SNPs. One pair was rs164466- 
rs1004531 (TNFAIP8), and the other was rs1424903 
rs759382 (SLC9A4). This may suggest that functional 
gene modules cooperate to affect RA and highlight the 
need for further study. 

Comparison with GRAIL 

We also sought to compare our method with another 
SNP analytical tool, GRAIL. In the GRAIL program, 
we took all query regions involved in the whole net-
work as the input to GRAIL. Interestingly, common 
gene cliques were found between gene groups ac-
quired with GRAIL and the functional gene modules 
identified with our methods (Table 2). For example, 
MYH9, CTSB, ELOVL6 and PHACTR1 in the 
rs1424903-related gene module were also included in 
the gene group obtained with GRAIL (Ptext=0.0026). 
GRAIL and our study are two methods based on dif-

ferent paths for mining gene groups associated with 
disease. GRAIL can extract similar genes from all 
query regions that the user is attempting to evaluate. 
Compared to those gene groups acquired by GRAIL, 
functional gene modules linked with RA identified 
using our method are more conservative and represent 
higher risk because these modules are prioritized layer 
by layer, and include gene-gene interactions associ-
ated with disease. 

Comparison with Gene Set Enrichment Anal-
ysis-SNP (GSEA-SNP) on five sub-networks 
defined by hub SNPs 

GSEA-SNP programs were performed for five 
sub-networks. An enrichment score (ES) was com-
puted for each sub-network. Using a permutation test, 
we obtained the threshold value of ES at a signifi-
cance level of 0.05 for each sub-network (Figure S3). 
Those sub-networks with P<0.05 were extracted as 
enrichment sub-networks associated with disease. The 
results showed that three sub-networks were signifi-
cant: the rs1424903-related (P=0.0020), rs164466- 
related (P=0.0020) and rs759382-related sub-netw-
orks (P<0.0001) (Table 3). It is worth noting that the 
rs1424903-related gene module was also the functional 
gene module with the most significant GO terms, 

Table 2  The comparison between gene modules identified by our method and similar genes acquired with GRAIL 

Gene modules identified by our method Similar genes acquired with GRAIL 

Gene module (sub-network) Genes included in gene module Pmodule
a Similar genes Ptext 

b 

rs1424903-related 

ZNF238, NDEL1, GMDS, RUNX1, 
MYH9, ELOVL6, CTSB, 
PHACTR1, BHMT2, SLC9A4, 
LOC339977, ANKH 

1.5E-13 

PRKCB1, PLEK, 
IQGAP2, MYH9, 
ELOVL6, CTSB, 
PHACTR1 

0.0026 

rs744877 (CD160)-related 
CD160, C21orf34, LHFP, GRPEL2, 
CNTN4, CSNK2A2, WDR62 

2.3E-5 
CTSB, CASP6, 
PRKCB1,GRPEL2, 
CNTN4, CSNK2A2 

0.0131 

rs1004531 (TNFAIP8)-related TNFAIP8, PLAU, RIMS1, C10orf55, ELF1 0.010 
BTBD9, CASP6, CSNK2A2, 
ELF1, TNFATP8, RIMS1, 
PLAU 

0.0249 

rs164466-related TNFAIP8, MTMR9 0.010 
MYH9, NLRP7, 
CSNK2A2, ELOVL6, 
PRKCB1 

0.0038 

rs759382 (SLC9A4)-related SLC9A4, C21orf34 0.010   

Note: aPmodule indicates the probability of a hub SNP with >t connections (t is the degree of the hub) in a random network. bPtext is the text-based simi-
larity metric based on GRAIL. Similar genes with Ptext<0.01 by GRAIL analysis are shown. Genes underlined represent common genes shared by two 
gene sets, which are gene modules identified by our method and genes acquired with GRAIL. 
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Table 3  GSEA-SNP results for five sub-networks defined by hub SNPs 

Number of SNPs/genes 
Sub-network 

SNPs Genes 
ES Number of significant SNPs 

by x2-test (P<0.05) P FDR ES threshold 
values  

rs1424903-related 19 12 0.6672 9 0.0020 <0.001 0.5807 

rs744877-related 10 7 0.5652 3 0.2398 0.002 0.6566 

rs164466-related 6 2 0.8032 4 0.0020 0.002 0.7455 

rs1004531-related 6 5 0.7493 3 0.0551 0.031 0.7618 

rs759382-related 6 2 0.8903 4 0.0000 0.066 0.7180 

Note: FDR, false discovery rate. 
 
which indicated that elucidation of the relationship 
between genes within this module may facilitate in-
terpretation of disease etiology. Furthermore, for each 
of five sub-networks, we applied GO enrichment 
analysis to its 1,000 random matched SNP sets. For 
sub-networks with hubs rs1424903, rs744977, 
rs164466, rs1004531 and rs759382, each matched set 
consisted of 19, 10, 6, 6 and 6 SNPs, respectively, 
randomly selected from a total of 702 candidate SNPs. 
We found that the frequency of random sub-networks 
including at least a significant GO term was 2.3%, 
1.9%, 0.0%, 0.2% and 0.1%, respectively. This result 
therefore suggests that a more obvious GO enrich-
ment effect is present in our extracted sub-networks 
than in matched SNP sets selected by chance. 

Comparison of classification performances 

Four SNP groups described in the Materials and Me-
thods section were used to validate the classification 
performances of risk SNPs identified with our method. 
These included 43 SNPs involved in five 
sub-networks (modules), 702 candidate SNPs, 110 
SNPs involved in 100 co-operating SNP pairs and the 
top 50 SNPs sorted by P-values with genotype-based 
chi-square tests. Logically, the SNP group with 43 
SNPs might be a better classifier than the other SNP 
groups when they are taken as variables to classify 
samples. Here, five classifiers were used: naïve Bayes 
(32), k-Nearest Neighbor (kNN) (33), Neural Net-
work (34), Support Vector Machine (SVM) (35) and 
Random Forests. We used 5-fold cross-validation to 
assess the classification accuracy rate of these differ-
ent machine-learning methods. We set k at 3 in the 
kNN program and took the radial basis function (RBF) 

as the kernel function in the SVM program. In the 
Random Forests program, 5,000 trees were con-
structed. As we expected, five classifiers all showed 
that the SNP group with 43 SNPs was more powerful 
than other SNP groups when used as predictor vari-
ables for sample classification (Figure 2). This result 
supports our hypothesis and indicates that mining 
functional gene modules by constructing a SNP-SNP 
network is likely to provide an effective approach to 
map disease loci (genes) linked with RA. 

 

Figure 2  Comparison of classification performance of four 
SNP groups using five classifiers. The four SNP groups are: 43 
SNPs included in five sub-networks (modules, brown), 702 
candidate SNPs identified in the GWA study (blue), 110 SNPs 
involved in 100 co-operating SNP pairs (red) and the top 50 
SNPs sorted by P-values with chi-square tests (green). The five 
classifiers are naïve Bayes (NB), k-Nearest Neighbor (kNN), 
Neural Network (NN), Support Vector Machine (SVM) and 
Random Forest (RF). 
 

Discussion 

In this paper, we present a novel method for mining 
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functional gene modules based on a genetic factor 
(SNPs) to study RA. In contrast to mining gene mod-
ules by correlating protein interaction networks and 
gene expression patterns, we constructed a SNP-SNP 
network and extracted sub-networks with hub SNPs to 
mine functional gene modules associated with RA. 
We found that the best classifier was based on 43 
SNPs involved in the gene modules. Moreover, we 
identified some risk genes associated with RA, many 
of which were confirmed by previous studies.  

Given the constructed SNP-SNP network, it is in-
teresting to note that the strongest SNP-SNP interac-
tions appeared in the functional gene modules. For 
instance, rs744877*rs1033109 (total score=3.4124, 
P=0.00022) in the rs1424903-related gene module 
and rs1424903*rs2077889 (total score=2.9736, 
P=0.0106) in the rs744877-related gene module. As 
validation of our strategy, we ranked SNPs according 
to the sum of their frequency in the top 100 SNP pairs 
using seven scoring measures, and the top 15 SNPs 
were designated as feature SNPs associated with RA 
in our analysis (Table S3). In other words, these fea-
ture SNPs appeared most frequently in the top 100 
scoring SNP pairs using seven scoring metrics. Inter-
estingly, five hub SNPs, rs164466, rs1424903, 
rs744877 (CD160), rs1004531 (TNFAIP8) and 
rs759382 (SLC9A4), were also included in these fea-
ture SNPs. Specifically, rs1424903, rs164466 and 
rs744877 (CD160) ranked the top three with the 
highest frequencies. Furthermore, among 98 SNPs 
(P<0.05) identified by the chi-square test out of 702 
genome-wide candidate SNPs, 9 (47.4%), 3 (30.0%), 
4 (66.7%), 3 (50.0%) and 4 (66.7%) significant SNPs 
are found in rs1424903-related, rs744877-related, 
rs164466-related, rs1004531-related and rs759382- 
related gene modules, respectively. The most signifi-
cant SNPs, rs164466 (P=0.000126), rs1424903 
(P=0.000453) and rs744877 (P=0.000566), were the 
top three feature SNPs and also hub SNPs of three 
sub-networks. These results suggest that the func-
tional gene modules discovered by our method are 
more likely to be associated with RA. 

To further analyze the functional gene modules 
discovered by our method, we performed functional 
enrichment analysis for the 702 candidate SNPs iden-
tified in the GWA study and the whole network (the 

top 100 cooperating SNP pairs) based on Gene On-
tology. Two GO terms (GO: 0005524 and GO: 
0006355) were found to be enriched in the functional 
gene modules, the candidate SNPs and the whole 
network. Five GO terms (GO: 0005515, GO: 0005524, 
GO: 0006355, GO: 0005622 and GO: 0016021) were 
enriched in both the functional gene modules and the 
whole network. Interestingly, some significant GO 
terms, such as GO: 0005737 (0.0304) enriched in the 
rs1424903-related gene module and GO: 0007165 
(0.0172) enriched in the rs744877-related gene mod-
ule, were not enriched in the whole network. This 
indicates that RA may be more closely associated 
with the genes concentrated in the gene modules than 
with the genes involved in the whole network. 

Although our study presents a new approach for 
researchers to study RA and extends the combination 
of genetic factors and their biological network to ex-
plain the mechanisms in pathogenesis, it should be 
pointed out that our interaction analysis does not take 
into account pedigree data. In order to identify the 
synergistic effect between SNPs, we constructed an 
independent sample by converting the family-based 
data into a case-control dataset. As such, this process 
might result in the inflation (or reduction) of type I 
error rates, so we should be cautious when interpret-
ing the results. In addition, in this process, some sam-
ples are excluded, and the minor effect between SNPs 
was ignored. Further work is needed to identify the 
minor effect between SNPs by handling family-based 
data.  

It is noteworthy that we did not implement PIA 
analysis for the whole-genome data, and instead per-
formed the first stage screening for candidate SNPs 
with the H-E test and RF algorithm to overcome 
computational complexity. In addition, since the PIA 
algorithm cannot deal with pedigree-induced residual 
correlation structure, we did not perform interaction 
analysis directly using SNPs identified by the H-E test. 
However, it is of interest to note that 338 risk SNPs 
(P<0.05) identified by the traditional chi-square test 
were largely included in the 2,200 SNPs extracted by 
the RF algorithm. Also, there are still 702 overlapping 
SNPs (31.9%) shared by the H-E test and RF algo-
rithm although methodological differences are un-
avoidable. It is therefore suggested that the shared 
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candidate SNPs should show stronger association 
signals with disease than other SNPs. Indeed, we per-
formed interaction analysis with all of the 2200 SNPs 
identified by RF, and found that those important hub 
SNPs, such as rs744877 and rs1004531, were not 
identified. Therefore, using H-E or RF alone may not 
be good enough for constructing a SNP-SNP network. 

Moreover, it is pointed out that the testing dataset 
used in this work is relatively small, which might re-
sult in insufficient efficacy. Indeed, we also consid-
ered using larger datasets to validate our method. An-
other whole-genome dataset, Wellcome Trust Case 
Control Consortium (WTCCC) data, has provided us 
with a chance to address this issue. Preliminary anal-
ysis using our new method is encouraging in that we 
find CD160, TNFAIP8 and PTPN22 are also impor-
tant hub genes. Further comprehensive investigation 
will be warranted for future studies. On the other hand, 
because the genetic network is a complex network 
with complicated biological and genetic mechanisms, 
it remains a challenging task to interpret genetic fac-
tors in the context of known functional relationships. 
Chromosome and pathway-based techniques can be 
introduced into this framework for a better under-
standing of the mechanisms of disease. 

Materials and Methods 

Data source 

We used the North American Rheumatoid Arthritis 
Consortium (NARAC) data provided by the Genetic 
Analysis Workshop 15 (GAW15) Problem 2 
(http://www.gaworkshop.org), which included 746 
multiplex Caucasian RA families scanned with SNPs. 
About 5,744 genome-wide SNPs were genotyped us-
ing the Illumina system in all families including 66 
families from Katherine Siminovitch, a collaborator in 
Canada (36). After removing those individuals with 
unclear diagnoses or SNP markers that were not ge-
notyped successfully, a total of 1,989 individuals 
(1,640 affected vs. 349 unaffected) and 5,407 SNP 
markers from 22 autosomes were included in the final 
analysis. In our analyzed dataset, there was no indi-
vidual with >10% missing SNP genotypes and no 
SNP with >5% missing genotypes.  

Identification of candidate SNPs associated 
with disease 

To overcome the computational complexity of ana-
lyzing interactions among all 5,407 SNPs, we per-
formed a first stage screening for candidate SNPs. 
The rationale behind this first stage screening is that 
those markers with high-dimension interaction infor-
mation will show, at a minimum, modest association 
with RA. Therefore, we will not lose many informa-
tive markers if we set a less stringent threshold of as-
sociation effect in the first stage selection. Consider-
ing the structure of pedigree data, we used the H-E 
regression-based linkage test (16) to identify the 
non-random association due to genetic linkage be-
tween two genomic loci. However, the possible inac-
curate Identity by Descent (IBD) computation error 
included in the H-E analysis may give a false result. 
Accordingly, to overcome any false positive error 
caused by an individual analysis, the RF program (17), 
a nonparametric tree-based predictive model, which 
has been recommended as a pre-screening tool for 
large scale association studies, was also applied to 
implement the same screen progress. Therefore, the 
shared candidate SNPs should show more association 
signals with disease than other SNPs despite meth-
odological differences. In the present study, shared 
candidate SNPs will be used for further interaction 
analysis. 

Identification of SNPs associated with disease 
by H-E linkage test  

We used the H-E linkage test for the pedigree data of 
746 families. The SIBPAL program of S.A.G.E.5.4.2 
(http://genepi.cwru.edu/) was used to calculate IBD 
by multipoint consideration. The H-E linkage test was 
performed separately for pairs with 0, 1 or 2 affected 
family members (no sib in a sibling pair is affected, 
only one is affected and both are affected, respec-
tively) as tests for linkage. A total of 1,551 SNPs with 
P<0.05 were filtered from the whole 5,407 SNPs. To 
avoid the possible loss of the true positives, we did 
not perform a multiple-test correction for the number 
of SNPs evaluated. Instead, we employed another 
program (RF) to control the Type I error rate. There-
fore, SNPs identified by the H-E test can be taken as 
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an indicator for roughly rating relative importance of 
the candidate SNPs. 

Identification of SNPs associated with disease 
by RF 

In order to apply the RF program, we selected one 
unaffected individual randomly from each of 272 dif-
ferent families, and these 272 unaffected individuals 
were used as our control group. For 474 families from 
which an individual was not recruited to the control 
group, we sampled one individual per family at ran-
dom, and these 474 affected individuals were taken as 
the case group. We used the randomForest package in 
R-2.5.1 (http://www.r-project.org/) to identify risk 
SNPs covering each of chromosomes respectively 
from the whole genome of 5,407 SNPs with our con-
structed case-control dataset. For each chromosome, 
5,000 trees were constructed and the out-of-bag (OOB) 
data, approximately one-third of the observations, 
were then used to estimate the prediction accuracy. 
We found that the accuracy of the OOB prediction on 
22 chromosomes were all higher than 65%. For this 
purpose, we used Mean Decrease Gini (MDG) of the 
RF algorithm to measure the risk level of a SNP. The 
higher the MDG is, the further the degree of impurity 
arising from category can be reduced by a SNP. 
Therefore, high MDG suggests an important SNP. We 
ranked SNPs in terms of their MDG, and filtered the 
top 100 SNPs for each chromosome. Accordingly, 
2,200 SNPs were extracted as candidate SNPs.  

Finally, a total of 702 candidate SNPs shared by the 
H-E test and RF algorithm were used for further in-
teraction analysis. 

Selection of cooperating SNP pairs contribut-
ing to disease 

In this analysis, we defined a total score for each 
SNP-SNP pair. The formula was as follows: 

7

1
log( )i

i
total score score



   

where score1-score7 were seven scoring metrics in-
cluded in the PIA algorithm and the definition of these 
metrics have been described previously (18). Accord-
ing to the definition of these scoring metrics in PIA, 
higher scores reflect stronger cooperation between 

SNPs for contributing to a disease.  
In the PIA algorithm, SNPs were recoded as 0, 1 or 

2 when they were homozygous for the reference allele, 
heterozygous, or homozygous for the alternate allele, 
respectively. For each SNP pair, the total score de-
fined in our analysis was used to indicate its extent of 
interaction. 

Permutation of sample labels for calculating 
interaction threshold value 

To identify risk SNP combinations, a permutation test 
(13) was performed. First, sample labels were per-
muted 1,000 times and 1,000 new datasets were gen-
erated. In the following step, each dataset was re-
peatedly analyzed by the PIA algorithm and the total 
scores of the top 1,000 SNP pairs were reserved. Ac-
cordingly, the empirical distribution of total scores 
was formed from 1,000,000 results, and a threshold 
value was considered as a cut-off value at a signifi-
cance level (P=0.05) to screen out SNP pairs. Finally, 
among the top 1,000 SNP pairs obtained from the 
original dataset, a pair-wise synergistic SNP was con-
sidered significant if its total score was greater than 
this threshold value. All significant synergistic SNP 
pairs contributing to disease were used to construct a 
disease-specific SNP-SNP network. In this network, 
the nodes represent SNPs, and links between SNPs 
represent their cooperating relationship contributing 
to disease.  

Identification of hub SNPs 

It is well-known that a relatively small number of hub 
nodes (genes or SNPs) play important roles in most 
cellular networks. As a network measure, degree has 
frequently been used to measure the importance of a 
hub node (37). To obtain significant hub nodes, we 
assumed that the degree of nodes followed a Poisson 
distribution in a random network. To determine 
whether a node is considered a hub node, a formula 
was used to compute its probability of degree of equal 
or larger than t. The formula is as follows (38): 

0
( ) 1 ( ) 1 / !
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( 2
1 1, / nnP P m C   ), 

where n is the number of nodes and m is the number 
of interacting SNP pairs in our constructed dis-
ease-specific SNP network. We considered a SNP 
with >5 connections in a random network (P=0.010) 
as a rare event under the null hypothesis that n nodes 
(SNPs) were connected randomly. The probability of 
this rare event was taken as a threshold, and a SNP 
was considered a hub SNP when its P value was 
smaller than this threshold.  

Mining of disease-related gene functional 
modules 

We extracted sub-networks defined by hub SNPs from 
our SNPSNP network; that is, we considered a group 
of SNPs linked directly to a hub SNP as a 
sub-network in which the hub SNP was also included. 
Then, sub-networks were turned into gene-gene in-
teraction modules by mapping SNPs to genes using 
dbSNP database. We used the following rule for map-
ping SNPs onto genes: a gene is associated with a 
SNP if this SNP is located within this gene or un-
translated regions of this gene. SNPs that mapped 
onto multiple genes were assigned to a single gene 
according to the following hierarchy: coding>in-

tronic>5' UTR>3' UTR>5' upstream>3' upstream. 
This strategy can avoid issues with weight inflation 
induced by genes having different numbers of SNPs 
(39). Genes involved in the constructed primary net-
work were also obtained by the same method. All 
genes involved in the constructed network were de-
fined as the background gene set Gb, and genes in 
each gene module were defined as the test gene set Gt 
for functional enrichment analysis based on GO. A 
hypergeometric distribution and Onto-express web 
tools (http://vortex.cs.wayne.edu/ontoexpress) were 
used to generate P-values (40). In the present study, 
only those GO terms (and their parents) whose num-
ber of annotated genes were more than two for each 
gene module were considered. We did not perform the 
multiple test correction for GO terms because the 
number of genes involved in the network was not 
large, and the multiple test correction might lead to a 
loss of true-positive results. A nominal significance 
level of 0.1 was set in our analysis, and a GO term 
with a significance level of 0.05 was considered to be 
particularly enriched in the gene module. The gene 
modules with significant GO terms were considered 
as functional gene modules associated with RA. Our 
work flowchart is shown in Figure 3. 

 

Figure 3  The flow chart for mining functional gene modules associated with RA via constructing a SNP-SNP network by the PIA 
algorithm. A. Constructing a SNP-SNP network with the top 100 SNP pairs whose total scores are higher than the threshold. B. Ex-
tracting sub-networks involved in hub SNPs whose degree is more than 5. C. Mapping SNPs onto genes using a dbSNP database and 
performing GO enrichment analysis of gene modules obtained from sub-networks. A gene module is considered a functional gene 
module in which at least one significant GO term is included. 
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Comparing with two other SNP anlaysis tools  
GRAIL and GSEA-SNP 

For validation, we compared our method with two 
other SNP analysis tools, GRAIL and Gene Set En-
richment Analysis-SNP (GSEA-SNP). GRAIL was 
developed recently to look for similarities in the pub-
lished scientific text among genes associated with 
complex disease. In the GSEA-SNP process, an en-
richment score (ES) was computed for each sub-netw-
ork. By permutation tests, we can obtain the threshold 
value of ES at a significance level of 0.05 for each 
sub-network. Those sub-networks with P<0.05 were 
extracted as enrichment sub-networks associated with 
disease. 

Comparison of classification performances 

To further validate risk SNPs identified with our me-
thod, four SNP groups were defined in the present 
study: SNPs included in sub-networks (modules), 
candidate SNPs, SNPs involved in co-operating SNP 
pairs and the top 50 SNPs sorted by P-values with 
genotype-based chi-square tests using independent 
samples constructed. We attempt to find whether 
SNPs involved in gene modules can perform better 
than those of SNPs when used as variables to make 
risk prediction of disease outcome. 
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