
Method

Applying Intelligent Computing Techniques to Modeling Biological
Networks from Expression Data

Wei-Po Lee1* and Kung-Cheng Yang2

1Department of Information Management, National Sun Yat-sen University, Kaohsiung, Chinese Taipei;
2Department of Management Information Systems, National Pingtung University of Science and Technology,
Pingung, Chinese Taipei.

Constructing biological networks is one of the most important issues in systems
biology. However, constructing a network from data manually takes a considerable
large amount of time, therefore an automated procedure is advocated. To auto-
mate the procedure of network construction, in this work we use two intelligent
computing techniques, genetic programming and neural computation, to infer two
kinds of network models that use continuous variables. To verify the presented
approaches, experiments have been conducted and the preliminary results show
that both approaches can be used to infer networks successfully.

Key words: reverse engineering, system modeling, genetic programming, recurrent neural net-
work, expression data

Introduction

Systems biology studies the interactions between the
components of a biological system. The study inves-
tigates how these interactions give rise to the func-
tion and behavior of that system. It aims to under-
stand biological systems at a system-level, and focuses
mainly on unraveling molecular systems at the level of
pathways and the group of pathways in a cell and its
neighboring cells (1 , 2). In systems biology research,
system structure and system dynamics are the two
core properties of a biological system to be studied.
System structure means the studies of networks of
gene/protein interactions, biochemical pathways, and
the mechanisms to modulate the physical properties
of intra-cellular and inter-cellular structures; and sys-
tem dynamics concerns the dynamical behavior of a
system over time under various conditions. To ad-
dress the above two issues, biologists and computa-
tional scientists have been working on creating and ex-
ploring predictive dynamical models of complex bio-
logical systems such as metabolic, gene-regulation, or
signal-transduction pathways in living cells. With the
network models, we can now uncover some complex
behavior patterns by constructing networks from mea-
sured time series data, and then analyzing and study-
ing the interactions between interconnected compo-
nents in a network.

*Corresponding author.
E-mail: wplee@mail.nsysu.edu.tw

However, constructing a network from data manu-
ally takes a considerable large amount of time, there-
fore an automated procedure is advocated. Reverse
engineering is a paradigm with great promise for an-
alyzing and constructing biological networks (2–4).
The procedure involves altering the network in some
ways, observing the outcome, and using mathematics
and logic to infer the underlying principles of the net-
work. It is concluded that the key issues of this pro-
cess lie in selecting network model and fitting network
parameters and structures into the available data.

Many molecular-interaction models have been pro-
posed and implemented by using various formalisms
(1 , 5). They include differential equations or stochas-
tic molecular simulation formalism, and range from
simple models of mass action and Michaelis-Menten
kinetics to more complex models of enzyme reac-
tions and gene regulation. Michaelis-Menten kinetic
model is proposed to describe enzymatic catelysis
(6). In this model, a kinetic equation is defined as
a function of substrate and/or product concentration.
This model has become a cornerstone of much of the
modern analysis of enzyme reaction mechanism. On
the other hand, gene regulation is a complex pro-
cess in the synthesis of proteins that may function
as transcription factors binding to regulatory sites of
other genes, as enzymes catalyzing metabolic reac-
tions, or as components of signal transduction path-
ways (5 , 7 , 8).

Geno. Prot. Bioinfo. Vol. 6 No. 2 2008 111

Intelligent Computing for Modeling Bio-Networks

According to the types of variables used in the
modeling procedure, biological network models can
mainly be categorized into two types, discrete and
continuous ones (5 , 9 , 10). The first type of mod-
els uses discrete variables and assumes that genes
only exist in discrete states. This approximation is
usually implemented by Boolean variables in which
the gene is in either on or off state. Boolean net-
works are easy to simulate in a cheaper computational
cost, but it has been proven that Boolean networks
are not able to capture some system behaviors that
can only be observed on continuous models. Another
popular discrete variable model is Bayesian network
that explicitly establishes probabilistic relationships
between nodes (11 , 12). Bayesian models have rich
statistics and probability semantics, but learning net-
work structure for such models is computationally ex-
pensive. In addition, Bayesian models are inherently
static. As the directed network graphs are acyclic
by definition, there can be no auto-regulation and no
time-course regulation.

In addition to using variables with discrete states,
the second type of models uses continuous variables.
One of the popular continuous variable models is the
one based on differential equations that can describe
more accurately the system dynamics of a gene regu-
latory network (GRN) (13 , 14). Compared with dis-
crete variable models, the differential equation models
can more accurately represent the underlying physi-
cal phenomena due to its continuous variables. In
addition, there are many theories of system analy-
sis and of control design on dynamical systems to
support this type of models. However, it should be
noted that the non-linear ordinary differential equa-
tions are hard to solve. It is too difficult for the
traditional optimization methods to estimate all the
large number of parameters involved in a GRN. The
other commonly used continuous variable model is the
neural network-based model, among which the recur-
rent neural networks (RNNs) are the most success-
ful ones (15 , 16). This model is biologically plausible
and noise-resistant. It is continuous in time, and uses
a transfer function to transfer the inputs into a shape
close to the one observed in natural processes. Also its
non-linear characteristics provide information about
the principles of control and natural interactions of
elements of the modeled system.

As is analyzed above, different models have been
proposed to simulate biological networks, and com-
putational methods have also been developed to re-
construct networks from the temporal measured data

correspondingly. More details can be found in the lit-
erature (5 , 9 , 10), where it can be seen that the works
in modeling networks shared similar ideas in princi-
ple. However, depending on the research motivations
behind the work, different researchers explored the
same topic from different points of view; thus the im-
plementation details of individual work are different.
Instead of subjectively arguing which approach is bet-
ter to offer for network reconstruction, our work here
focuses on investigating whether the presented ap-
proach, in practice, can be used to model biological
networks, and on how to develop complex networks.
Because continuous variables can more accurately de-
scribe the underlying physical phenomena of the bio-
logical systems to be modeled, in this work we only
consider models with continuous variables. We take
the two most representative models, kinetic equations
and neural networks, to represent biological networks,
and employ two intelligent computing techniques, ge-
netic programming and neural computation, to recon-
struct systems from collected data respectively. In or-
der to deal with the scalability problem in modeling
gene regulatory networks, a clustering method with
some data analysis techniques for feature extraction
is developed to construct networks in a hierarchical
way. To verify the presented approaches, different ex-
periments have been conducted to demonstrate how
they work. The results show the promise of our ap-
proaches.

Models and Methods

Constructing networks from measured data involves
two major steps: choosing a network model that is bi-
ologically and computationally plausible, and adopt-
ing an appropriate computing method to build the
network model reversely from the measured time se-
ries data. This section describes how we take two
models that deal with continuous variables to rep-
resent different biological networks and then employ
two intelligent computing methods to automatically
create the corresponding networks respectively.

Constructing networks by evolutionary

computation

Kinetic equation-based network model

Modern biology researchers have regarded biologi-
cal systems as networks. From the simple pair-wise
to complex regulatory interactions, all can be rep-

112 Geno. Prot. Bioinfo. Vol. 6 No. 2 2008

Lee and Yang

resented as networks. As indicated, the core of the
network study lies in the interactions of the enti-
ties (components) of a biological system and in in-
vestigating how these interactions give rise to the
function and behavior of that system. All networks
share some common characteristics, and mathemat-
ical methods have been established to describe net-
work structure and interactions of network compo-
nents. The interactions between network compo-
nents can be represented by some basic chemical re-
action schemes, in which the concentrations of sub-
strates, catalysts (such as enzymes), intermediate
substrates, and products participating in chemical re-
actions are often modeled by non-linear continuous-
time differential equations. It has been shown that
by identifying the most highly connected components,
the network topology can be inferred from expression
data. For networks with enzyme-catalyzed reactions,
we take the form of Michaelis-Menten kinetics shown
below as the network model (6), since it is useful in
understanding the mechanism by which an enzyme
carries out its catalytic activity. The components in-
volved in the reactions can be represented as (17 , 18):

k1 k2
E + S ES E + P

k-1

d[E]
dt = −k1[E][S] + (k-1 + k2)[ES]

d[S]
dt = −k1[E][S] + k-1[ES]

d[ES]
dt = k1[E][S] − (k-1 + k2)[ES]

d[P]
dt = k2[ES]

The above equations are specified by the rate con-
stants ki and the initial concentrations of enzyme E,
substrate S, and product P . The terms k1, k-1, and k2

are rate constants for the association of substrate and
enzyme, the dissociation of unaltered substrate from
the enzyme, and the dissociation of product from the
enzyme, respectively. During the time course anal-
ysis, addition of other reactants or alterations of ki-
netic parameters can be accommodated within this
set of equations. With such a network model, com-
putational methods can be used to derive the rele-
vant equations. In this work we use an evolutionary
approach, namely genetic programming (GP) to auto-
matically create the equations (that is, the right hand
sides of the above equations). The reaction rate of
each network component is determined by other rele-
vant components genetically. Different from the use of
string representation in genetic algorithms, GP-based
approaches take a tree-like structure as their repre-

sentation. Consequently, using GP to evolve kinetic
equations has the advantage of operating variable-size
genotypes. This is an important feature because it
provides complete freedom for the kinetic equations
in respect to the complexity of reactions that is gen-
erally difficult to predict in other methods.

Genetic programming

GP is an evolutionary computation technique in-
vented by Koza (19), and its popularity is now in-
creasing in the community of evolutionary computa-
tion research. It is an extension of the traditional
genetic algorithms with the basic distinction that in
GP, the individuals are dynamic tree structures rather
than fixed-length vectors. GP aims to evolve dy-
namic and executable structures often interpreted as
computer programs to solve problems without ex-
plicit programming. As in computer programming,
a tree structure in GP is constituted by a set of non-
terminals as the internal nodes of the trees, and by
a set of terminals as the external nodes (leaves) of
the trees. The construction of a tree is based on the
syntactical rules that extend a root node to appropri-
ate symbols (non-terminals/terminals) and each non-
terminal is extended again by suitable rules accord-
ingly, until all the branches in a tree end up with ter-
minals. Hence, the first step in employing GP to solve
a problem is to define appropriate non-terminals, ter-
minals, and the syntactical rules associated for the
program development. The search space in GP is the
space of all possible tree structures composed of non-
terminals and terminals.

According to our design, a tree structure of a ki-
netic equation has three parts: a dummy root node,
the internal nodes, and the external nodes. The
dummy root node is a non-terminal node. It is defined
to collect the computing result of a tree equation, and
works only for convenient manipulation by a GP sys-
tem. The internal nodes are non-terminals as well;
they are the common arithmetic operators, such as
“+”, “−”, “×”, “/”. These nodes are defined to com-
bine network components to form a tree equation. Fi-
nally, the external nodes (terminals) are network com-
ponents that include all possible substances. They
are defined to be the main ingredients of an equa-
tion. Also a terminal symbol R is defined to represent
the set of possible numerical constants. Whenever a
terminal symbol R appears in the tree creation proce-
dure, a random number is generated to associate with
R accordingly. Figure 1 shows some typical examples

Geno. Prot. Bioinfo. Vol. 6 No. 2 2008 113

Intelligent Computing for Modeling Bio-Networks

����

��������

����

�������

�����	�

������������	�

����
��

����
��

Fig. 1 The crossover operation in GP approach.

of an equation tree. In this figure, the upper two
trees represent possible equations of reaction rate for
a specific substance, which are interpreted as [(0.51×
Y)+X]×[(X−0.34)×Y] and X×(X+Y)−(Y ×0.65),
respectively.

The next step is to evaluate tree-individuals to
determine their fitness for the creation of a new pop-
ulation. This is normally done by pre-defining a
fitness function that quantitatively describes the re-
quirements of a target task first, and then by exe-
cuting the corresponding codes for tree-individuals in
the environment of the particular problem. Here, the
fitness function is to measure how the constructed
model is close to the original system by calculating
and comparing the outputs of the two systems. After
that, the genetic operators are applied to the selected
fitters (based on a certain selection criterion) to gen-
erate new trees. The evaluation and recreation cycle
is repeated until the termination criterion is met.

In GP, three kinds of genetic operators—
reproduction, crossover, and mutation—are normally
used to create new tree individuals. Reproduction
simply copies the original parent tree to the next gen-
eration; crossover randomly swaps sub-trees for two
parents to generate two new trees; and mutation ran-
domly regenerates a sub-tree for the original parent
to create a new individual. Among them, crossover is
the major one to create most of the offspring; when
it is performed, all syntactic constraints must be sat-
isfied to guarantee the correctness of new trees. Fig-
ure 1 shows an example of the operation of crossover
in GP. Considerable details about GP are referred to
Koza’s work (19).

Constructing networks by neural com-

putation

Structure-based network model

The behavior expressions of a GRN are in fact coordi-
nated patterns of activities in time and space. Hence,
GRNs can be regarded as dynamical systems that are
perturbed by their interaction with the environment.
RNNs are appropriate choices working as GRNs, be-
cause they have been shown to operate as dynamical
systems that do not explicitly perform input-output
mappings as other computational mechanisms. RNNs
have recurrent connections that provide the possibil-
ity of generating oscillatory and periodic activities.
The complex activities can be coordinated in the time
domain, and the network behaviors can be governed
by a set of differential equations.

There are several RNN architectures, ranging from
restricted classes of feedback to full interconnection
between nodes. Vohradsky and colleagues have pro-
posed the use of fully RNN architecture in studying
GRNs such as those involved in the transcriptional
and translational control of gene expression (15 , 16).
In this work, we also take the same architecture to
model GRNs, but unlike their work that mainly sim-
ulates regulatory effects, our goal is to establish an
approach to reconstruct regulatory networks from ex-
pression data measured.

In a fully recurrent net, each node has a link to any
node of the net including itself. Using such a model
to represent a gene regulatory network is based on the
assumption that the regulatory effect on the expres-
sion of a particular gene can be expressed as a neural
network in which each node represents a particular
gene and the wiring between the nodes defines regu-
latory interactions. In a gene regulatory network, the
level of expression of genes at time t can be measured
from a gene node, and the output of a node at time
t + Δt can be derived from the expression levels and
connection weights of all genes connected to the given
gene at the time t. That is, the regulatory effect to
a certain gene can be regarded as a weighted sum of
all other genes that regulate this gene. Then the reg-
ulatory effect is transformed by a sigmoidal transfer
function into a value between 0 and 1 for normaliza-
tion.

The same set of the above transformation rules is
applied to the system output in a cyclic fashion until
the input does not change any further. As in Vohrad-
sky’s work (16), here we use the basic ingredient to

114 Geno. Prot. Bioinfo. Vol. 6 No. 2 2008

Lee and Yang

increase the power of empirical correlations in signal-
ing constitutive regulatory circuits. It is to generate
a network with nodes and edges corresponding to the
level of gene expression measured in microarray exper-
iments, and to derive correlation coefficients between
genes. To calculate the expression rate of a gene, the
following transformation rules are used:

dyi

dt
= k1,i Gi − k2,i yi

Gi = {1 + e
−
(∑

j
wi,j yj+bi

)
}−1

where yi is the actual concentration of the ith gene
product; k1,i and k2,i are the accumulation and degra-
dation rate constants of gene product, respectively; Gi

is the regulatory effect on each gene that is defined
by a set of weights wi,j estimating the regulatory
influence of gene j on gene i, and an external input
bi representing the reaction delay parameter.

Learning algorithm

After the network model is decided, the next phase is
to find settings of the thresholds and time constants
for each neuron as well as the weights of the connec-
tions between the neurons so that the network can
produce the most approximate system behavior (that
is, the measured expression data). By introducing
a scoring function for network performance evalua-
tion, the above task can be regarded as a parameter
estimation problem with the goal of maximizing the
network performance (or minimizing an equivalent er-
ror measure). To achieve this goal, here we use the
backpropagation through time (BPTT) (20) learning
algorithm to update the relevant parameters of recur-
rent networks in discrete-time steps.

Instead of mapping a static input to a static out-
put as in a feedforward network, BPTT maps a series

of inputs to a series of outputs. The central idea is
the “unfolding” of the discrete-time recurrent neural
network (DTRNN) into a multilayer feedforward neu-
ral network when a sequence is processed. Figure 2
shows a typical example of unfolding an RNN. Once
a DTRNN has been transformed into an equivalent
feedforward network, the resulting feedforward net-
work can then be trained using the standard back-
propagation algorithm.

The goal of BPTT is to compute the gradient
over the trajectory and update network weights ac-
cordingly. As mentioned above, the gradient decom-
poses over time. It can be obtained by calculating the
instantaneous gradients and accumulating the effect
over time. In BPTT, weights can only be updated
after a complete forward step during which the acti-
vation is sent through the network and each process-
ing element stores its activation locally for the entire
length of the trajectory. More details on BPTT are
referred to Werbos’ work (20).

In the above learning procedure, learning rate is
an important parameter. Yet it is difficult to choose
an appropriate value to achieve an efficient training,
because the cost surface for multi-layer networks can
be complicated and what works in one location of the
cost surface may not work well in another location.
Delta-bar-delta is a heuristic algorithm for modifying
the learning rate in the training procedure (21). It
is inspired by the observation that the error surface
may have a different gradient along each weight di-
rection so that each weight should have its own learn-
ing rate. In our modeling work, to save the effort in
choosing appropriate learning rate, this algorithm is
implemented for automatic parameter adjustment.

Gene clustering

As can be expected, when the number of genes in a
regulatory network and the interactions between the

����

����

�� ��
����

����

�� ����	

�� ����	

�� ��	

��
����	

��
����	

�� ��	

����

����

����

����

���� ����

���� ����

Fig. 2 The unfolding of a two-node recurrent neural network.

Geno. Prot. Bioinfo. Vol. 6 No. 2 2008 115

Intelligent Computing for Modeling Bio-Networks

genes increase in respect to the increasing functional
complexity that the network has to deal with, the di-
rect modeling for a network becomes more and more
difficult to achieve. To scale up our approach to solve
more complicated reconstruction task, we take an en-
gineering point of view to tackle the problem in a
“divide and conquer” way. A clustering technique is
firstly employed to group the genes into some small-
scale networks, based on the analysis of their corre-
sponding expression data, and then the small net-
works are reconstructed from the expression data by
the RNN-based approach described above. Once all
the small networks have been obtained, each of them
is regarded as a self-contained system component of
the original network, and the learning algorithm indi-
cated previously is used to determine the interactions
between different system components. The small net-
works can be decomposed again in the similar way
until the resulting networks can be directly modeled.

In our current work, the self-organization feature
map (SOM) method is adopted for gene clustering.
Before a clustering method is applied to the expres-
sion data, some features on the dataset have to be
decided so that the clustering method can find the
relationships between the data accordingly. Here we
use the wavelet transform (WT) technique to extract
data features from the waveforms derived from the
gene expression data of different time points.

The WT theory has been widely used in many
signal-processing applications (22). WT decomposes
a signal into a set of basis functions called wavelets.
It involves representing a time function in terms of
simple and fixed building blocks. These building
blocks are actually a family of functions derived from

a single generating function (the mother wavelet) by
translation and dilation operations. It is known that
WT is more suitable in analyzing non-stationary sig-
nals, since it is well localized in time and frequency
(22). With its important ability on data manipula-
tion, WT can compress an original signal that con-
sists of many data points into a few parameters called
wavelet coefficients that characterize the behavior of
the signal. The wavelet coefficients can be computed
by using the discrete wavelet transform. The com-
puted wavelet coefficients provide a compact repre-
sentation that shows the energy distribution of the
signal in time and frequency. Therefore, the wavelet
coefficients derived from the time-varying gene reg-
ulatory signals can be used as features of the signals
for gene clustering.

Figure 3 is the typical result of wavelet transform
for a certain gene (produced by MATLAB Wavelet
toolbox), in which S is the original gene expression
data; a4 is the wavelet approximation (taken from
the Daubechies function with wavelets of order 4)
by the relevant subsequences; and d1 to d4 are the
wavelet detailed subsequences (with four levels of
multi-resolution analysis). The coefficients of the
high frequent wavelet subsequences are then used as
data features for SOM clustering.

Evaluation

After presenting the two models and proposing two
intelligent computing methods for building biological
networks respectively, we conduct two sets of exper-
iments to evaluate our methodology. The first is to
investigate whether the GP approach can evolve the

Fig. 3 The wavelet transform for the expression data of a gene.

116 Geno. Prot. Bioinfo. Vol. 6 No. 2 2008

Lee and Yang

equations for a network, and the second is to recon-
struct a network structure from data by neural com-
putation approach.

Modeling equation-based network

The first experiment is to examine the performance of
using GP to evolve kinetic equations. To obtain time
series data, we first used the well-known simulation
software POWERSIM to create a system dynamics
model for the kinetic equations listed above. Then we
used the model developed in the simulated environ-
ment to produce expression data for five steps and
the data points were then interpolated up to fifty. In
the simulation, the rate constants k1, k-1, and k2 were
set to 10.0, 1.0, and 5.0; and the initial concentrations
for enzymes E0, immediate substance E1, substrate S,
and product P were 0.08, 0, 1.0, and 0, respectively.
Figure 4 shows the system dynamics model and the
reaction equation of the original network and its cor-
responding behavior during the simulation period.

To evolve the structure of kinetic equation for
each substance, in the experiment we defined the
non-terminal set as {node, +, −, ×, /} that includes
the dummy root node and the common arithmetic
operators, and the terminal set as {E0, E1, S, P, R}
that includes all possible substances. In the terminal
set, R is the set of real numbers between −10 and 10
that represents the possible numerical constants. As
described above, each R in the tree is attached with a
random numerical value within the specified range to
represent a constant. The fitness function here was
in fact a penalty function that accumulated the error
(the difference between desired and actual time series

Fig. 4 Illustration of the original network.

data at each time point) produced by each individual
(a kinetic equation) over 50 simulated time steps. In
each experimental run, one population of 500 individ-
uals was used and the evolution process continued for
50 generations. Figure 5 shows the typical behavior of
the evolutionary mechanism. Figure 6 is two examples
illustrating how the error varies in evolving equations
for substances E0 and E1. As can be seen, the er-
ror is reduced gradually by the method used, and the
equations obtained are almost identical to the original
ones. They indicate that the equation-based network
model can be built successfully by the GP approach.

Modeling RNN-based network

To evaluate our approach for the network-based
model, we firstly used the well-known gene regu-
latory network simulation software Genexp (16) to
produce expression data, and then employed our com-
putational approach to infer network models from the
data. A four-node network was defined in which the
accumulation and degradation rate constants of gene
product k1 and k2 for all genes were all set to 0.3
(chosen from preliminary test). Figure 7 compares
the system behaviors of the original and reconstructed
networks. As can be seen, after training, the RNN can

Time

Time

Fig. 5 The behavior of the original network. The X-

axis and Y-axis are time step and product concentration,

respectively.

Geno. Prot. Bioinfo. Vol. 6 No. 2 2008 117

Intelligent Computing for Modeling Bio-Networks

�

���

���

���

���

�

� �� �� �� �� ��
����������������

��
��
�

�

���

���

���

���

�

� �� �� �� �� ��
����� ����������

��
��
�

Fig. 6 Two examples of error curves (for E0 and E1) during the evolutionary process.

�

���

���

���

���

�

� 	
 �� �� �� �	 �

����� ������

�

���

���

���

���

�

� 	
 �� �� �� �	 �

����� ������

�

���

���

���

���

�

� 	
 �� �� �� �	 �

����� ������

�

���

���

���

���

�

� 	
 �� �� �� �	 �

����� ������

Fig. 7 Behaviors of the target and synthesized systems for the first dataset. The x-axis and Y-axis are time step and

product concentration, respectively.

�

���

���

���

���

� 	
 �� �� �� �	 �

� � � � 	

� � �
 ��

�

���

���

���

���

� 	
 �� �� �� �	 �

� � � � 	

� � �
 ��

A B
Fig. 8 Behaviors of the target (A) and rebuilt (B) systems for the second dataset. The X-axis and Y-axis are time

step and product concentration, respectively.

successfully learn the system behavior of the original
four-node regulatory network.

In modeling large systems with more genes, the
data available are usually not sufficient to determine
accurately the interactions between all genes in a

given dataset. Hence, it is important to be able to
construct a coarse-grained description of the system
at first. The second experiment demonstrates how the
clustering method can help inferring coarse-grained
network models from data. The dataset was an ar-

118 Geno. Prot. Bioinfo. Vol. 6 No. 2 2008

Lee and Yang

tificial one obtained from the software Genexp. To
collect data, initial parameters were specified for a
10-gene network and then the expression data were
recorded for 30 consecutive time points (Figure 8A).
To reconstruct the original network from these time
series data, the gene clustering method including pro-
cedures of wavelet transform and SOM was used to
group genes. Two clusters were observed, one for
genes 1, 2, and 3, the other for genes 5, 6, 7, 8, and
9. Genes 4 and 10 did not obviously belong to any of
the above two clusters. After furthermore measuring
the gene distance and calculating the Pearson’s cor-
relation coefficients between the genes, we decided to
organize the genes into four parts: two clusters as de-
scribed above and genes 4 and 10 were considered as
separated outliers.

Once the genes were grouped, the two clusters
were both represented as two fully RNNs and trained
independently. With the trained results, the over-
all four-part network was trained again together at a
higher level. Figure 8B presents the system behav-
iors of the original and reconstructed networks over
the 10 genes. Though this is not a perfect match
in data fitting, it can be observed that the behavior
of the trained network is very similar to the origi-
nal one, in which many of them have almost identical
data sequences. This is satisfactory as the dataset is
relatively small in fact.

Conclusion

The construction of biological networks is one of the
most important issues in systems biology. Many mod-
els have been proposed to simulate networks, and
computational methods have also been developed to
reconstruct networks. Instead of arguing which model
and method are most suitable for network reconstruc-
tion, in this work we emphasize the importance of
establishing a practical approach that can model bi-
ological networks and is scalable for inferring com-
plex networks. As kinetic equations can describe bio-
chemical reactions in continuous time, we therefore
choose them to model networks of this kind, and em-
ploy the GP method to evolve equations. In addition,
recurrent networks can work as dynamical systems as
GRNs do, so we adopt the RNN model to represent
gene regulatory networks and use the neural compu-
tation method to learn networks. In order to deal
with the scalability problem, a clustering method with
several data analysis techniques for feature extraction

has been developed to infer large networks hierarchi-
cally. To verify the presented approach, experiments
have been conducted to demonstrate how it works for
inferring small and large networks. The results have
shown that our approach can be successfully used to
infer networks from measured expression data.

Our work presented here directs to some prospects
of future research. The first is to incorporate biolog-
ical knowledge into our approach to construct net-
works (especially GRNs) in an even more efficient
way. Biological knowledge about the general proper-
ties of genetic networks can alleviate some of the data
requirements. If we take it into account in network re-
construction, it can thus reduce computational effort
and obtain more accurate model. The other direction
is to conduct more experiments with real biological
datasets to furthermore evaluate our approaches. In
addition, it is worth to investigate how to adopt other
types of learning algorithms to improve the modeling
performance. We are currently implementing a hybrid
framework to evolve neural networks and to evaluate
its corresponding performance.

Acknowledgements

This work was supported by National Science Council
under contract NSC-93-2213-E-390-002.

Authors’ contributions

WPL supervised the project, developed the computa-
tional algorithms, and wrote up the manuscript. KCY
collected the datasets, conducted data analyses, and
performed the experimental computation. Both au-
thors read and approved the final manuscript.

Competing interests

The authors have declared that no competing inter-
ests exist.

References

1. Cheng, J., et al. 2005. Sigmoid: a software infrastruc-

ture for pathway bioinformatics and systems biology.

IEEE Intell. Syst. 20: 68-75.

2. Kitano, H. 2001. Systems biology: toward system-

level understanding of biological systems. In Founda-

tions of Systems Biology (ed. Kitano, H.), pp.1-36.

MIT Press, Cambridage, USA.

Geno. Prot. Bioinfo. Vol. 6 No. 2 2008 119

Intelligent Computing for Modeling Bio-Networks

3. Csete, M.E. and Doyle, J.C. 2002. Reverse engineering

of biological complexity. Science 295: 1664-1669.

4. Liao, J.C., et al. 2003. Network component analysis:

reconstruction of regulatory signals in biological sys-

tems. Proc. Natl. Acad. Sci. USA 100: 15522-15527.

5. de Jong, H. 2002. Modeling and simulation of genetic

regulatory systems: a literature review. J. Comput.

Biol. 9: 67-103.

6. Michaelis, M.L. and Menten, L. 1913. The kinetics of

invertin action. Biochemische Zeitschrift 49: 333-369.

7. Lewin, B. 1999. Genes VII. Oxford University Press,

Oxford, UK.

8. Bower, J.M. and Bolouri, H. 2001. Computational

Modeling of Genetic and Biochemical Networks. MIT

Press, Cambridage, USA.

9. Styczynski, M.P. and Stephanopoulos, G. 2005.

Overview of computational methods for the inference

of gene regulatory networks. Comput. Chem. Eng.

29: 519-534.

10. D’haeseleer, P., et al. 2000. Genetic network inference:

from co-expression clustering to reverse engineering.

Bioinformatics 16: 707-726.

11. Hartemink, A.J. et al. 2002. Bayesian methods for

elucidating genetic regulatory networks. IEEE Intell.

Syst. 17: 37-43.

12. Ong, I.M., et al. 2002. Modeling regulatory pathways

in E. coli from time series expression profiles. Bioin-

formatics 18: S241-248.

13. Kikuchi, S., et al. 2003. Dynamic modeling of ge-

netic networks using genetic algorithm and S-system.

Bioinformatics 19: 643-650.

14. Kimura, S., et al. 2005. Inference of S-system models

of genetic networks using a cooperative coevolutionary

algorithm. Bioinformatics 21: 1154-1163.

15. Blasi, M.F., et al. 2005. A recursive network approach

can identify constitutive regulatory circuits in gene ex-

pression data. Physica A 348: 349-370.

16. Vohradsky, J. 2001. Neural network model of gene

expression. FASEB J. 15: 846-854.

17. Bhalla, U.S. and Lyengar, R. 1999. Emergent proper-

ties of networks of biological signaling pathways. Sci-

ence 283: 381-397.

18. Voit, E.O. 2000. Computational Analysis of Biochemi-

cal Systems. Cambridge University Press, Cambridge,

UK.

19. Koza, J.R. 1992. Genetic Programming : On the Pro-

gramming of Computers by Means of Natural Selec-

tion. MIT Press, Cambridge, USA.

20. Werbos, P.J. 1990. Backpropagation through time:

what it does and how to do it. Proc. IEEE 78: 1550-

1560.

21. Jacobs, R.A. 1988. Increased rates of convergence

through learning rate adaptation. Neural Networks

1: 295-307.

22. Daubechies, I. 1990. The wavelet transform, time-

frequency localization and signal analysis. IEEE

Trans. Inf. Theory 36: 961-1005.

120 Geno. Prot. Bioinfo. Vol. 6 No. 2 2008

