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Abstract

MicroRNAs (miRNAs) are a class of short non-coding RNA molecules that have attracted tremendous attention from the biological and
biomedical research communities over the past decade. With over 1900 miRNAs discovered in humans to date, many of them have
already been implicated in common human disorders. Facilitated by high-throughput genomics and bioinformatics in conjunction
with traditional molecular biology techniques and animal models, miRNA research is now positioned to make the transition from
laboratories to clinics to deliver profound benefits to public health. Herein, we overview the progress of miRNA research related to
human diseases, as well as the potential for miRNA to becoming the next generation of diagnostics and therapeutics.
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A historical overview of microRNA research

MicroRNAs (miRNAs) are a class of recently identified
non-coding RNA molecules that play an essential role in
gene expression regulation at post-transcriptional levels
[1]. With the first miRNA, lin-4, discovered in Caenorhab-
ditis elegans in 1993 via forward genetics [2], the second C.
elegans miRNA, let-7, was not identified by the same
approach until seven years later [3]. This time gap high-
lights not only the inefficiency of forward genetics and stan-
dard molecular biology techniques to discover miRNAs,
but also the lack of enthusiasm among researchers who
previously suspected that miRNA was merely a worm-
specific phenomenon. However, the field of miRNA
research has since flourished with over 17,000 miRNAs dis-
covered to date in 142 species, including more than 1900 in
humans [4]. The key word “miRNA” currently pulls more
than 16,000 publications from PubMed, and the first
miRNA-targeted drug has now entered a phase II clinical
trial (http://www.ClinicalTrials.gov), demonstrating early
promise. In retrospect, the timing of miRNA research

* Corresponding authors.
E-mail: yli@benaroyaresearch.org (Li Y), Kris.Kowdley@vmmc.org
(Kowdley KV).

evolution was particularly interesting as it echoed the time
frame of the Human Genome Project (HGP) and many
other whole-genome sequencing projects completed over
the past decade. The completion of these projects has
impacted the field of miRNA research in profound ways.
The fruitful expansion of miRNA research was triggered
by the identification and functional characterization of
let-7 [3]. When Ruvkun et al. demonstrated that the let-7
sequence was highly conserved across the evolutionary
spectrum [5], biologists started to realize that this tiny
RNA molecule may have a big role to play in humans as
well [6]. Before long, three competing laboratories made
de novo identifications of dozens of single-stranded RNA
molecules approximately 22 nt in length by the combina-
tion of an improved cloning method and bioinformatics,
a novel approach at the time [7-9]. The method of de novo
identification was rather successful, leading to most
miRNA discoveries before 2006, including more than 300
in humans. More importantly, it revealed the intrinsic char-
acteristics of miRNA as a class, such as the secondary
structure of miRNA precursors, allowing new miRNAs
to be computationally identified. However, the de novo
identification method came with a few limitations. It was
difficult to clone miRNAs expressed at low levels or with
certain sequence compositions and post-transcriptional
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modifications [10,11]. Nevertheless, these limitations could
be bypassed through in silico prediction. With the comple-
tion of many whole genome sequencing projects [12—15],
thousands of new miRNA species were now identifiable
by computational prediction [4,16]. Taking a variety of fac-
tors into consideration, such as sequence conservation and
thermodynamic stability of secondary structure, research-
ers were now able to identify new miRNA species that
failed to be discovered by cloning approaches [17]. To date,
the vast majority of known miRNA species have been dis-
covered by bioinformatics and their sequences can be
found in the Sanger miRNA registry (http://www.miR-
Base.com), an open access database for miRNA research
[4].

The intriguing story of miRNA cannot be fully revealed
without identifying miRNA targets in the context of bio-
logical processes. Through painstaking characterization
of miRNA biogenesis and functional pathways [18], it is
now clear that miRNAs repress the expression of cellular
gene targets in a sequence-dependent manner. Specifically,
the miRNA “seed”, i.e., the sequence between the 2nd and
the 8th nt from the 5’ end, is essential in recognizing targets
[19]. Facilitated by Dicer, an RNase III family member, the
heteroduplex of miRNA and its target mRNA is integrated
into the RNA-induced silencing complex (RISC). Mainly
composed with the multi-functional catalytic protein, Arg-
onaute, and a double stranded RNA binding protein,
TRBP, responsible for recruiting Dicer to Argonaute
[20-23], RISC plays a central role in miRNA-mediated
repression on gene expression [21]. The type of repression
relies on the degree of sequence complementarity between
seed and target sequences. Whereas partial complementar-
ity may induce translation repression or target mRNA
instability, perfect complementarity normally causes target
mRNA destruction [24]. This target recognition mecha-
nism allows for in silico methods of target prediction by
aligning miRNA sequences with entire genomes in search-
ing for potential miRNA binding sites. Adopting similar
algorithms, a few groups have developed open access
target prediction software with minor variations, such as
miRBase, PicTar, TargetScan and miRanda [25-30], ezc.
Conversely, researchers have been trying to use
high-throughput genomic approaches, such as oligonucleo-
tide microarrays facilitated by bioinformatics, to experi-
mentally identify targets [31-33]. Evidence suggests that
RNA destabilization is the predominant mechanism
mediated by miRNA in mammals, making these methods
particularly useful for identifying strong miRNA comple-
mentarities with marked effects [34]. Specifically, by
introducing a miRNA of interest into cultured mammalian
cells, the expression changes of predicted targets are
monitored in real-time [31]. Sequence alignment of the arti-
ficially over-expressed miRNA and the down-regulated
mRNA would further suggest a direct regulation or off-
target effect. Both in silico prediction and target expression
profiling suggest that the regulatory relationships of
miRNAs and their targets are complex. Because of short

seed sequences, multiple miRNAs may repress the expres-
sion of a specific gene simultaneously by targeting different
sequence regions; likewise, a single miRNA may be able to
regulate the expression of dozens or even hundreds of
targets at the same time. Although it was initially believed
that miRNA-mediated repression takes place exclusively in
the cytoplasm, new evidence suggests that it may also occur
in other cellular compartments such as mitochondria and
nucleus [35,36]. The complexity of regulation underscores
the necessity of combining traditional molecular biology
with modern bioinformatic approaches to characterize
the roles of miRNA more effectively.

miRNAs and human diseases

As discovery of human miRNAs increased, the research
focus was gradually shifted towards functional character-
ization of miRNAs, particularly in the context of human
diseases. The connection between miRNAs and disease
was obvious. miRNA expression patterns are tissue-specific
[37] and in many cases define the physiological nature of
the cell [31]. The definitive evidence came from a report
demonstrating that the gene expression profile of a non-
neuron cell became more like that of a neuron when the
neuron-specific miR-124 was artificially over-expressed
within [31]. If the same premise holds true, certain miRNA
expression patterns could be disease-specific and hold great
prognostic value. In fact, a more comprehensive miRNA
profiling study demonstrated that distinct miRNA expres-
sion patterns were specific to various types of cancers and
were able to reflect the developmental lineage and differen-
tiation state of tumors [38]. More specifically, many
miRNAs were found to play key roles in vital biological
processes such as cell division and death [39], cellular
metabolism [40], intracellular signaling [41], immunity
[42] and cell movement [43]. Therefore, aberrant miRNA
expression should proportionately affect those critical pro-
cesses, and as a result, lead to various pathological and
occasionally malignant outcomes. Here, we overview
miRNA-related studies focused on high-priority human
diseases with insufficient treatment options (Table 1).

Cancers

Since the early stages of miRNA research, cancer has been
the most prominent of human diseases with a clear role for
miRNA regulation. The first evidence came from a study
by Calin et al. in which they demonstrated a frequent
deletion of miRNA genes miRI5 and miRI6 among 65%
of B-cell chronic lymphocytic leukemia (B-CLL) patients
[44]. Intriguingly, down-regulation of miR-15 and miR-16
expression was observed among B-CLL patients without
the deletion, suggesting that the pathogenesis of B-CLL
may be attributed to the intracellular abundance of two
miRNAs. Encouraged by this finding, this group applied
a systemic search on the complete human genome and
established correlations of miRNAs with various cancers
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Table 1 miRNAs associated with common human diseases

Disease miRNA Reference
Cancer B-CLL miR-15, miR-16 [44]
Breast cancer miR-125b, miR-145, miR-21, miR-155, miR-210 [46,56]
Lung cancer miR-155, let-7a [47]
Gastric cancer miR-145 [54]
Liver cancer miR-29b [57,58]
Viral diseases HCV miR-122, miR-155 [72,73,78]
HIV-1 miR-28, miR-125b, miR-150, miR-223, miR-382 [75]
Influenza virus miR-21, miR-223 [76,77]
Immune-related diseases Multiple sclerosis miR-145, miR-34a, miR-155, miR-326 (80,81]
Systemic lupus erythematosus miR-146a (82,83]
Type II diabetes miR-144, miR-146a, miR-150, miR-182, miR-103, miR-107 (84]
Nonalcoholic fatty liver disease miR-200a, miR-200b, miR-429, miR-122, miR-451, miR-27 [86]
Non-alcoholic steatohepatitis miR-29c, miR-34a, miR-155, miR-200b [87]
Neurodegenerative diseases Parkinson’s disease miR-30b, miR-30c, miR-26a, miR-133b, miR-184", let-7 [90-92]
Alzheimer’s disease miR-29b-1, miR-29a, miR-9 [94]

[45]. Subsequent expression profiling studies further
demonstrated the correlation between aberrant miRNA
expression patterns and increased occurrence of different
types of cancers. Notably, the deregulation of miR-125b,
miR-145, miR-21, and miR-155 expression was associated
with the increased risk of breast cancer [46]. In addition,
up-regulation of miR-155 and down-regulation of let-7a
were correlated with poor survival of lung cancer patients
[47], indicating an imbalance of cell death and proliferation
during cancer development [48-50]. Intriguingly, miRNA
expression patterns were also able to stage cancer progres-
sion [38], indicating that miRNA levels were not only use-
ful in diagnosis but also potentially in prognosis of
diseases. These cancer-related miRNAs were categorized
into tumor suppressors and oncogenes due to their associ-
ations with opposite clinical outcomes with altered expres-
sions. For example, miR-15, miR-16 and let-7 are known
tumor suppressors while miR-21 and miR-155 serve as
oncogenes [44,51,52].

The discovery of cancer-related miRNAs by expression
profiling inspired mechanistic studies to implicate specific
miRNAs in tumorigenesis pathways. miR-15 and miR-16
were found to repress the expression of anti-apoptotic gene
bcl-2 thereby promoting cell death in cancerous cells [52].
Likewise, let-7 family members demonstrate anti-cancer
properties due to their ability to repress the expression of
the oncogene, ras [53]. In contrast, miR-21 directly serves
as an anti-apoptotic factor in glioblastomas and breast
cancer [46,51]. Similarly, miR-155 interferes with the pro-
cess of mismatch repair by repressing the expression of
the MSH gene family members in colorectal cancer [54].

miRNAs also play key roles in tumor invasion and
metastasis. miRNA expression profiling revealed the step-
wise down-regulation of miR-145 levels with progression
of primary gastric cancers and secondary metastases [55],
as well as metastatic prostate cancer [56]. Similarly,
increased expression of miR-210 was observed during the
invasive transition of breast cancer [57]. While profiling
studies establish disease correlations, mechanistic studies

characterize the role of miRNAs in greater detail. For
example, through the use of synthetic miRNA mimics,
miR-7 and miR-29b were shown to suppress the metastasis
of liver cancer by targeting PIK3CD [58] and MMP-2 [59],
respectively. These cancer-related miRNAs are potentially
useful for developing not only early diagnosis, but also
novel anti-cancer strategies.

Viral diseases

Viruses are a group of pathogens with members causing
not only severe, chronic diseases, but also some of the most
deadly pandemics in human history. While miRNAs were
being identified in eukaryotes, viral-encoded miRNAs were
discovered in multiple virus species as well. The first viral-
encoded miRNAs were cloned from a Burkitt’s lymphoma
cell line latently infected by Epstein—Barr virus (EBV), a
DNA virus of the herpesvirus family [60]. Soon after, doz-
ens of viral miRNAs were identified in polyoma virus[61],
adenovirus [62], and several subtypes of the herpes viruses
by cloning, bioinformatics, or combined approaches
[63-65]. Some preliminary evidence even suggested that
RNA viruses may also encode miRNAs in spite of small
genome sizes [66-68]; however, these findings have not
been verified independently [65,69].

Besides bearing viral miRNAs, alternatively, viruses are
capable of regulating the expression of host cellular
miRNAs for their own benefit. For example, unlike the
Kaposi’s sarcoma-associated herpes virus (KHSV) which
encodes a viral miRNA, miR-K12-11, EBV is able to up-
regulate the expression of cellular miR-155, an ortholog
of miR-K12-11 [70]. Interestingly, these two miRNAs
target the same set of cellular genes, indicating a similar
function [71]. A more detailed study revealed that
miR-155 may prevent EBV-infected cells from apoptotic
death [72], a common strategy mediated by hosts to
constrain viral infection. This demonstrates the potential
consequences of a virus gaining control of cellular miRNA
expression for its survival.
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Although the expression of some cellular miRNAs is not
directly regulated by viruses, maintenance of their intracel-
lular level is pivotal for viral infection and replication. For
example, high levels of liver-specific miR-122 expression is
necessary for HCV replication both in vitro and in vivo
[73,74], although viral infection and replication does not
affect the expression of miR-122 [75]. On the contrary, cop-
ies of miR-28, miR-125b, miR-150, miR-223 and miR-382
are maintained at high levels in resting CD4™ T cells, but
significantly decreased in activated CD4" T cells, resulting
in productive infection of HIV-1 in only the latter case [76].
These findings may help explain the tissue-specificity of
virus infections and provide novel targets for anti-viral
therapeutics.

Finally, miRNA expression changes may demonstrate
how hosts respond to viral infections. For example, aber-
rant expression of a subset of cellular miRNAs was
observed in lethal influenza virus infection, but not in
non-lethal infection in animal models [77,78]. Specifically,
miR-21 and miR-223 were strongly up-regulated in lethal
infections of HIN1 pandemic influenza virus and H5NI1
avian influenza virus in mice and macaques, respectively
[77,78] while their expression was unchanged or only mod-
erately up-regulated in animals infected with less patho-
genic viruses. More recently, marked increase of miR-155
was seen in HCV-infected patients [79]. The up-regulation
of miR-155 by HCV-infection may activate Wnt signaling
pathway and contribute in part to HCV-induced hepato-
carcinogenesis [79]. These variable miRNA expression
patterns may be useful in guiding physicians to make treat-
ment plans for patients infected by more or less virulent
pathogens.

Immune-related diseases

Many common immune-related diseases, including multi-
ple sclerosis (MS), systemic lupus erythematosus (SLE),
type I/II diabetes, and nonalcoholic fatty liver disease
(NAFLD), have shown established correlations with cellu-
lar miRNAs. Dozens of miRNA signatures were identified
by comparing the miRNA expression profiles of relapsing-
remitting MS and healthy controls [80]. Specifically, the
expression of miR-145 alone was found to distinguish
affected patients from healthy controls with high specificity
and sensitivity. Increased expression of miR-34a, miR-155
and miR-326 was observed in MS lesions [81], with addi-
tional evidence indicating that high levels of miR-326 had
a strong correlation with increased severity of MS [82]. In
two independent studies involving hundreds of SLE
patients and healthy controls, decreased expression of
miR-146a demonstrated a strong correlation with
increased risk for SLE among east Asian and European
populations [83,84]. miRNA expression profiling has also
identified type 2 diabetes-related miRNAs including miR-
144, miR-146a, miR-150 and miR-182 [85]. In addition,
miR-103 and miR-107 were shown to negatively regulate
glucose homeostasis and insulin sensitivity in type 2

diabetes by targeting caveolin-1, a critical regulator of
insulin receptor [86]. Increased expression of miR-200a,
miR-200b and miR-429 and decreased expression of
miR-122, miR-451 and miR-27 were associated with diet-
induced NAFLD in rats [87]. Furthermore, abnormal
expression of miR-29¢, miR-34a, miR-155, and miR-200b
were found in a mouse model of non-alcoholic steatohepa-
titis (NASH) [88], in addition to 23 more identified in
tissues from NASH patients by miRNA microarrays [89].

Mechanistic studies revealed that miRNAs play critical
roles in inflammation primarily by regulating the pathways
associated with nuclear factor kappa beta (NF-kB), the
central mediator of inflammatory response. The best char-
acterized ones are miR-155 and miR-146, which were
implicated in many immune-diseases [73,74,81,85,88]. In a
negative feedback loop in which NF-xB activation
up-regulates miR-146 expression, miR-146 subsequently
down-regulates the expression of IRAK1 and TRAF®6,
two up-stream activators of NF-xB [42]. Similarly,
increased expression of miR-155 by NF-kB could repress
both IKK-B and IKK-¢, and prevent NF-kB from being
constitutively activated [90]. This negative feedback mech-
anism effectively keeps the activity of NF-xB in check.
These findings not only provided insights about miRNA-
mediated inflammatory responses, but also of potential
drug targets for fine-tuning the immune system.

Neurodegenerative diseases

Neurodegenerative diseases (ND) such as Parkinson’s dis-
ease (PD) and Alzheimer’s disease (AD) have placed sub-
stantial social-economic burdens on countries with aging
populations. As the pathogeneses of NDs on molecular lev-
els remain poorly understood, successful treatments are
still unavailable. With increasing investments from govern-
ments and pharmaceutical companies, biomedical research
on neurodegenerative diseases has become proprietary.
Notably, recent progresses from studies elucidating
miRNA functions in NDs have shed new light on disease
pathogenesis and may lead to novel treatment strategies.
For example, a systemic miRNA profiling in peripheral
blood mononuclear cells from PD patients revealed
miR-30b, miR-30c, and miR-26a to be associated with
the susceptibility of the disease [91]. Deregulation of
miR-133b expression may contribute to the pathogenesis
of PD, as the miR-133b-Pitx3 feedback loop is essential
for maintaining dopaminergic neurons in the brain [92].
In a Drosophila model for PD, pathogenic leucine-rich
repeat kinase 2 (LRRK2) was shown to promote the
expression of transcriptional factors E2F1 by down-
regulating expression of let-7 and miR-184" [93]. Likewise,
an analysis of miRNA and mRNA expression in brain cor-
tex from AD and age-matched control subjects demon-
strated strong correlations between the expression levels
of miRNAs and predicted mRNA targets [94], implying
functional relevance of microRNA-mediated regulations
in AD pathogenesis. More specifically, the expression of



250 Genomics Proteomics Bioinformatics 10 (2012) 246-253

miR-29a, miR-29b-1 and miR-9 was significantly decreased
in AD patients [95], resulting in abnormally high expres-
sion of their target BACE], a protein playing an important
role in AD pathogenesis [96]. These findings not only
highlight the importance of miRNA research in under-
standing ND pathogenesis, but also provide a previously
unrecognized venue for medical interventions.

miRNAs in disease diagnosis and therapy

While the combination of molecular and computational
approaches have revealed the role for miRNAs in common
human diseases, concurrent developments of miRNA bio-
markers and miRNA drugs have made great strides
towards improving public health.

The ultimate goal of biomarker identification is to
develop better clinical tests that improve diagnosis or prog-
nosis of diseases. In fact, miRNAs have been considered a
top candidate for the next generation of biomarker as they
possess a few advantages over other candidates such as
proteins and metabolites [97]. First, miRNA biomarkers
would more likely lead to early diagnosis due to their
upstream positions in regulation cascades. Second, novel
miRNA biomarkers would be more readily discovered by
genomic tools such as oligonucleotide microarrays and
deep sequencing which deliver higher throughput than
mass spectrometry, the primary tool for protein and
metabolite biomarker identification. Third, low abundant
miRNA biomarkers can be amplified and then detected
in a clinical setting by real-time quantitative PCR (qPCR),
an approach used in FDA-approved clinical tests already;
whereas, no equivalent approach is available in detecting
low abundant proteins or metabolites. The adoption of
the locked-nucleic acid (LNA) technology in miRNA
probe design could improve the sensitivity and specificity
of miRNA ¢PCR assays even further [98].

Non-invasive miRNA biomarkers are more sought after
due to fewer complications associated with the specimen

collection through the more prominent use of bodily fluids
such as serum and plasma. In fact, circulating miRNA bio-
markers have demonstrated early promises in diagnosis of
prostate cancer [99], lung cancer [100,101], liver cancer
[102] and breast cancer [103]. As circulating miRNAs are
very stable in the blood [99,104], they could be well-
preserved in archived serum or plasma specimens, a gold
mine for miRNA biomarker development.

miRNA drug development is still in its infancy with the
exception of SPC3649, a LNA-modified oligonucleotide
developed by Santaris Pharma A/S to repress the expres-
sion of miR-122, in treating chronic HCV infection. This
miRNA drug demonstrated impressive repression efficacy
on miR-122 in mice [105] and in African green monkeys
[106], as well as anti-viral efficacy in chimpanzees chroni-
cally infected by HCV [74]. Compared to a combined
administration of pegylated interferon-oo and ribavirin,
the standard treatment for HCV infection, SPC3649 dem-
onstrated better safety profiles in chimpanzees [74] and
desired tolerance in healthy volunteers. Importantly, the
SPC3649 treated patients rarely experienced viral-relapse,
whereas viral-relapse is common in patients treated with
pegylated interferon-o. Interestingly, the expression of
interferon-regulated genes decreased in parallel with HCV
titers during the SPC3649 treatment. This indicates the
effectiveness of SPC3649 on patients infected with viral
strains resistant to the interferon-o treatment.

Future directions

In spite of the early success of SPC3649, few miRNA drugs
have entered clinical phases due to two major challenges.
First, currently available target prediction softwares have
high false-positive rates, making it difficult to identify a
bona fide miRNA target by in silico prediction alone
[107]. To better predict a miRNA drug target before enter-
ing costly animal and clinical studies, researchers should
take the advantage of combining molecular biology and

,:" Fail to identify bona fide miRNA
/ ek dlscc!very dus to.flawed : Confirmed target not druggable
/ experimental design

Unable to validate causality
in a relevant system

Figure 1 The road from laboratory to clinic: the promises and challenges of miRNA research
The hopscotch course in green is a layout of an ideal path of miRNA research evolved from basic research to clinical practice. Red boxes indicate major
challenges at different steps.

Biomarkers not
disease- or organ- specific
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bioinformatic approaches in target prediction and valida-
tion. Recent advancement of molecular biology techniques,
such as RISC immune-precipitation and Argonaute-
protein crosslinking immune-precipitation, provide valu-
able tools allowing target enrichment before bioinformatic
predications [108,109]. These techniques should be fully
integrated into the studies for target identification. Second,
the effective dose of a miRNA drug may induce unsafe off-
target effects. A cocktail regimen of miRNAs collabora-
tively repressing the same target at low doses could be a
potential solution. This strategy requires not only extensive
bioinformatic efforts in drug designs, but also high-
throughput genomic screening to validate the drug effects.

Concluding remarks

Without a doubt, the importance of miRNA is gaining
appreciation. However, even with its already demonstrated
promise, miRNA diagnosis or therapy may be many years
away from entering the clinic as complex challenges remain
(Figure 1). It should be noted that any major leap forward
in miRNA research over the past decade was the result
of multidisciplinary collaborations of researchers with
extensive expertise in molecular biology techniques, high-
throughput genomics, and bioinformatics. These produc-
tive collaborations should be expended even further. With
clinicians joining the club, miRNA research will be given a
fresh perspective that may lead to steady progress in devel-
opment of clinical applications.
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