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Abstract 

The detection of genes that show similar profiles under different experimental conditions is often an initial step 
in inferring the biological significance of such genes. Visualization tools are used to identify genes with similar 
profiles in microarray studies. Given the large number of genes recorded in microarray experiments, gene ex-
pression data are generally displayed on a low dimensional plot, based on linear methods. However, microarray 
data show nonlinearity, due to high-order terms of interaction between genes, so alternative approaches, such as 
kernel methods, may be more appropriate. We introduce a technique that combines kernel principal component 
analysis (KPCA) and Biplot to visualize gene expression profiles. Our approach relies on the singular value 
decomposition of the input matrix and incorporates an additional step that involves KPCA. The main properties 
of our method are the extraction of nonlinear features and the preservation of the input variables (genes) in the 
output display. We apply this algorithm to colon tumor, leukemia and lymphoma datasets. Our approach reveals 
the underlying structure of the gene expression profiles and provides a more intuitive understanding of the gene 
and sample association. 
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Introduction  

Microarray technology has been advanced to the point 
at which the simultaneous monitoring of gene expres-
sion on a genome scale is now possible. Microarray 
experiments often aim to identify individual genes 
that are differentially expressed under distinct condi-
tions, such as between two or more phenotypes, cell 
lines, under different treatment types or diseased and 
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healthy subjects. Such experiments may be the first 
step towards inferring gene function and constructing 
gene networks in systems biology. 

The term “gene expression profile” refers to the 
gene expression values on all arrays for a given gene 
in different groups of arrays. Frequently, a summary 
statistic of the gene expression values, such as the 
mean or the median, is also reported. Dot plots of the 
gene expression measurements in subsets of arrays, 
and line plots of the summaries of gene expression 
measurements, are the most common plots used to 
display gene expression data (1).  

An ever increasing number of techniques are being 
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applied to detect genes that have similar expression 
profiles from microarray experiments. Techniques like 
clustering (2) and self organization map (3) have been 
applied to the analysis of gene expression data. We 
can also find several applications on microarray 
analysis based on distinct machine learning methods 
such as Gaussian processes (4, 5), Boosting (6) and 
Random Forest (7). It is useful to find gene/sample 
clusters with similar gene expression patterns for in-
terpreting the microarray data. 

However, due to the large number of genes in-
volved, it might be more effective to display these 
data on a low dimensional plot. Recently, several au-
thors have explored dimension reduction techniques: 
Alter et al (8) analyzed microarray data using singular 
value decomposition (SVD), Fellenberg et al (9) ap-
plied correspondence analysis to visualize genes and 
tissues, Pittelkow and Wilson (10) and Park et al (11) 
used several variants of biplot methods as a visualiza-
tion tool for the analysis of microarray data. Visualiz-
ing gene expression may facilitate the identification of 
genes with similar expression patterns. 

In this paper we describe a method to visualize 
gene expression profiles. Our procedure relies on 
SVD; however, unlike other methods, it incorporates 
an additional step that involves kernel principal com-
ponent analysis (KPCA) (12). Kernel representation 
offers an alternative to nonlinear functions by pro-
jecting the data into a high-dimensional feature space, 
which increases the computational power of linear 
learning machines (13, 14). 

Kernel methods enable us to construct different 
nonlinear versions of any algorithm that can be ex-
pressed solely in terms of dot products, known as the 
kernel trick. Thus, kernel algorithms avoid the ex-
plicit usage of the input variables in the statistical 
learning task. Kernel machines can be used to im-
plement several learning algorithms but they usually 
act as a black-box with respect to the input variables. 
This could be a drawback in biplot displays in which 
we pursue the simultaneous representation of sam-
ples and input variables. As we describe in greater 
detail below, the integrated implementation of 
SVD-Biplot joint with KPCA enables us to extract 
the nonlinear features without discarding the simul-
taneous display of input variables (genes) and sam-
ples (microarrays). 

Method 

We describe an effective procedure that allows the 
simultaneous display of input variables (genes) and 
samples (microarrays). The standard SVD-Biplot al-
lows us to represent samples and variables jointly, but 
our procedure incorporates an additional extraction of 
nonlinear features that could improve our under-
standing of the relationships between samples (mi-
croarrays) and variables (genes), and enhance the de-
tection of gene expression profiles. Since microarray 
data are generally nonlinear, finding methods that can 
handle such data is of great importance if as much 
information as possible is to be gleaned. 

Let X be the preprocessed gene expression data 
matrix, with n samples (microarrays) in the rows and 
p variables (genes) in the columns. Preprocessing of 
the gene expression measurements needs to be con-
sidered with caution because preprocessing, such as 
scaling, normalization and transformation, can have a 
strong effect on the output visualization (15). 

Our procedure represents the gene expression data 
in a feature space using a kernel method. Initially, we 
decompose the input data matrix X=GHT into singular 
values, for an n×r matrix G and a p×r matrix H, rep-
resenting sample (microarray) and variable (gene) 
effects, respectively. 

Next, we map the variables (genes), the rows of H, 
into a feature space, and we extract the main nonlin-
ear features of variables (genes) by performing KPCA. 
Finally, to obtain a simultaneous plot, we project the 
samples (microarrays) into the subspace spanned by 
the leading eigenvectors from KPCA. 

Our procedure is composed of the following steps: 
1. SVD of preprocessed gene expression input ma-

trix X=GHT. 
2. Take the rows of H as a set of observations and 

compute the corresponding kernel matrix K. 
3. Extract nonlinear gene expression features by 

computing KPCA on the kernel matrix K. 
4. Project the rows of G onto the subspace ex-

panded by the leading eigenvectors of K. 
Step 1 allows us to represent the microarrays (sam-

ples) and the gene expressions (input variables) as 
points on the same r-dimensional space. We obtain the 
matrices: 
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where vectors g1,…,gn represent microarrays and 
vectors h1,…,hp represent gene expressions. 

Step 2 serves to build the kernel matrix K. To com-
pute K on the sample observations, the choice of the 
kernel function K(x, y) is crucial because the kernel 
methods use it to measure the similarity of sample 
observations. Gene expression data are a set of nu-
merical vectors, so two natural candidates for kernel 
function K(x, y) are the polynomial kernel: 

K(x, y)=(xy+c)t 
where t, c>0 are free parameters, and the radial basis 
kernel is: 

K(x, y)=exp(−c||x−y||2) 
where c>0 is a free parameter. Once we select a suit-
able kernel function, we compute the p×p kernel ma-
trix K=(K(hi,hj)). 

Step 3 allows us to extract nonlinear features of gene 
expressions by solving the dual eigenvalue problem, 
such as Formula 8 showed below. Notice that in this 
step we have considered the vectors h1,…,hp, repre-
senting gene expressions (Formula 2), as input obser-
vations. At the end of this step we find: α1,…,αr, the set 
of normalized eigenvectors, and λ1 ≥ λ2 ≥ … ≥ λr, the 
corresponding set of nonzero eigenvalues of K. For-
mula 9 (see below) allows us to obtain the coordinates 
of the gene expression hl (l=1,…,p) by projecting onto 
the leading kernel principal components 

 
1
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p

j
j l i i l

i
Kφ α

=
= ∑v h h h  (3) 

where j=1,...,r. As is customary, we use a small num-
ber of eigenvectors in order to obtain a graphical out-
put in low dimension. 

The stability of KPCA, that is, the extent to which the 
projection captures new data sampled according to the 
same distribution as the training data, increases when the 
eigenvalues become small at an initial stage in the spec-
trum of K. Provided we project into a space whose di-
mension exceeds the index of this stage, we expect to 

capture most of the variance of the unseen data. 
Step 4 is to project the sample (microarrays) points 

gl, l=1,...,n (see Formula 1), onto the subspace 
spanned by the eigenvectors of K. The new coordi-
nates are given using Formula 9, which is  
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Kφ α

=
= ∑v g h g  (4) 

where j=1,...,r. 
We can analyze and better understand the association 

between genes and samples by superimposing the coor-
dinate Formulas 3 and 4 in the same plot. Furthermore, 
this integrated implementation of SVD-Biplot and 
KPCA provides a supplementary tool to detect gene 
expression profiles in microarray experiments. For 
brevity we refer to our method as the KPCA-Biplot. 

Kernel selection and automatic tuning 

We could consider the choice of the kernel and the 
tuning procedure for the kernel parameters as a model 
selection problem. 

As is well known in the context of supervised 
learning (e.g., classification tasks), we can handle this 
selection by including a cross-validation step in the 
procedure. We therefore guide the kernel selection 
and the tuning of the parameters automatically using a 
cross-validation score function based on the minimi-
zation of the misclassification rate. 

In the context of unsupervised learning (e.g., di-
mension reduction tasks), an approach to include a 
cross-validation step for data-driven kernel selection, 
when the samples are grouped (e.g., different treat-
ment types, cell lines and phenotypes), is to adopt a 
strategy similar to that followed in the supervised case 
(16). In summary, assuming a fixed number of dimen-
sions, usually 2 or 3, we perform the dimension re-
duction for each kernel. Then, using the sample coor-
dinates in the reduced dimension space, a classifier is 
trained, and assessed with respect to a test dataset. 
Finally, we select the kernel that minimizes the mis-
classification rate. 

Computational complexity 

The speed and the time of calculations have always 
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been important problems in the implementation of 
algorithm in multivariate data analysis. Microarray 
datasets typically consist of thousands of variables 
and less than 100 samples. For such huge datasets, 
the computation time needed for matrix decomposi-
tion using classical SVD algorithm and/or the ei-
genvalue decomposition for the kernel matrix may 
be excessive. 

Alter et al (8) propose an efficient algorithm for 
SVD for genome-wide expression data. In summary, 
the algorithm is as follows. For the dimension of data 
matrix X (n×p), where n denotes the number of sam-
ples and p denotes the number of genes, we assume 
that the data are centered. For matrices Un×r, Dr×r  
and Vr×p, the p×p sample correlation matrix admits the 
following eigenvalue decomposition A=XTX= 
VDUTUDVT=VD2VT, and the n×n gene correlation 
matrix admits the following eigenvalue decomposi-
tion B=XXT=UDVTVDUT=UD2UT. We therefore cal-
culate the SVD of X (step 1 of the proposed method) 
by diagonalizing B and computing V as V=XTUD−1. 

Furthermore, since the kernel matrix K is p×p 
(where p is assumed to be from thousands to tens of 
thousands in real application), reducing the cost of 
computing might also be appropriate in the kernel 
matrix eigenvalue decomposition (step 3 of the pro-
posed method). When we need to analyze a large 
number of genes, we may want to work with an algo-
rithm for computing only the largest eigenvalues, as 
for instance the power method with deflation (17). 

SVD 

Let X be the preprocessed gene expression data ma-
trix, with n samples (microarrays) in the rows and p 
variables (genes) in the columns. Underlying the 
biplot techniques (18, 19) is the SVD: 
 X=UDVT (5) 
where U and V are matrices of size n×r and p×r, re-
spectively, with orthonormal columns so that 
UTU=VVT=Ir, D is an r×r diagonal matrix with ele-
ments λ1 ≥…≥ λr in the diagonals, and r is the rank of 
X, so usually r = min(n, p). Let us define  

),,diag( 1
ααα λλ r=D  and let G=UDα and H=VD1−α, 

where 0 ≤ α ≤ 1, thus X can be factorized as 

X=UDVT=UDαD1−αVT=GHT 
for an n×r matrix G and p×r matrix H. Thus X can be 
decomposed into two sets of matrices G and H, rep-
resenting row and column effects, respectively. 

KPCA 

Given a set of observations xi∈ℜp, i=1,…,n, let us 
consider a feature space F related to the input space 
by a map φ: ℜp→F, which may be nonlinear. We as-
sume that we are dealing with centred data 

1 ( ) 0n
i iφ= =∑ x . In F the covariance matrix takes the 

form 

1

1 ( ) ( )
n

T
j j

jn
φ φ

=
= ∑C x x  

We seek eigenvalues λ ≥0 and nonzero eigenvec-
tors v∈F\{0} satisfying Cv=λv. All solutions v with 
λ≠0 lie in the span of 1{ ( )}n

i iφ =x  as shown in the lit-
erature (14). This has two consequences: first we may 
instead consider the set of equations 
 ( ), ( ),j jφ λ φ=x Cv x v  (6) 

for all j=1,…,n, where ,⋅ ⋅ denotes the dot product 

defined in F. Second, there exist coefficients αi, 
i=1,…,n, such that 
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α φ
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Combining Formulas 6 and 7 we obtain the dual 
representation of the eigenvalue problem for nonzero 
eigenvalues: 
 Kα=nλα (8) 
where K=(K(xi,xj)), i, j=1,…,n, is the kernel matrix 
and K is a kernel function such that the dot product in 
F satisfies ( ), ( ) ( , )i j i jKφ φ =x x x x . Let λ1 ≥ λ2 

≥…≥λn be the eigenvalues of K and α1,…, αn be the 
corresponding set of normalized eigenvectors, with λr 
being the last nonzero eigenvalue. For the purpose of 
principal component extraction, we need to compute 
the projections onto the eigenvectors vj in F, j=1,…,r.  
Let x be a test point, with an image φ(x) in F. Then 
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which is the j-th nonlinear principal component cor-
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responding to φ. 

Validation 

In this section we illustrate the application of 
KPCA-Biplot with data from the colon tumor (20), 
leukemia (21) and lymphoma (22) datasets. In these 
examples, the aim of the KPCA-Biplot is to detect 
genes (variables) that have a similar pattern of 
up/down-regulation for each sample. By simultane-
ously displaying both the samples and the genes on 
the same plot, it is possible both to visually detect 
genes that have similar profiles and to interpret this 
pattern by reference to the sample groups. 

From the position of the genes relative to the sam-
ples, it can be deduced that genes, which lie relatively 
close to any given group, will have higher values 
(up-regulated) in that group than in the other groups. 
Genes lying on the opposite side of the origin from a 
given group will tend to have lower values 
(down-regulated) in that group. Then gene profiles are 
useful to reveal differential expression between sam-
ple groups. 

As an example, we describe the profiles of some 
illustrative genes that are located away from the cen-
tral gene cloud in each genomic dataset. In particular, 
with the aim of detecting different profiles, we ex-
plore several directions from the origin of the graphi-
cal output and describe the profiles of a set of genes 
that lie in those directions. By combining the 
KPCA-Biplot and the plot of the profiles, we can rep-
resent all the different kinds of profile on one plot. 

Colon tumor dataset 

This dataset is composed of 2,000 genes in 40 colon 
tumor samples and 22 normal colon tissue samples. 
Gene expression levels were analyzed with Affy-
metrix oligonucleotide array. The dataset is available 
on the web at http://www.molbio.princeton.edu/ 
colondata. We complete the preprocessing of the gene 
expression data with a microarray standardization and 
gene centring (10). 

We performed the KPCA-Biplot procedure on this 
dataset as detailed in the previous section. Initially, 
we factorize the input data matrix using SVD with 

α=0.5. Next, we compute the kernel matrix in Step 2 
using the radial basis kernel with c=0.1. The resulting 
biplot is given in Figure 1. It shows the projection 
onto the two leading kernel principal components of 
genes and microarrays, which were obtained by using 
Formulas 3 and 4, respectively. Genes are shown as a 
tilde and microarrays are shown by different marks 
according to the class of colon tissues to which they 
belong. 

The first axis mainly distinguishes the sample and 
gene clouds. It also separates those highly expressed 
genes from the origin. The second axis reveals normal 
and tumor samples. Nevertheless, normal and tumor 
samples are not completely separated in this 2D plot. 
In addition, some genes are labeled with their gene 
numbers and these have been chosen to illustrate dif-
ferent profiles. Genes that lie towards the left and 
bottom will have higher expression in tumor samples. 
In contrast, genes at the top, close to the normal sam-
ples, will tend to have higher expression in these 
samples. 

Figure S1 shows the gene expression profiles of 
some genes labeled in Figure 1. The gene expression 
profiles are computed from the expression values on 
all arrays for a given gene in different groups of ar-
rays, and they are summarized in a line plot connect-
ing the median of each group. Each row of Figure S1 
contains the gene expression profiles of genes lying in 
the same directions of the KPCA-Biplot. In order to 
explore different profiles, we have selected three di-
rections as an example. Genes T95018, T61602, 
T58861, T48804 and T57633 (the top row) have 
higher expression in tumor samples. In contrast, genes 
R78934, T92451, M33680 and T42-control (the bot-
tom row), are most strongly expressed in normal cells. 
Genes T51560, T49703, U05012, T51496 and 
R44112 (the middle row) are equally expressed in 
both samples. 

These results are consistent with those reported by 
Alon et al (20), in which the analysis of the same 
dataset by using two-way data clustering reveals a 
group of genes whose expression is correlated across 
tissue types. In particular, it reports a list of 48 ESTs 
homologous to ribosomal proteins within the set of 
2,000 genes used for the clustering. The intensity of 
the ribosomal protein genes is relatively low in nor-
mal colon tissues and high in the colon tumor tissues.  
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Figure 1  KPCA-Biplot of tumor colon dataset. Microarrays are marked according to the class of tissue (see plot legend) and genes 
are shown as a tilde. Some differentially expressed genes are labeled with their numbers. 

 
We remark that genes T95018, T61602, T58861, 
T48804 and T57633, which are highlighted by our 
method, belong to the list of 48 ESTs homologous to 
ribosomal proteins reported by Alon et al (20). 

Figure 2 shows the standard biplot representation 
obtained in analyzing the same dataset. We observed 
that the sample groups are separated mainly along the 
second axis but the separation is not completed. In 
this example, with respect to the sample representa-
tion, both the standard biplot and KPCA-Biplot detect 
the group structure in reduced dimension but the two 
groups are not fully separated by either method. With 
respect to the gene representation, both the standard 
biplot and our method reveal the normal and tumor 
profiles but we observed that with the KPCA-Biplot 
the genes are more clearly separated, which can be 
helpful for mining the microarray data. 

Leukemia dataset 

The leukemia dataset is composed of 3,051 gene ex-
pressions in three classes of leukemia: 19 cases of 
B-cell acute lymphoblastic leukemia (ALL), 8 cases 
of T-cell ALL and 11 cases of acute myeloid leukemia 
(AML). Gene expression levels were measured using 
Affymetrix high-density oligonucleotide arrays. The 
data can be downloaded from http://www.genome.wi. 
mit.edu. 

The data were preprocessed according to the proto-
col described by Dudoit et al (23). In addition, we 
complete the preprocessing of the gene expression data 
with a microarray standardization and gene centring. 

We performed the KPCA-Biplot procedure on this 
dataset as detailed in the previous section. Initially, 
we factorize the input data matrix using SVD with 
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Figure 2  Standard Biplot of tumor colon dataset. 
 

α=0.5. Next, we compute the kernel matrix in Step 2 
using the radial basis kernel with c=0.001, which is 
set heuristically. In this step we also use the polyno-
mial kernel but its behavior, in this case, is similar to 
that of the radial basis kernel. For brevity we only 
show results obtained with the radial basis kernel. The 
resulting biplot is given in Figure 3. It shows the pro-
jection onto the two leading kernel principal compo-
nents of genes and microarrays, which were obtained 
by using Formulas 3 and 4, respectively. Genes are 
shown as a tilde and microarrays are shown by dif-
ferent marks according to the class of leukemia to 
which they belong. The first axis separates ALL (B 
and T-cells) and AML samples. In particular, the 2D 
plot detects the three classes of leukemia. 

Additionally, in Figure 3 some genes are labeled 
with their probe IDs and these genes have been chosen 
to illustrate different profiles. It is expected that genes 
that lie towards the right will have higher expression 

values in the AML samples than in the ALL samples. In 
contrast, genes on the left will have higher expression 
values in the ALL samples than in the AML samples. 
Genes placed near the bottom will tend to have higher 
expression values in T-cells than in B-cells. 

Figure S2 shows the gene expression profiles of 
some genes labeled in Figure 3. The gene expression 
profiles are computed from the expression values on 
all arrays for a given gene in different groups of ar-
rays and they are summarized in a line plot connect-
ing the median of each group. Each row of Figure S2 
contains the gene expression profiles of genes lying in 
the same directions of the KPCA-Biplot. In order to 
explore different profiles, we have selected three di-
rections as an example. It is observed that genes lying 
close to any group of leukemia have higher values in 
that group than in other groups, and genes towards the 
opposite group have lower values in that group than in 
other groups. 
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Figure 3  KPCA-Biplot of leukemia dataset. 

 
Genes M57710_at, M28130_rna1_s_at and 

Y00787_s_at are highly expressed on AML samples 
and they have a similar profile as shown in Figure S2. 
In the opposite direction we can find genes L47738_at 
and Z69881_at, which are down-regulated in AML 
samples. As expected, these genes have the opposite 
profile of expression. 

The expression of the gene HG3576-HT3779_f_at 
is highest in AML and ALL-B cell samples but lowest 
in ALL T-cell samples. In contrast, genes 
X76223_s_at and X00437_s_at are most strongly ex-
pressed in ALL T-cell samples. The shape of this set 
of genes is opposite to that of HG3576-HT3779_f_at. 

Genes X82240_rna1_at and L33930_s_at are 
highly expressed on ALL-B cell samples. In the op-
posite direction we can find the gene X05908_at, 
which is highly expressed in AML and ALL T-cells 
but expressed most weakly in ALL-B cells.  

These results indicate that our method provides a 
useful tool to find genes with different expression. 
Our method is complementary to other current meth-
ods to detect genes with different expression. For 
example, genes Z69881_at and M28130_rna1_s_at 
are 2 of the 50 genes selected in Golub’s study (21) to 
differentiate AML from ALL cells. Genes 
HG3576-HT3779_f_at, X76223_s_at and X82240_ 
rna1_at are also selected in Pittelkow and Wilson’s 
study (10). 

Lymphoma dataset  

The lymphoma dataset comes from a study of gene 
expression of three prevalent lymphoid malignancies: 
B-cell chronic lymphocytic leukemia (B-CLL), fol-
licular lymphoma (FL) and diffuse large B-cell lym-
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phoma (DLCL). Among 96 samples we took 62 sam-
ples containging 4,026 genes in three classes: 11 cases 
of B-CLL, 9 cases of FL and 42 cases of DLCL. Gene 
expression levels were measured using two-channel 
cDNA microarrays. The data can be obtained from 
http://genome-www.stanford.edu/lymphoma. 

After preprocessing, all gene expression profiles 
were base-10 log-transformed and standardized to 
zero mean and unit variance in order to prevent single 
arrays from dominating the analysis. Finally, we 
complete the preprocessing of the gene expression 
data with gene centring. 

To perform the KPCA-Biplot procedure, we fac-
torize the input data matrix using SVD with α=0.5. 
Next, we compute the kernel matrix using the radial 
basis kernel with c=0.01. In this step we use alterna-
tively the polynomial kernel, but it yields the poorest 
representation of the dataset. 

The resulting biplot is given in Figure 4. It shows 

the projection onto the two leading kernel principal 
components of genes and microarrays, which is ob-
tained by using the steps of kernel selection and 
automatic tuning. Genes are shown as a tilde and mi-
croarrays are shown by different marks according to 
the type of lymphoma to which they belong. The three 
classes are clearly separated. The first axis separates 
DLCL cells and the others, and the second axis sepa-
rates FL and B-CLL cells. 

As we can see in Figure 4, some genes labeled 
with their clone IDs have been selected to visualize 
different profiles in this example. It is expected that 
genes lying towards the right will have higher val-
ues for DLCL samples than for FL and B-CLL 
samples. Genes placed near the top will tend to 
have higher expression values in FL samples than in 
B-CLL samples. 

Figure S3 shows the profiles of some genes that 
have been labeled in Figure 4. Each row of Figure S3  

 

Figure 4  KPCA-Biplot of lymphoma dataset. 
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contains the gene expression profiles of genes lying in 
the same directions of the KPCA-Biplot. In order to  
explore different profiles, we have selected four di-
rections as an example. It is observed that genes lying 
close to any group of lymphoma are up-regulated in 
that group, and genes lying opposite a group are 
down-regulated. 

Genes 1319066, 1354294 and 428103 show an ex-
pression profile with high values in FL samples and 
low values in DLCL and B-CLL sample cells. In con-
trast, genes 234357 and 1306024 have opposite pro-
file of expression. 

Genes 347751 and 724070 are highly expressed in 
B-CLL samples and weakly expressed in FL and 
DLCL samples. In the opposite direction we can find 
gene 1334260, which is down-regulated in B-CLL 
samples and up-regulated in the others. 

Genes 139009 and 8 are highly expressed in DLCL 
samples. In contrast, gene 1338881 has the reverse 
shape. Finally, we observed gene 1352822, which has 
a linear profile, and genes 685456 and 712829, lying 
in the opposite direction, also with linear profile but 
with the opposing slopes. 

Conclusion 

In this paper we propose an exploratory method, 
called KPCA-Biplot, that combines KPCA and 
SVD-Biplot for elucidating relationships between 
samples (microarrays) and variables (genes). The 
main properties of KPCA-Biplot are the extraction of 
nonlinear features together with the preservation of 
the input variables (genes) in the output display. The 
method described here is easy to implement and fa-
cilitates the identification of genes that have similar or 
reversed profiles. Our results indicate that 
KPCA-Biplot is complementary to other tools cur-
rently used for finding gene expression profiles, with 
the advantage that it can capture the usual nonlinear 
nature of microarray data. 
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