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Predicting protein-coding genes still remains a signif icant challenge. Although a
variety of computational programs that use commonly machine learning methods
have emerged, the accuracy of predictions remains a low level when implementing
in large genomic sequences. Moreover, computational gene finding in newly se-
quenced genomes is especially a diff icult task due to the absence of a training set of
abundant validated genes. Here we present a new gene-finding program, SCGPred,
to improve the accuracy of prediction by combining multiple sources of evidence.
SCGPred can perform both supervised method in previously well-studied genomes
and unsupervised one in novel genomes. By testing with datasets composed of
large DNA sequences from human and a novel genome of Ustilago maydi, SCG-
Pred gains a signif icant improvement in comparison to the popular ab initio gene
predictors. We also demonstrate that SCGPred can signif icantly improve predic-
tion in novel genomes by combining several foreign gene finders with similarity
alignments, which is superior to other unsupervised methods. Therefore, SCG-
Pred can serve as an alternative gene-finding tool for newly sequenced eukaryotic
genomes. The program is freely available at http://bio.scu.edu.cn/SCGPred/.
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Introduction

With the development of technologies and the efforts
of genome sequencing centers all over the world,
genomes of over 3,000 organisms have been sequenced
or are ongoing (http://www.genomesonline.org/
gold.cgi). The first stage for interpreting the genomic
data is to list the protein-coding genes and deter-
mine the exact exon-intron structure for every gene.
This task still remains a significant challenge, espe-
cially for eukaryotes in which coding exons are usually
separated by introns of vary length (1 ). In general,
there are two sorts of fundamental approaches for gene
finding, that is, similarity-based methods and com-
putational methods (2 , 3 ). In similarity-based meth-
ods, by aligning to known protein/EST (expressed se-
quence tag) databases or the genomes of close species,
the homology matches can provide strong evidence for
supporting the present of genes in a query genome.
Such methods are commonly used to annotate model

*Corresponding authors.
E-mail: lix@scu.edu.cn;

yizzhang@scu.edu.cn

organisms, such as human, and to produce a “gold
standard” for a reference of protein-coding genes.
However, some genes that express in low level and in
special tissues are missed to be annotated due to the
absence of similarity evidence. In this case, computa-
tional gene finding is carried out to address the prob-
lem, and has made much progress in the last few years
in terms of both methods and prediction accuracy
measure. However, computational gene finding often
produces predictions with a number of false positives,
especially when implementing in large DNA sequences
in eukaryotic genomes (1 ). Moreover, different com-
putational gene predictors produce different and even
conflict results on a same sequence, thereby confusing
the users.

Accordingly, the recent trend is to combine ho-
mologous information with computational methods,
which has been proven by experiments that the accu-
racy of prediction could be improved. The combina-
tional approaches can be divided into two categories,
strict and loose. The strict approach is to combine ho-
mologous information as condition probability into a
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probabilistic model, which usually is a hidden Markov
model. Currently, many computational gene finders
have an extensive version to combine homologous in-
formation into their respective computing algorithm
for improving predictions. The analogous programs
include GenomeScan (4 ), Twinscan (5 ), SGP2 (6 ),
Fgenesh+ (7 ) and AUGUSTUS+ (8 ), which are ex-
tended from GENSCAN (9 ) (the first two), GeneID
(10 ), Fgenesh (7 ) and AUGUSTUS (11 ), respec-
tively. Another group of highly integrative approach
is to directly combine the predictions of several pro-
grams and/or the results of similarity searching. In
contrast to the strict one, the approach is loose and
capable of combining multiple and even arbitrary evi-
dence types. The combined evidence is large and dis-
crete in terms of type and number, including not only
ab initio predictions, but also the results from sim-
ilarity searching and other information such as pre-
dictions of splice sites. The method is exemplified by
EUGENE (12 ), EGPred (13 ), Combiner (14 ) and its
descendent JIGSAW (15 ).

Computational identification of protein-coding
genes in novel eukaryotic genomes is especially a
difficult task. Conventional statistical ab initio and
combiner methods described above commonly use su-
pervised machine learning methods that require a
large training set of validated genes for estimating
gene model parameters. For a novel genome, how-
ever, neither an abundant cDNA/EST database nor
a close genome is available, thus limiting most of the
methods to be employed. An alternative approach
is to employ a foreign gene finder; however, Korf
(16 ) demonstrated that it can produce a highly in-
accurate result, even though using model parameters
from a neat phylogenetic neighbor. As a result, unsu-
pervised methods are applied as a better solution for
finding genes in novel genomes, such as SNAP (16 )
and GeneMark.HMM-ES (17 ).

In this paper, we introduce a new approach, im-
plemented in the program SCGPred (Score-based
Combinational Gene Predictor), to combine multi-
ple evidence generated from a diverse set of sources.
SCGPred can perform both supervised method in
well-studied genomes and unsupervised one in novel
genomes. The key components of SCGPred are to
deal with different and even conflict types of evi-
dence from heterogeneous sources by a scoring sys-
tem, and combine them into frame-consistent gene
models using dynamic programming. We tested
the performance of the supervised and unsuper-
vised SCGPred methods on large genomic sequences

from a well-studied genome (human) and a novel
genome (Ustilago maydis) by combining four ab initio
gene finders (GENSCAN, GeneID, Fgenesh and AU-
GUSTUS) with sequence alignments to protein and
cDNA/EST databases. The results showed that SCG-
Pred achieved a significant improvement (∼16%) in
specificity without lossing sensitivity compared with
the best of single programs, and maintained a good
balance between sensitivity and specificity. More-
over, we demonstrated that SCGPred was superior to
other unsupervised methods when applying in novel
genomes.

Methods

There are obvious differences between evidence gen-
erated by two categories of gene prediction methods.
Computational gene-finding programs, also termed
as ab initio gene finders, use numerous mathemat-
ics models to detect signal patterns like splice sites or
to distinguish content statistics between coding and
non-coding regions. The evidence obtained by such
method commonly refers to the actual boundaries of
exons, although there are a number of false positives
and false negatives. The similarity-based searching
programs, such as BLASTX and Sim4, can provide
strong evidence for supporting exon/intron locations
in the query genomic sequence by alignments with
protein and cDNA/EST databases, respectively. In-
tuitively, a high scoring pair (HSP) with low P -value
from alignments strongly suggests the existence of a
coding exon. However, these programs do not accu-
rately delineate exon boundaries. For instance, due to
the frame-shift, an HSP from alignments with protein
database usually misses 1 or 2 nucleotides on bound-
aries compared with the actual exon. Similarity with
cDNA/ESTs can often be misleading, as cDNA/EST
databases are polluted by non-coding sequences, such
as pre-mRNAs containing introns and untranslated
regions. In addition, the similarity-based methods fail
to identify exon types, because the introns of eukary-
otic genes have large length if not further analyzed.

We made a collection of evidence generated from
the two methods, and classified them into two groups,
information evidence and validation evidence, based
upon their quality, information and validation. The
information evidence is the four types (initial, inter-
nal, terminal and single) of exons generated from ab
initio gene finders. Although some gene finders pre-
dict other gene components, such as promoters and
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polyadenylation tracts, we only considered exon ev-
idence in the study. Moreover, we only collected
the evidence with scores because we used the scores
to combine them into a framework by a probability
method. Evidence from alignments with protein and
EST databases was defined as validation evidence,
which helps to rescore information evidence by con-
structing a score system. Given validation evidence,
our goal was to combine information evidence into
frame-consistent gene models by dynamic program-
ming.

Construction of gene models by dy-

namic programming

Referring to the boundaries of four types of infor-
mation evidence, we defined eight types of signals:
initial-start, initial-stop, internal-start, internal-stop,
terminal-start, terminal-stop, single-start and single-
stop. Considering genes encoded on two strands of ge-
nomic sequence, signals are extended further into six-
teen types (for example, initial-start-plus and initial-
start-minus). Let L be a genomic sequence, and X

is a collection of positions located on L correspond-
ing to the signals. For a position i ∈X, a tuple
e = [p, t, s] denotes the features, where p is the po-
sition on L, t is the type of signal and s is the score
of signal. Because some positions have conflict evi-
dence supported by different information sources, the
tuple is extended into e = [p, (t1, s1), (t2, s2) . . .]. For
instance, the position x5 in Figure 1 can be defined
as e(x5) = [px5 , (internal-start-plus, 0.65), (terminal-
start-plus, 0.45)]. The gene prediction problem is to
find a best gene model (a highest scoring gene in this
case) that is assembled from the set of positions in
the given X. We imposed a dynamic programming

algorithm to address the problem. Let G be the set
of all genes ending in each position, the score of the
best gene (g) ending in a given position i for signal
type t can be obtained recursively as follows:

S(gi,t) = max{S(gj,t′)} + h(st) (1)

where h is a scoring system and 0 < j < i. Instead
of the original score, we assigned a probability score
to the signal type t of position i by using a scoring
system (described in details in the next subsections).
For frame consistency, we computed a separate score
for each of the three reading “frames” of signal type t.
The frames for different signal types are defined as:
the signal types of exon-starting have three phases
(initial- and single-starting signals have only a phase
0), and those of exon-stopping have three reminders
(terminal- and single-stopping signals have only a re-
minder 0). For the valid gene model, the signal type
t′ of position j, which can be linked to the upstream
of the signal type t of position i, must be consistent
with the following criteria:

1. Biological meaning. For example, the signal of
initial-start-plus can only be linked back to a previous
terminal-stop-plus, single-stop-plus, and initial-start-
minus or single-start-minus signal type.

2. Length constraint. For different types of gene
components, different length constraints are used by
being calculated from the training set. For instance, if
the interval of L(j, i) is an intron, the length of L(j, i)
must be <50 bp.

3. Frame consistency. The frame of signal j must
be consistent with that of signal i. For example, if
the signal type of i is internal-stop-plus and that of j

is internal-start-plus, the reminder (pi − pj − 1) mod
3 of signal j is only considered when computing score
of the frame 1 of signal i.

i

x1 x2 x3 x4 x5 x6 x7 x8 x9

Prediction1

Prediction2

Prediction3

Signals

Alignment1

Alignment2

Initial P = 0.80

Initial P = 0.65

Initial P = 0.74

Internal P = 0.75

Internal P = 0.65

Terminal P = 0.45

Internal=0.90

Identity = 0.90

Identity = 0.80

Identity = 0.75

Identity = 0.95

Identity=0.95

Fig. 1 Schematic illustration of SCGPred combining three ab initio gene predictions with results of two sequence

alignments. All predicted exons have the same orientation of transcription (from left to right) and are encoded on the

plus strand of a given genomic sequence. Text in each black rectangle denotes the evidence type and the corresponding

probabilistic score.
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The genomic sequence L is entirely scanned with
the orientation from left to right (5′ to 3′ in the DNA
sequence) by using the dynamic programming algo-
rithm. Each of the highest scoring genes ending in
each position for each signal type is obtained and
stored in G. The gene that has the best total score
in G is then selected as the final gene model. If not
considering the running time of evidence sources, the
computational complexity is O(N2), where N is the
number of signals.

Our method for constructing gene models is based
upon the assumption that the highest scoring gene
assembled by signals should be the best gene model.
The assumption is reasonable to an actual case only
when the scores of signals are probabilistic ones that
are capable of measuring quantitatively the likelihood
that the given signal is correct. Unfortunately, the
original scores from ab initio gene finders are not ap-
plicable. Moreover, there are different signal types
from conflict evidence in a given position, and there
are different numbers of evidence for different signal
types. Therefore, we constructed a scoring system to
re-assign a probability to each signal. The scoring
system is the first one that transforms the original
scores to probabilistic ones for information evidence.

Transformation to probabilistic score

Most ab initio gene finders develop a scoring scheme
for exon prediction, but many of them only report
meaningless scores referring to the predicted exons.
Although some gene finders, such as GENSCAN, give
a probabilistic score to every predicted exon, the score
does not respond to the likelihood correctly and is not
reliable, especially when implementing in large DNA
sequences (1 ). Here we applied the local polynomial
regression method, a nonparametric regression model,
to transform the raw scores to probabilistic ones.

Given an exon predicted by a special gene-finding
program, we hope to establish the relationship be-
tween the raw score (denoted as predictor X) and the
likelihood (response Y ) that the exon is correct by
means of a regression analysis (for example, a func-
tion m). However, the regression function m is un-
known and unspecified in a simple parametric regres-
sion model. The local polynomial regression is based
on the assumption that locally, near any point x, m

is approximated well by a member of a simple class
of parametric functions. The basic idea of the lo-
cal polynomial regression consists in performing lo-
cal fitting of polynomial functions by weighed least

squares. More details about the theory of local poly-
nomial were described in the literature (18–20 ). In
our case, the polynomial used is of first order, and
the regression method is also called as local linear re-
gression (21 ).

We divided evenly the score scope [xmin, xmax]
into n small intervals, and defined the average rate
of accuracy as y for every small interval. For estimat-
ing m at the score x0 that in this case represents the
score of a predicted exon, we selected a bandwidth
parameter h and a kernel function K. Let X and W

be the two matrix:

X =

⎛
⎜⎜⎝

1 (z1 − x0)
...

...
1 (zn − x0)

⎞
⎟⎟⎠ and W = diag(

K( (zi−x0)
h )

h
)

where zi = (xi−1 +xi)/2 and i = 1, 2, · · · , n. Defining
two vectors y = (Y1, Y2, . . . , Yn)T and β̂ = (β̂0, β̂1),
the solution of the local weighed least squares regres-
sion problem is:

β̂ = (XT WX)−1XT Wy (2)

Then, the transformed score of x0 is β̂0, namely
m̂(x0) = β̂0.

We used the Epanechnikov function as the kernel
function:

f(x) =

{
3
4 (1 − x2) |x| ≤ 1

0 |x| > 1
(3)

but note that a variety of other kernel functions
could be used. An adequate selection of the band-
width parameter h is crucial for a good transfor-
mation. We took h = cjhmin with c = 1.1 and
hmin = (xmax − xmin)/2, and got a satisfactory h on
a training set by adjusting the value of j (a positive
integer with j = 1, 2, . . .).

The scoring system

We constructed a scoring system to assign a score to
each signal in each position by combining all of the
evidence. The belief degree for a given signal is sup-
ported by three aspects of information. The first one
is its probabilistic scores transformed from those gen-
erated by different gene finders. Secondly, the num-
ber of gene finders that agrees with the signal among
all of the gene finders can reflect its weight of be-
lief. The third is whether the signal is at least con-
tained in an HSP from alignments with protein or
EST database.
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We used the Dempster-Shafer (DS) theory of evi-
dence (22 ) to rescore a signal in each position, which
is effective especially when there are different types
of signals in a given position. We defined a frame
of discernment Θ ={initial, internal, terminal, single,
non-coding nucleotide}, and the probabilistic score of
each signal as the basic belief assignment (BBA) m.
All subsets of Θ form the power set denoted as 2Θ, in-
cluding the empty set φ. Let m1 and m2 be two BBAs
defined on the same frame Θ, and be the results from
two independent sources of evidence, then the joint
BBA can be calculated by the following function:

m(A) = m1⊕m2 =
∑

B,C⊆Θ:B∩C=A

m1(B)·m2(C) (4)

where A, B and C is an element or a subset on Θ. The
function is known as Dempster’s rule of combination.
The m(A) value represents a belief degree assigned to
the element A. In order to map a belief measure to
a probability measure, we used the pignistic transfor-
mation function (23 ) to transform the belief degree
to a probability value:

P (θi) =
∑

θi∈A⊆Θ

1
|A|

m(A)
1 − m(φ)

(5)

Since an HSP cannot be determined to the type of
exons, the evidence of HSP is defined as a subset of
Θ that contains initial, internal, terminal and single
elements. For an HSP from alignments with protein
database, we extended two nucleotides respectively
from the two boundaries of the HSP, so that it can
contain two boundaries of the actual exon. The simi-
larity degree (percentage of identity) is defined as the
BBA of an HSP, and then the HSP is involved in the
DS rule of combination.

Responding to the later two aspects of informa-
tion, we used the following formula to calculate the
final value of the signal t that is used to implement
the dynamic programming algorithm:

Vt =
n

m
ds(st) − kt (6)

where the function ds is a combination of Equations 4
and 5, m is the number of sources of information evi-
dence (ab initio gene finders), n is the number of gene
finders that predict the signal t successfully, and k is
a penalty factor for the signal type of t. For signals
without validation evidence, for instance x4 in Figure
1, we made a penalty as the signal may be most prob-
ably a false-positive. Since some ones of validation

evidence (such as an HSP from the alignment with
EST/cDNA database) fail to present protein-coding
regions, signals with validation evidence are punished
by a penalty factor as well. We used different penalty
factors for different signal types, because different sig-
nal types have different measure of prediction accu-
racy.

Evaluation

Selection of evidence sources

Evidence that is considered for being combined is
based upon the following rules: (1) it can be eas-
ily obtained for both well-studied and novel genomes;
(2) the sources need to provide the scores correspond-
ing to the evidence. We used the predictions from
GENSCAN, GeneID, Fgenesh and AUGUSTUS, the
four leading ab initio gene finders, as information ev-
idence. All predictions were obtained by implement-
ing with default parameters on local machines, ex-
cept that Fgenesh predictions were generated on web-
site (http://sun1.softberry.com/berry.phtml). Vali-
dation evidence for the supervised method includes
the predictions from the FirstEF software (24 ) and
HSPs (P<10−5) from alignments with the NCBI
RefSeq protein database (25 ) and the TIGR Gene
Index (26 ) (including both assembled human and
mouse ESTs) by using BLASTX and BLASTN pro-
grams from NCBI, respectively. For the unsuper-
vised method, we used the UniProtKB/Swiss-Prot
(27 ) and dbEST (ftp://ftp.ncbi.nih.gov/blast/db/)
database alignments as validation evidence. Com-
paring with RefSeq, UniProtKB/Swiss-Prot does
not contain computer-annotated protein sequences,
thereby representing the true protein set.

Because initial exons are more poorly predicted
than internal exons by prediction programs (2 ), we
added the predictions of FirstEF as additional evi-
dence for compensating the weakness. Unlike the tra-
ditional gene-finding programs as well as our method,
which define initial exons beginning initiation codons,
FirstEF was designed to search for the “true” first
exons from transcription start sites. Therefore, the
predictions of FirstEF were combined as validation
evidence rather than information evidence.

Score transformation

We examined the relationship between the raw score
and the prediction accuracy for all exons given by
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the four gene-finding programs on human chromo-
some 22 (chr22). The results showed that Fgenesh
and GeneID cannot provide probabilistic scores. Al-
though GENSCAN and AUGUSTUS can report a
probabilistic score for each predicted exon, the raw
probabilistic score fails to reflect the likelihood that
the predicted exon is correct, and always appears a
significantly overestimated probability (Figure 2A).
Thus, the raw scores of all exons predicted by the
four gene finders need to be transformed to the true
probabilistic ones before combining. Further analy-
sis showed that there are striking differences among
the prediction accuracy for different exon types. For
all four gene finders, internal exons have more num-
ber and higher specificity of prediction in contrast to
initial, terminal and single exon types. We classified
exons into three categories: internal, initial-terminal
and single exons. Internal and initial-terminal exon

categories were alone transformed by performing lo-
cal polynomial regress method. Single exon category
is not fit to perform local polynomial regress because
the size of number is too small and the probability is
not significant. For single exon category, we calcu-
lated the average prediction specificity on each score
range and assigned the average specificity to all single
exons on the range as the transformed scores.

The transformation measure by using local poly-
nomial regress method for different score ranges of
different exon types is displayed in Figure 2. The pro-
portion of correct prediction on each score range is an
average value of prediction correctness. The training
set composed of exons predicted from human chr22,
and those predicted from the ENCODE regions (28 )
were thought as test set. Figure 2A shows that in the
case of GENSCAN and AUGUSTUS, comparing with
the raw probabilistic scores of internal exons, the
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Fig. 2 The relationships between the probabilistic scores of exons predicted by the four ab initio gene finders (GEN-

SCAN, AUGUSTUS, Fgenesh and GeneID) and the proportion of correctly predicted exons.
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transformed ones can reflect the reliability of the pre-
dicted exons more precisely. Figure 2A and B illus-
trate that the transformation of internal exon scores
by the four prediction programs has a good perfor-
mance on both training set and test set. The trans-
formation performance of initial and terminal exon
scores is shown in Figure 2C and D, suggesting that
the transformed scores of exons are also a good guide
to the likelihood of correctness of prediction. How-
ever, the score transformation for initial and terminal
exons is inferior to that for internal exons, especially
for those predicted from GENSCAN and AUGUS-
TUS. The main reason is that the data size of the
initial-terminal exon category on the training set is
not large.

Prediction accuracy evaluations for su-

pervised methods

We used two datasets, human chr22 and the EN-
CODE regions (28 ), to evaluate the accuracy of su-
pervised SCGPred on human gene prediction. The
NCBI RefSeq genes were selected as the genome anno-
tations and considered as “gold standard” for measur-
ing accuracy. The two datasets, including genome as-
sembly (masked repeat elements) and the correspond-
ing RefSeq genes, were downloaded from the UCSC
Genome Browser (29 ). The genome assembly of hu-
man chr22 was divided into non-overlapped 1.5 Mb
segments. All annotations were transformed to the
GTF2 format (http://ardor.wustl.edu/GTF22.html)
and validated by using the script “validate gtf.pl”
from Eval software package (30 ). The purpose of vali-
dating was to create a common gene ID for those with
multiple transcripts from overlapping genes, which is
necessary for measuring prediction accuracy by Eval
program.

Human chromosome 22 has been well annotated in
the last several years. Here we used the version NCBI
Builds 36.1 (hg18) released on March 2006. This re-
lease of human chr22 annotated 442 genes, 560 tran-
scripts and 3,944 exons. The ENCODE project aims
to identify all functional elements on the specified 30
Mb (∼1%) of human genome composed of 44 segments
with at least a length of 0.5 Mb. The current anno-
tation release of 44 ENCODE regions is hg17 using
NCBI Builds 35, containing 403 genes, 528 transcripts
and 3,783 exons. We removed the segment ENm004
in ENCODE regions, which is from human chr22 and
overlaps the training set.

The performance of a gene predictor can be char-
acterized generally by two terms, sensitivity and
specificity, at base, exon and gene levels, respectively.
Sensitivity is the fraction of positives in the test data
that are predicted as positive. Specificity is the frac-
tion of negatives in the test data that are predicted as
negative. At exon level, sensitivity is the percentage
of exons that are predicted correctly, and specificity
is the percentage of predicted exons that are correct,
so do for at base and gene levels. A notable case is
that a predicted gene, which matches one of the tran-
scripts of an annotated gene, including all exons in
the transcript, is counted as a correct prediction.

We calculated the sensitivity and specificity of
SCGPred prediction as well as that of the four ab
initio gene finders combined on three levels by us-
ing the Eval program. We also estimated the per-
formance of SCGPred combining with different gene
finders by using all the validation evidence and the
same penalty factors. The penalty factors used in all
combinations of SCGPred were empirically derived
from the training set in human chr22. The penalty
factors were set at 0.7, 0.65, 0.3 and 0.6 for initial,
internal, terminal and single exon types without val-
idation evidence, and 0.1, 0.3, 0.2 and 0.25 for those
with validation evidence, respectively. These penalty
factors were selected as having a highest average value
of exon sensitivity and specificity [(ESN+ESP)/2] on
human chr22. Furthermore, we compared the re-
sults of SCGPred with those of SGP2, an extension
of GeneID that combines TBLASTX alignments with
mouse genome. The predictions of SGP2 were ob-
tained from the UCSC Genome Browser.

Table 1 summarizes the test results on human
chr22. The highest value at each level is indicated
in bold. The results show that all the ab initio gene
finders produce predictions with a low specificity at
exon and gene levels when applied in large genomic
sequences. Comparing with each of the four ab initio
programs, SCGPred achieves an overall improvement
on all levels except for base level sensitivity. SCG-
Pred can obtain a highest performance by combining
all of the gene finders. This suggests that the more
evidence it combines, the higher performance SCG-
Pred could gain. The results also show that improve-
ments are substantially better at exon and gene levels
than base level. Moreover, SCGPred is superior to
SGP2 in specificity at all levels considerably, except
that base and gene level sensitivity for SCGPred have
slight decreases in comparison to SGP2 with 2% and
1%, respectively.
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Table 1 Predication accuracy of SCGPred and other gene finders on human chromosome 22*

Method Gene Exon Base

Sn Sp Sn Sp (Sn+Sp)/2 Sn Sp

GENSCAN (GS) 0.09 0.05 0.71 0.40 0.56 0.89 0.48

GeneID (GI) 0.16 0.09 0.68 0.55 0.62 0.83 0.63

Fgenesh (FS) 0.15 0.09 0.73 0.53 0.63 0.86 0.61

AUGUSTUS (AG) 0.19 0.09 0.67 0.53 0.60 0.83 0.60

SCGPred:

GS 0.08 0.08 0.65 0.65 0.65 0.75 0.70

GS+GI 0.15 0.14 0.69 0.68 0.69 0.78 0.71

GS+GI+FS 0.18 0.16 0.73 0.68 0.71 0.82 0.71

GS+GI+FS+AG 0.21 0.18 0.74 0.70 0.72 0.83 0.73

SGP2 0.22 0.14 0.74 0.60 0.67 0.85 0.69

*The highest value at each level is indicated in bold. Sn, sensitivity; Sp, specificity.

Table 2 Predication accuracy of SCGPred and other gene finders on ENCODE regions*

Method Gene Exon Base

Sn Sp Sn Sp (Sn+Sp)/2 Sn Sp

GENSCAN (GS) 0.10 0.04 0.67 0.38 0.52 0.87 0.43

GeneID (GI) 0.13 0.05 0.62 0.48 0.55 0.82 0.48

Fgenesh (FS) 0.15 0.05 0.71 0.43 0.57 0.87 0.44

AUGUSTUS (AG) 0.15 0.07 0.58 0.53 0.56 0.78 0.59

SCGPred:

GS 0.08 0.06 0.61 0.64 0.63 0.71 0.61

GS+GI 0.14 0.10 0.64 0.66 0.65 0.77 0.60

GS+GI+FS 0.18 0.10 0.70 0.60 0.65 0.83 0.56

GS+GI+FS+AG 0.20 0.14 0.70 0.69 0.70 0.80 0.66

SGP2 0.14 0.10 0.70 0.61 0.66 0.85 0.77

The results on the ENCODE regions are given in
Table 2. Specificity on three levels for all methods on
the ENCODE regions are lower than that on human
chr22, implying that the ENCODE regions might be
annotated less completely than human chr22. Simi-
larly to the results on human chr22, the performance
of SCGPred is beyond the four ab initio methods.
SCGPred achieves a notable accuracy of prediction
on all levels, especially exon level specificity with 16%
increase by comparing with the best single program
(AUGUSTUS). The results in Table 2 confirm the
facts that SCGPred gains a highest performance by
combining all of the gene finders, and is superior to
SGP2 in specificity on exon and gene levels. We com-
pared our results indirectly with those of other com-
biner methods by referencing the paper (31 ), show-
ing that SCGPred does not exceed the best methods
(JIGSAW for example) when employing the super-
vised procedure in the ENCODE regions.

Prediction accuracy evaluations for un-
supervised methods

We applied SCGPred to a novel genome of Usti-
lago maydi for creating predictions by combining the
above four foreign gene finders with alignment results.
U. maydis is a pathogenic basidiomycete fungus with
a genome size of 20.5 Mb and 6,902 annotated gene
models (32 ). We did not use any training set for
generating predictions in the genome, therefore our
method is classified into an unsupervised one. The
274 genomic scafford sequences and genome annota-
tion files were downloaded from the Broad Institute’s
Fungal Genome Initiative candidate genome website
(http://www.broad.mit.edu/annotation/genome/usti-
lago maydis/home.html).

We created SCGPred predictions by combing the
four gene finders using different parameter models.
Firstly, all the four gene finders were running with
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human parameters, which are the most common pa-
rameters for most gene finders. Secondly, for each
gene finder, parameters were selected from the near-
est phylogenetic neighbors of U. maydis (GENSCAN
still used human as parameter model due to the ab-
sence of other compatible parameters). We used di-
rectly the score transformation system that was de-
rived from human chr22. Furthermore, we compared
the result with that of the unsupervised gene finder
GeneMark.HMM-ES 3.0 (17 ), which uses an itera-
tive self-training procedure, and with that of Agene
(33 ), which is a supervised gene finder training with
700 U. maydis annotated genes. The predictions of
GeneMark.HMM-ES were obtained by running on the
website (http://opal.biology.gatech.edu/GeneMark/
gmseuk.cgi).

Table 3 lists the results of all programs on the
novel genome. We find that employing a foreign
gene finder can produce highly inaccurate results. Al-
though the foreign gene finders can improve their pre-
dictions by using parameters from the near phyloge-
netic neighbors, they still remain a poor result. In
contrast, SCGPred can significantly improve the pre-
diction, especially for specificity at all levels and gains
a highest improvement by combining the four foreign
gene finders using the nearest phylogenetic neighbor
parameters with alignment results. Comparing with
the four ab initio gene finders, SCGPred decreases
substantially the number of false positive predictions,
which is crucial to reduce the risk for validating ex-
ons and genes experimentally. Moreover, SCGPred
has shown consistently better performance than the
unsupervised GeneMark.HMM-ES model on all lev-
els, except that base level sensitivity is slightly lower.

Agene as a supervised method produces the worst of
prediction because the size of its training set is too
small.

SNAP (16 ) is another program for finding genes
in novel genomes by an unsupervised bootstrapping
procedure. It uses a gene finder for a foreign species
to create a first prediction, and then the predic-
tion is used as virtual training set for the final gene
finder. However, SNAP needs to choose a suitable
foreign gene finder and requires an amount of infor-
mation of genomic and gene structures for employ-
ing the bootstrapping procedure, whereas the infor-
mation for most newly sequenced species including
U. maydis is often not available. Lomsadze et al
(17 ) compared GeneMark.HMM-ES with the super-
vised SNAP model, showing that GeneMark.HMM-
ES had a better performance, and they inferred that
it should also outperform the unsupervised SNAP
model. Therefore, SCGPred has the highest predic-
tion performance comparing with other unsupervised
methods.

Parameter estimation

Penalty factors are main parameters that affect the
performance of SCGPred prediction directly. We in-
vestigated the changes of the performance of SCG-
Pred on human chr22 by using the combinations of
different penalty factors for different exon types. Fig-
ure 3A displays the relationship between accuracy
measure of exon level and penalty factor of internal
exons without validation evidence when penalty fac-
tors of other exon types are given. From Figure 3A, a
trend can be observed clearly that with the increase

Table 3 Predication accuracy of SCGPred and other gene finders on U. maydis genome*

Method Parameter model Gene Exon Base

Sn Sp Sn Sp (Sn+Sp)/2 Sn Sp

GENSCAN human 0.35 0.47 0.33 0.35 0.34 0.75 0.90

GeneID human 0.27 0.26 0.25 0.23 0.24 0.75 0.90

yeast 0.42 0.28 0.32 0.27 0.30 0.81 0.87

Fgenesh human 0.33 0.44 0.31 0.38 0.35 0.77 0.93

Neurospora crassa 0.40 0.48 0.39 0.43 0.41 0.77 0.94

AUGUSTUS human 0.41 0.39 0.35 0.37 0.36 0.81 0.93

Aedes aegypti 0.56 0.46 0.47 0.43 0.45 0.85 0.90

SCGPred human 0.42 0.51 0.38 0.47 0.43 0.73 0.95

phylogenetic neighbors 0.55 0.60 0.47 0.59 0.53 0.77 0.96

GeneMark-ES – 0.52 0.56 0.45 0.53 0.49 0.82 0.94

Agene U. maydis 0.16 0.22 0.36 0.34 0.35 0.83 0.95

*The highest value at each level is indicated in bold. Sn, sensitivity; Sp, specificity.
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Fig. 3 Prediction accuracy of SCGPred on human chromosome 22 versus penalty factor without (A) and with (B)

validation evidence. Panel A only displays at exon level, in which for every penalty factor, the top is exon sensitivity,

the bottom is exon specificity, and the middle dark point represents the average value of exon sensitivity and specificity.

Panel B displays accuracy results at both base and exon levels (ESn, exon sensitivity; ESp, exon specificity; BSn, base

sensitivity; BSp, base specificity).

of penalty factor, sensitivity decreases and specificity
increases at exon level, and the average value of sen-
sitivity and specificity increases significantly at the
beginning. Interestingly, all of them keep stable when
the factor is more than 1, implying that all the ex-
ons without validation evidence have been eliminated.
However, specificity of SCGPred prediction has a
highest value about only 70% and increases no more in
this situation, which may be due to the following two
causes. Firstly, some actual genes or exons were prob-
ably missed to be annotated in the version. Secondly,
false positive may be generated due to the present of
pseudogenes in the validation evidence from matches
with proteins or ESTs.

The suitable selection of penalty factor for inter-
nal exons with validation evidence also improves the
performance of SCGPred prediction. As shown in Fig-
ure 3B, with the increase of penalty factor, sensitiv-
ity at both base and exon levels deceases, just like
that without validation evidence. Specificity at both
levels increases into a peak value with increasing of
penalty factor, and then it deceases significantly when
the penalty factor increases continuously. There is a
similar appearance in the relationships between the
average exon accuracy and penalty factor for inter-
nal exons with and without validation evidence. The
average exon accuracy reaches a peak value with the
penalty factor increasing into a certain value, which
was selected by us as the optimal penalty factor and
was used to compute the final results of supervised
SCGPred. For the unsupervised SCGPred on novel
genomes, the penalty factors should be decreased rea-

sonably because validation evidence is not abundant.
For other exon types, the penalty factors are sim-

ilar to that of internal exons for affecting sensitivity
and specificity of SCGPred prediction. However, the
penalty factors for other exon types affect prediction
accuracy at gene level more significantly than that at
base and exon levels. For a practical matter, users
can tune the parameters to meet their requirements.

Conclusion

A new combiner system, SCGPred, for finding
protein-coding genes has been proposed. SCGPred
can apply in both well-studied and novel genomes by
employing supervised and unsupervised procedures,
and has a broader application scope than other com-
biner methods. In addition, it outperforms other un-
supervised methods when applying to novel genomes.
Therefore, SCGPred can serve as an alternative gene-
finding tool for newly sequenced eukaryotic genomes.
SCGPred is written in PERL language as a command
line program, and its source code is freely available at
http://bio.scu.edu.cn/SCGPred/.
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