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Identif ication of proteins by mass spectrometry (MS) is an essential step in pro-
teomic studies and is typically accomplished by either peptide mass fingerprinting
(PMF) or amino acid sequencing of the peptide. Although sequence information
from MS/MS analysis can be used to validate PMF-based protein identif ication,
it may not be practical when analyzing a large number of proteins and when high-
throughput MS/MS instrumentation is not readily available. At present, a vast
majority of proteomic studies employ PMF. However, there are huge disparities
in criteria used to identify proteins using PMF. Therefore, to reduce incorrect
protein identif ication using PMF, and also to increase confidence in PMF-based
protein identif ication without accompanying MS/MS analysis, definitive guiding
principles are essential. To this end, we propose a value-based scoring system that
provides guidance on evaluating when PMF-based protein identif ication can be
deemed sufficient without accompanying amino acid sequence data from MS/MS
analysis.

Key words: peptide mass fingerprinting, Mowse, Mascot, ProFound, proteomics

Introduction

Protein identification using mass spectrometry (MS)
is an essential step in studies that employ proteomic
methods such as two-dimensional electrophoresis (2-
DE), and is typically accomplished by either peptide
mass fingerprinting (PMF) or amino acid sequenc-
ing of the peptide using tandem mass spectrometry
(MS/MS). In PMF analysis, proteolytic cleavage us-
ing an enzyme such as trypsin results in a collection
of peptides, which serves as a unique identifier or
fingerprint of the protein. The accurate determina-
tion of peptide mass-to-charge (m/z) ratio, typically
using a matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF) mass spectrometer, al-
lows identification of the unknown protein by match-
ing the resulting peptide masses with the theoreti-
cal peptide masses of proteins in a database (such as
NCBI and Swiss-Prot). For peptide sequence anal-
ysis, peptides obtained by proteolytic cleavage are
subjected to MS/MS to fragment the peptide along
the amide backbone. The amino acid sequence of the
peptide is then obtained from the differences in m/z
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ratios for a series of daughter ions. Subsequently,
the sequence ions and the intact peptide masses are
matched against protein databases to identify the un-
known protein.

To determine the prevalence of PMF analysis as
well as the type of search algorithms employed in pro-
tein identification, we surveyed articles published in
Proteomics (August 2005 to July 2007) and Proteome
Science (January 2003 to September 2007). Out of
the 581 articles surveyed, approximately 35% of the
studies only used PMF-based protein identification,
32% of the studies only utilized MS/MS, and 33% of
the studies used both PMF and MS/MS for protein
identification. Thus, 68% of the studies utilized PMF
for protein identification.

Although sequence information from MS/MS
analysis can be used to validate PMF-based pro-
tein identification, it may not be practical when an-
alyzing a large number of proteins and when high-
throughput MS/MS instrumentation is not readily
available. Besides, in comparison to MS/MS anal-
ysis on a single peptide, identification of proteins
using PMF has two significant advantages that are
often ignored. Firstly, in PMF, unsuspected post-
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translational modifications lead to only a marginal
loss in the quality of data and do not affect the
outcome. In contrast, in MS/MS, unspecified post-
translational modifications can adversely affect the
matching and scoring process, thus precluding un-
ambiguous protein identification. Secondly, although
MS/MS analysis can be used to determine the amino
acid sequence of a peptide, that peptide may be
unique to a particular protein or common to a number
of different proteins (for example, enzymes from the
same family). Conversely, the use of multiple pep-
tides for protein identification in PMF allows more
extensive coverage of the protein, thereby increasing
the confidence in a positive identification. Thus, in
some cases the MS/MS analysis on a single peptide
may actually be less specific than PMF.

A pertinent question when using PMF for protein
identification is that: at what point does one use
MS/MS analysis for protein identification? A com-
monly used approach is to use PMF as an initial step,
and then use MS/MS to corroborate proteins that are
considered ambiguous. However, this brings up an
interesting question: when can one conclude protein
identification using PMF to be “unambiguous”? The
traditional definition of “unambiguous” (having or
exhibiting no ambiguity or uncertainty) can hardly be
applied to PMF-based protein identification, which is
probability based and there always remains a chance
of obtaining a false positive protein match. So when
used in the context of protein identification, a prag-
matic definition of “unambiguous” would be “having
or exhibiting little ambiguity or uncertainty”. With-
out accompanying amino acid sequence data, can one
increase the confidence in protein identification using
PMF data? Western blotting can be used to confirm
protein identification; however, this technique is not
high-throughput, limited by the availability of anti-
bodies, and impractical for analyzing large number of
samples.

Presently, there are huge disparities in criteria
used to identify proteins using PMF. Plomion et al
(1 ) selected a molecular weight search (Mowse) score
of 71 or more as significant for a protein match,
while Hoffrogge et al (2 ) used a Mowse score of
greater than 69 as significant. On the other hand,
it has been suggested that the Mowse score should
be 50 more than the significant threshold level for
protein identification (3 ). Because the Mowse score
depends on the number of sequences in a database,
for species with small database sizes this approach
would not be appropriate. Naranjo et al (4 ) catego-

rized a match as successful if a protein had a score
greater than the significant threshold of the Mascot
algorithm (5 , 6 ; www.matrixscience.com) and was the
top match in both Mascot and ProFound (7 , 8 ) algo-
rithms. Whereas proteins with a Mascot score of at
least 95 or a ProFound score of 2.2 have been con-
sidered significant by others (9 ). Also, Guipaud et
al (10 ) and Sinclair et al (11 ), in addition to the
significant scores of protein algorithms, incorporated
sequence coverage, number of peptides matched, and
the congruence of isoelectric point (pI) and molecu-
lar mass of the protein with the sequence database in
the evaluation of PMF data. Consequently, definitive
guidelines for what constitutes a positive match are
lacking.

To this end, we propose a value-based scoring sys-
tem that provides guidance on evaluating when PMF-
based protein identification can be deemed sufficient
without accompanying amino acid sequence data
from MS/MS analysis. To construct this value-based
scoring system, we have used parameters that are
considered important in substantiating protein iden-
tification, such as congruence of the observed pI and
molecular mass with the protein sequence database,
percent sequence coverage (percentage of the theoret-
ical protein that is covered by the experimental pep-
tide masses), number of peptides matched, and the
matching scores from two different protein search en-
gines.

Protein search algorithms

Since PMF-based protein identification is probability-
based, the choice of protein search algorithms is of
paramount importance. To date, thirteen different
PMF search algorithms have been reported (12 ).
There are several ways that these protein search en-
gines differ from one another, but the fundamental
difference is in the scoring algorithm that is employed.
Some of the protein search engines calculate the prob-
ability of obtaining an incorrect match and report sig-
nificance threshold scores to increase the confidence
in a protein match, whereas others just rank possible
protein matches without reporting a significance level.
In our sampling of the literature, Mascot was the most
commonly used protein search engine (67%), followed
by MS-Fit (13 ) (14%) and ProFound (12%). Mascot
and MS-Fit implement a probability-based scoring ap-
proach using Mowse; however, while Mascot reports
scores that correspond to a 5% significance level, MS-
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Fit does not provide a significance level for its pro-
tein matches. ProFound, on the other hand, uses
the Bayesian probability and reports a significance
threshold score (Z score). Incidentally, most studies
that employed Ms-Fit or ProFound also used Mascot
for database searching.

The threshold Mowse score in Mascot is reported
as −10 lg(P ), where P (α value/number of database
sequences) is the probability that the observed match
is a random event (5 , 6 ). Accordingly, the threshold
Mowse score depends on two parameters: the num-
ber of sequences in a database and the α value used
for searches. Typically, protein searches are carried
out with an α value of 0.05. We plotted the Mowse
scores for a number of different theoretical database
sequences, ranging from 10,000 to 1,000,000 at vari-
ous α values (0.05, 0.01, and 0.001) (Figure 1). Since
the significance threshold score depends on the num-
ber of sequences in the database, as the number of
protein sequences increase, the threshold would also

increase. This issue is of greater relevance when it
comes to the identification of proteins from organ-
isms whose sequences have not been completely deter-
mined. Also, post-translational processing of proteins
would increase the number of protein sequences in the
databases, even for completely sequenced genomes.
For instance, if the searched database contains 20,000
sequences, a protein match would be considered pos-
itive at the default α value of 0.05 when the Mowse
score exceeds the threshold of 56. However, this pro-
tein match would no longer be positive if the number
of sequences in the database were to increase. On the
other hand, if the search was performed at a lower α

value (for example 0.01), the protein match would still
retain its significance (at an α of 0.05) even if there
was a five-fold increase in the number of sequences
in the future. Therefore, based on the distribution
profile of threshold Mowse scores (Figure 1), we sug-
gest performing PMF searches in Mascot using an α

value of 0.01, as opposed to the default α value of 0.05.

Fig. 1 Effect of α value and the number of sequences in a database on the distribution of threshold Mowse scores.

The threshold Mowse score was calculated as −10 lg(P ), where P is α value/number of sequences in the database. A

protein match above a particular Mowse threshold score indicates that the match is less likely to be random and is

likely to be significant. The bars represent the threshold Mowse scores for theoretical database sequences at different

α values (0.05, 0.01, and 0.001).
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For organisms whose complete sequence information
is not available, it would be better to carry out and
report protein searches at an α value of 0.001. This
ensures that the matching would still be significant
at an α value of 0.05, even if there was a vast increase
in the number of sequences in the future (Figure 1).
Furthermore, a decrease in α value decreases the risk
of Type 1 error (α error) associated with the search,
and thus decreases the incidence of false protein iden-
tification with PMF. Although this would increase
the Type 2 error (β error) resulting in an increase
of false negatives (number of proteins that cannot be
identified), we feel it is preferable to be highly averse
to making a Type 1 error as the goal is to correctly
identify proteins.

Unlike the Mowse score used in Mascot, the sig-
nificance threshold of ProFound, Z score, is constant
and is independent of the number of sequences avail-
able in the database. The Z score is used as a mea-
sure of probability of a random protein match and
represents the distance of a sample from the mean
in units of standard deviation. A Z score of 1.65 (α
= 0.05, one tail) or lower signifies that the protein
match is likely to be random and a score greater than
1.65 indicates that the protein match is significant
(7 , 8 ). We recommend using two different protein
search engines that employ dissimilar algorithms for
protein identification as this should reduce the likeli-
hood of false protein identification. As reporting of
significance threshold scores help to assess the quality
of a protein match, we suggest the use of Mascot and
ProFound for PMF searches.

In addition to the scoring of protein matching with
algorithms such as Mascot and Profound, other fac-
tors that assist in substantiating protein identification
include the percent sequence coverage and the number
of peptides matched. Despite the expected variation
in percent coverage based on the size of the protein
(the sequence coverage for large proteins tends to be
less and vice versa), studies have suggested sequence
coverage of at least 20% (14 , 15 ). Based on our obser-
vation as well as prior reports (8 , 16 , 17 ), we suggest
a minimum of four peptides to be matched for positive
protein identification with PMF.

Value-based scoring system

We have transformed the commonly used parameters
(pI, molecular mass, percent sequence coverage, num-
ber of peptides matched, and significance scores of

Mascot and ProFound) in PMF into a value-based
scoring system for an objective evaluation of protein
identification using PMF (Table 1). With this scoring
system, a combined score of 15 or more can be consid-
ered sufficient for the protein match using PMF to be
unequivocal without the need for subsequent MS/MS
analysis. The threshold of 15 was chosen by taking the
following into account: congruence of pI and molec-
ular mass (4 points), sequence coverage of 20% or
more (3 points), minimum of four peptides matched
(2 points), and protein match with algorithms Mas-
cot and ProFound at an α value of 0.01 (6 points).
We have gone through an iterative procedure to score
the parameters according to their degree of relevance
in PMF-based protein identification. The value-based
system was derived based on the criteria that are com-
monly used in the literature and also on our personal
experience in protein identification. Though protein
algorithms Mascot and ProFound were used to con-
struct the scoring system, any comparable protein
search algorithms can be substituted.

Table 1 Value-based scoring for PMF

Parameter Score

pI 2

Molecular mass 2

Sequence Coverage (%)

10%–19% 2

20%–29% 3

30%–39% 4

40%–49% 5

50% or more 6

Number of peptides matched

4–7 2

8–11 3

12–15 4

16–19 5

20 or more 6

Matching of protein algorithms Mascot ProFound

Top match (not significant) 1 1

Significant match (α = 0.05) 2 2

Significant match (α = 0.01) 3 3

Significant match (α = 0.001) 4 4

While being conservative, the scoring system is
also objective and flexible. For instance, protein
modifications can alter the observed pI (for example,
deamidation) as well as the molecular mass. How-
ever, this would not preclude an unequivocal protein
determination, but rather the absence of information
on pI or molecular weight can be offset by an increase
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in the percent sequence coverage, number of peptides
matched, or use of a more stringent threshold score
for Mascot and ProFound. It should be noted that
this scoring system cannot substitute for the care un-
dertaken in sample preparation and 2-DE analysis.
Rather, it provides guidance on evaluating the need
for a subsequent MS/MS analysis when using PMF.

One of the possible drawbacks of this value-based
scoring system is that it is conservative. There-
fore, while decreasing the number of false positives,
it would also increase the number of false negatives
(proteins that are changed but not identified). That
is, with this scoring system, a score of 15 or more
would be considered positive. However, in reality a
protein match with a score of 14 or less can still be
the correct match. Nevertheless, as the goal is to in-
crease confidence in PMF-based protein identification
without the accompanying need for sequence analy-
sis, we feel it is preferable to be Type 1 error averse.
Besides, the number of peptides matched (as well as
sequence coverage) would vary depending on protein
size. Since the scoring system recommends matching
a minimum of four peptides, it can affect the iden-
tification of small sized proteins. However, the lack
of a recommended minimum number of peptides can
be offset by other parameters (pH, MW, and the sig-
nificant scores of protein search engines), and thus
should not affect the identification of most proteins.

In addition to the factors discussed, for reliable
protein identification using PMF, the search param-
eters (such as error tolerance and the number of
missed cleavages) that are employed should also be
optimized; however, an elaborate discussion on these
parameters is beyond the scope of the present study
and readers are referred to germane articles (8 , 18 ).
Though the levels of error tolerance vary across stud-
ies, a value of 100 or less is desirable. For the number
of missed cleavages, a value of 1 should be optimal, al-
though a lot of studies have used 2 missed cleavages.
With regard to protein modifications, most studies
employ carbamidomethylation of cysteine as a fixed
modification and oxidation of methionine as a partial
modification (2 , 16 , 17 , 19 ).

Presently, the majority of proteomic studies
employ PMF. Therefore, to reduce incorrect pro-
tein identification using PMF, and also to increase
confidence in PMF-based protein identification with-
out accompanying MS/MS analysis, definitive guid-
ing principles are essential. The value-based scoring
system proposed in this study is objective, flexible,
and provides preliminary direction on evaluating

when PMF-based protein identification can be consid-
ered sufficient without a subsequent need for amino
acid sequence analysis.
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