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Microarray data are often extremely asymmetric in dimensionality, such as thou-
sands or even tens of thousands of genes but only a few hundreds of samples or
less. Such extreme asymmetry between the dimensionality of genes and samples
can lead to inaccurate diagnosis of disease in clinic. Therefore, it has been shown
that selecting a small set of marker genes can lead to improved classif ication accu-
racy. In this paper, a simple modified ant colony optimization (ACO) algorithm is
proposed to select tumor-related marker genes, and support vector machine (SVM)
is used as classif ier to evaluate the performance of the extracted gene subset. Ex-
perimental results on several benchmark tumor microarray datasets showed that
the proposed approach produces better recognition with fewer marker genes than
many other methods. It has been demonstrated that the modified ACO is a useful
tool for selecting marker genes and mining high dimension data.
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Introduction

The advent of DNA microarray technology has pro-
vided the ability to measure the expression levels of
thousands of genes simultaneously in a single experi-
ment and made it possible to provide diagnosis for dis-
ease, especially for tumor, at molecular level (1 , 2 ).
However, classification based on microarray data is
very different from previous classification problems in
that the number of genes (typically tens of thousands)
greatly exceeds the number of samples (typically a few
hundreds or less), resulting in the known problem of
“curse of dimensionality” and over-fitting of the train-
ing data (3 ). It is thus important for successful dis-
ease diagnosis to select a small number of discrimina-
tive genes from thousands of genes (4 ). The benefits
gained from gene selection in microarray data analy-
sis are not only the better classification accuracy, but
also the decrease of the cost in a clinical setting (5 )
and interpretability of genetic nature of the disease
for biologists (6 ). Therefore, marker gene selection
plays a crucial role in developing a successful disease
diagnostic system based on microarray data.

In recent years, various marker gene selection
methods have been proposed. Most of them have
been proven helpful for improving predictive accuracy
of disease and providing useful information for biolo-

gists and medical experts. All of these marker gene
selection methods may be grouped into two teams:
filter, which is also called gene ranking approach; and
wrapper, which is also entitled as gene subset selec-
tion approach (7 ). In filter approach, each gene is
evaluated individually and assigned a score reflecting
its correlation with the class according to certain cri-
teria. Genes are then ranked by their scores and some
top-ranked ones are selected. These filter approaches
have been based on t-statistics (1 ), χ2-statistics (8 ),
informative gain (9 , 10 ), signal-noise ratio (11 ), Pear-
son correlation coefficient (12 ) and combination of
several feature filtering algorithms (4 , 13 ). In the
wrapper approach (14 ), a search is conducted in the
space of genes, evaluating the goodness of each found
gene subset by the estimation of the accuracy percent-
age of the specific classifier to be used, training the
classifier only with the found genes. Compared with
the filter approach, the wrapper approach may obtain
one gene subset with better classification performance
but more computational cost. Some wrapper-based
approaches have been provided and widely applied
in bioinformatics, such as GA (15 ), PSO (16 ) and
SFS (17 ). Although these approaches have obtained
excellent performance in gene expression data analy-
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sis, some congenital drawbacks still puzzle themselves
such as excessive computational cost of GA and local
optimum of PSO. Therefore, a simple modified ant
colony optimization (ACO) algorithm is proposed in
the present paper to search the optimum marker gene
subset.

ACO algorithm is biologically inspired from the
behavior of colonies of real ants, and in particular
how they forage for food. Since the idea of ACO was
proposed by Colorni et al in 1991 (17 ), it has been
successfully applied to solve various discrete combi-
natorial optimization problems, such as TSP (17 ),
telecommunication networks (18 ), data mining (19 )
and protein folding (20 ). In this paper, we made some
simple modifications based on conventional ACO al-
gorithm to make it more suitable for marker gene sub-
set search. Support vector machine (SVM) is selected
as classifier or evaluator in our study. SVM has been
found useful in handling classification tasks in the
case of the high dimensionality and small-sample data
(21 ). The proposed approach was applied in several
well-known tumor microarray datasets and the experi-
ment results showed excellent prediction performance.

Method

Modified ant colony optimization algo-

rithm for marker gene selection

The ACO algorithm developed by Colorni et al in
1991 (17 ) has been proven effective in many dis-
crete combinatorial optimization problems (18–20 ).
Since marker gene selection may be regarded as one
of the discrete combinatorial optimization problems,
we have reasons to believe that ACO will perform
outstandingly in the aspect of marker gene subset se-
lection.

To apply ACO effectively to select subset of
marker genes, a simple modified ACO algorithm is
proposed. As indicated in Figure 1, the procedure

of marker gene selection may be regarded as the pro-
cedure of foraging for food of ant. In the process of
moving from nest to food, ant will pass each gene in
candidate gene subset. From one gene to next gene,
two pathways may be selected: pathway 1 represents
that the next gene will be selected and pathway 0
denotes that the next gene will be filtered. At last,
when ant arrives at the food, some genes are extracted
and put into the marker gene subset, the others are
filtered. A binary set {1, 0, 0, 1, 0, 1} means the 1st,
4th and 6th genes have been selected to construct the
marker gene subset. Then the selected feature subset
will be evaluated according to the fitness function;
the higher fitness value is got, the better feature sub-
set may be obtained. Ants cooperate with each other
by intensity of pheromone left in every pathway for
searching the optimum feature subset.

In our modified ACO algorithm, many ants syn-
chronously search pathways from nest to the food.
They select pathways according to the quantities of
pheromone left in different pathways. The more
pheromone is left, the higher probability of the corre-
sponding pathway is selected. We compute the prob-
ability of selecting a pathway as below:

pij =
τij∑k
j τij

(1)

where i represents the ith gene, j may be assigned as
1 or 0 to denote whether the corresponding gene has
been selected or not, while τij is pheromone intensity
of the ith gene in the jth pathway, k is the possible
value of pathway j (0 or 1), and pij is the probabil-
ity of the ith gene selecting the jth pathway. When
an ant arrives at the food, the corresponding feature
subset will be evaluated by fitness function as below:

fitness =
Acc

1 + λn
(2)

where Acc is the predictive accuracy of the feature
subset, n is the number of marker genes in the feature

Nest

Gene 1 Gene 2 Gene 3 Gene n 

Food

……

Gene 3 is not selectedGene 1 is selected

1 1 1 1

0 0 0 0

Figure 1 The feature selection procedure of modified ACO algorithm. 1 represents that the corresponding gene will

be selected, 0 represents that the corresponding gene will not be selected.
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subset, and λ is the weight denoting the importance
of the number of marker genes. When one iteration is
finished, the pheromone in all of the pathways will be
updated. The update formula is described as below:

τij(t + 1) = (1 − ρ)τij(t) + Δτij (3)

where ρ is the evaporation of pheromone trails, and
Δτij is the incremental pheromone of several excel-
lent pathways. In this paper, we add pheromone in
the pathways of the best 10% ants after each cycle
and store these pathways in a set S. Δτij is defined
as below:

Δτij =

{
fitnessa,pathwayij ∈ S

0,pathwayij /∈ S
(4)

In formula 4, parameter a controls the quantity
of increased pheromone. When one cycle is finished,
the pheromone of some pathways will be intensified
and the others will be weakened, so that those excel-
lent pathways will have more chances to be selected in
next cycle. With the convergence of ACO algorithm,
all of the ants are inclined to select the same pathway.
At last, the best solution will be returned.

Considering that the modified ACO algorithm is
inclined to sink into local optimization, we also profit
from the idea of Stützle and Hoos (22 ) to set the up-
per and lower boundary of pheromone in each path-
way and to name the improved ACO algorithm as
MMACO (Max-Min ant colony optimization), which
may be easier to maintain the trade-off between in-
tensification and diversification.

Support vector machine

SVM introduced by Vapnik (23 ) is a valuable tool
for solving pattern recognition and classification prob-
lem. Compared with traditional classification meth-
ods, SVM possesses prominent advantages such as
high generalization capability, absence of local min-
ima, and suitability for small-sample dataset. Given
a dataset S = {(xi, yi)|xi ∈ Rd, yi ∈ {−1,+1}, i =
1, ...N}, where xi is a d-dimension sample, yi is the
corresponding class label, and N is the number of
samples, the discriminant function of SVM can be de-
scribed as below:

g(x) = sgn
( sv∑

i=1

αi yi K(x, xi) + b
)

(5)

In formula 5, sv is the number of support vectors,
αi is lagrange multiplier, b is the bias of optimum

classification hyperplane, while K(x, xi) denotes the
kernel function. In this paper, we have finished our
experiments with radial basis function (RBF):

K(xi, xj) = exp{−|xi − xj |2
2σ2

} (6)

A complete description of SVM theory for pattern
recognition is given by Vapnik in reference (23 ).

Marker gene selection algorithm based

on modified ACO and SVM

In this study, we combine modified ACO and SVM
as a novel wrapper marker gene selection approach to
extract the marker gene subset as described below:

Step 1. Initialize pheromone of all pathways.
Step 2. Each ant randomly searches a pathway

from nest to food using formula 1 to construct some
feature subsets.

Step 3. Calculate the fitness of every feature sub-
set obtained in step 2 by SVM. The best one will be
compared with the optimum solution obtained in the
previous searches. If the new solution is better, the
optimum solution will be updated.

Step 4. If the terminative condition is satisfied,
the best result will be returned, otherwise the
pheromone of all pathways will be updated, then go
back to step 2 and continue to run.

An intuitionistic flow chart of marker gene selec-
tion algorithm based on ACO and SVM is presented
in Figure 2.

Evaluation

Dataset and experimental settings

We firstly used the colon tumor dataset as an exam-
ple to evaluate performance of the proposed approach
in detail. The colon dataset contains 62 samples col-
lected from colon cancer patients. Among them, 40
tumor biopsies are from tumors (labelled as “nega-
tive”) and 22 normal biopsies (labelled as “positive”)
are from healthy parts of the colons of the same pa-
tients. Two thousand out of around 6,500 genes were
selected based on the confidence in the measured
expression levels. The raw data are publicly avail-
able at http://sdmc.lit.org.sg/GEDatasets/Datasets
and more information can be found in Alon et al (2 ).

All of the algorithms (including the modified ACO
algorithm and MMACO algorithm proposed in this
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The start of ACO/SVM

Initialization of pheromone in all pathways

Search randomly pathway by each ant using

formula 1 to construct feature subset

Run SVM to calculate the fitness of each

selected feature subset

Is it satisfying the

terminative condition?

Update the pheromone in all pathways

No

Yes

Output the result

Figure 2 The flow chart of marker gene selection algo-

rithm based on modified ACO and SVM.

paper and GA algorithm used for performance com-
parison) in the experiments were written in MATLAB
7.0 (MathWorks Inc., Natick, USA), and S. Gunn’s
SVM toolbox (http://www.isis.ecs.soton.ac.uk/reso-
urces/svminfo/) was used to implement SVM algo-
rithm. We ran the algorithm on a personal computer
(Intel Pentium D processor/dual core 2.66GHz/512M
RAM). Experimental initial parameters are given in
Table 1.

Additionally, in this study we conducted leave-
one-out cross-validation (LOOCV) for comparing
with the other people’s work. In LOOCV, one of all
samples is evaluated as testing data while the others
are used as training data. After each sample is used as
testing data for once, the predictive accuracy will be
got by the ratio between the number of the correctly
classified samples and the number of total samples in
the dataset.

Experimental results

Firstly, in order to alleviate the burden of computa-
tion and accelerate the speed of convergence, 100 top-
ranked informative genes were selected by signal-noise
ratio estimation approach (1 ). Then the modified
ACO/SVM algorithm was applied to search a more
excellent marker gene subset on these 100 genes. The
LOOCV classification accuracy of the 100 top-ranked
informative genes on colon tumor dataset was tested
and a recognition rate of 87.1% was got.

Then we compared the modified ACO algorithm
and MMACO algorithm proposed in this paper with
the most popular wrapper marker gene selection

Table 1 Parameters used for experiments

Common parameters for ACO Value

ant n population size 50

NC the number of iterations 50

a the weight factor of updating pheromone 5

dispose evaporation of pheromone trails 0.2

λ the weight factor of the number of marker genes 0.005

ph(i, 0) the initial pheromone of pathway 0 1.0

ph(i, 1) the initial pheromone of pathway 1 1.0

Common parameters for MMACO

phmin the lower boundary of pheromone 0.3

phmax the upper boundary of pheromone 1.5

Common parameters for SVM

σ the parameter of RBF kernel function 5

C the penalty factor 500
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algorithm—GA algorithm, combined with SVM clas-
sifier. The parameters of GA followed Peng et al
(24 ): crossover operator is 1.0 and mutation operator
is 0.006, while the other parameters referred to Table
1. The variational curves of GA, ACO and MMACO
are described in Figure 3.

Figure 3 indicates that the convergence speed of
GA is slower compared with ACO and MMACO. Un-
til the 43rd cycle, it can only find a not excellent
enough solution (classification accuracy: 88.7%, num-
ber of marker genes: 39). The reason may be that
cross and mutation operation slow down the con-
vergence speed of GA. In contrast, ACO algorithm
proposed in this paper may rapidly converge to a
relatively excellent solution (classification accuracy:
90.3%, number of marker genes: 37) in the 15th cy-
cle. Unfortunately, the marker gene subset obtained
by ACO is only a local optimum solution due to rapid
increase of pheromone in some pathways. It is not
difficult to find that average fitness maintains an in-
creased trend despite there are some fluctuations in
Figure 3B. MMACO seems to effectively settle this
problem by maintaining the trade-off between inten-
sification and diversification. Figure 3C indicates
that new better solutions can be found constantly by
MMACO until the 28th cycle (classification accuracy:
91.9%, number of marker genes: 30), while the aver-
age fitness has no obvious increase or decrease, which
means that MMACO is better than modified ACO.

To further reduce the number of marker genes
and improve the classification accuracy, we assigned
different initial pheromone for pathway 0 and 1 in
ACO and MMACO (1.0 for pathway 0 and 0.5 for
pathway 1) and different probability for initial binary
characters in GA (the probability of 0 is as twice as
that of 1). The experimental results are shown in
Figure 4. From Figure 4, it is not difficult to gain
a fact that the performance of all of the three algo-
rithms have obvious promotion: GA converged in the
35th cycle with 90.3% classification accuracy and 35
marker genes; ACO converged in the 15th cycle with
90.3% classification accuracy but only 3 marker genes;
while MMACO converged in the 38th cycle but ac-
quired the best classification accuracy 95.2% with 11
informative genes. When we compared the marker
genes obtained in two groups of experiments, we found
that most marker genes in the second group of ex-
periments have also appeared in the first one. That
means many redundant genes, which existed in the
first group of experiments, have been filtered in the
latter one.

To evaluate the stability of the algorithms pro-
posed in this paper, we randomly ran GA, ACO
and MMACO based on the parameters in the second
group of experiments for 30 times, respectively. Ex-
perimental results show that the stability of MMACO
is the best in all of the three algorithms. For
MMACO, classification accuracy of 95.2% appeared
27 times and accuracy of 93.5% occurred 3 times.
While in 30 runs of ACO, the highest classification
accuracy was 93.5% (11 times), the lowest was 88.7%
(2 times), accuracy of 90.3% and 91.9% appeared 14
times and 3 times, respectively. The stability of GA
is better than ACO but worse than MMACO: pre-
dictive accuracy of 90.3%, 88.7% and 91.9% occurred
22 times, 5 times and 3 times, respectively. However,
ACO has averagely extracted less marker genes than
GA and MMACO (7.5: 28.4: 10.8).

In 90 random runs above, the times of each gene
appearing in marker gene subset were counted and the
emergence times of Gene 1423 [J02854: Myosin regu-
latory light chain 2, smooth muscle isoform (human);
contains element TAR1 repetitive element] was most
(71 times). Gene 1772 [H08393: Collagen α2 (XI)
chain (human)], which has been found closely related
with colon tumor by other researchers (6 , 25 ), occu-
pied the second place (63 times). Besides these genes,
genes 765, 515, 625, 1067, 1406, 992, 241 and 780 also
have been found being correlated with colon tumor in
this paper. The detailed information and description
of top 10 marker genes are listed in Table 2. We
expect these findings may provide useful information
for biologists and medical experts.

Furthermore, to verify the applicability and gener-
ality of the proposed methods, we have conducted ad-
ditional experiments on other four popular tumor mi-
croarray datasets, including two binary-class datasets
and two multi-class datasets (1 , 26–28 ) as shown in
Table 3 in detail (parameters referred to the second
group of experiments). As to multi-class datasets,
one-versus-rest support vector machine (OVR-SVM)
was used to classify for samples. At first, top 100
genes were extracted, and then the average clas-
sification accuracy and size of selected marker genes
of 30 independent running for the proposed methods
were compared with several other marker gene selec-
tion and classification methods (24 , 29–32 ) as listed
in Table 4.

From Table 4, it can be seen that our proposed
ACO/SVM and MMACO/SVM algorithms may
select a smaller feature subset with better LOOCV
classification accuracy than many other methods in
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GA GA

A  A

ACO ACO

B B

MMACO MMACO

C C

Figure 3 Variational curves of fitness for GA (A), ACO

(B) and MMACO (C).

Figure 4 Variational curves of fitness for GA (A),

ACO (B) and MMACO (C) based on different initial

pheromone for pathway 0 and 1 in ACO and MMACO

(1.0 for pathway 0 and 0.5 for pathway 1) and different

probability for initial binary characters in GA (the prob-

ability of 0 is as twice as that of 1).
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Table 2 Detailed description of top 10 marker genes extracted by GA, ACO and MMACO

Rank Gene ID Accession No. Times Description

1 1423 J02854 71 Myosin regulatory light chain 2, smooth muscle isoform

(human); contains element TAR1 repetitive element

2 1772 H08393 63 Collagen α2(XI) chain (H. sapiens)

3 765 M76378 55 Human cysteine-rich protein (CRP) gene, exons 5 and 6

4 515 T56604 50 Tubulin β chain (Haliotis discus)

5 625 X12671 49 Human gene for heterogeneous nuclear ribonucleoprotein

(hnRNP) core protein A1

6 1067 T70062 45 Human nuclear factor NF45 mRNA, complete cds

7 1406 U26312 44 Human heterochromatin protein HP1Hs-γ mRNA, par-

tial cds

8 992 X12466 41 Human mRNA for snRNP E protein

9 241 M36981 41 Human putative NDP kinase (nm23-H2S) mRNA, com-

plete cds

10 780 H40095 39 Macrophage migration inhibitory factor (human)

Table 3 Other benchmark tumor microarray datasets

Dataset Quantity Reference

Genes Samples Classes

Leukemia 7,129 72 2 Golub et al (1 )

DLBCL 4,026 47 2 Alizadeh et al (26 )

NCI60 5,726 60 9 Stuanton et al (27 )

Brain 5,920 90 5 Pomeroy et al (28 )

Table 4 Related works on five datasets

Method LOOCV predictive accuracy (Size of selected marker genes)

Colon Leukemia DLBCL NCI60 Brain

ACO/SVM 91.5%±1.5% (7.5) 100% (8.6) 100% (7.2) 82.4%±1.9% (8.8) 90.7%±1.9% (7.9)

MMACO/SVM 95.0%±0.3% (10.8) 100% (6.3) 100% (5.7) 84.2%±1.8% (12.6) 91.0%±1.4% (8.1)

SNR (top-ranked 100)/SVM 87.1% (100) 97.2% (100) 95.7% (100) 71.7% (100) 84.4% (100)

GA/SVM (24 ) 90.2%±0.5% (28.4) 100% (17.6) 100% (15.4) 80.7%±2.2% (23.6) 88.9%±1.6% (25.1)

SVM (29 ) 90.3% (2,000) 94.1% (500) – – –

Bagboost (30 ) 83.9% (200) 95.9% (200) 98.4% (200) – 76.1% (200)

SWKC (31 ) 88.4% (15.0) 98.2% (14.2) 99.3% (14.1) 75.2% (32.5) 81.9% (41.5)

OVR-SVM (32 ) – – – 65.2% (5,726) 91.7% (5,920)

almost all datasets. Therefore, our proposed algo-
rithms are more effective for marker gene subset se-
lection and pattern classification.

Conclusion

Marker gene selection plays a crucial role in develop-
ing a successful disease diagnostic system based on mi-
croarray data. In the present work, a simple modified
ACO algorithm is proposed and combined with SVM
for mining tumor-related marker genes. The experi-
mental results running on several benchmark tumor
microarray datasets have demonstrated that the pro-

posed approach may extract better marker gene sub-
set than many other methods and the modified ACO
algorithm is a useful tool for selecting marker genes.
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