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Understanding the regulatory mechanism that controls the alteration of global gene
expression patterns continues to be a challenging task in computational biology.
We previously developed an ant algorithm, a biologically-inspired computational
technique for microarray data, and predicted putative transcription-factor binding
motifs (TFBMs) through mimicking interactive behaviors of natural ants. Here
we extended the algorithm into a set of web-based software, Ant Modeler, and
applied it to investigate the transcriptional mechanism underlying bone formation.
Mechanical loading and administration of bone morphogenic proteins (BMPs) are
two known treatments to strengthen bone. We addressed a question: Is there
any TFBM that stimulates both “anabolic responses of mechanical loading” and
“BMP-mediated osteogenic signaling”? Although there is no signif icant overlap
among genes in the two responses, a comparative model-based analysis suggests
that the two independent osteogenic processes employ common TFBMs, such as a
stress responsive element and a motif for peroxisome proliferator-activated recep-
tor (PPAR). The post-modeling in vitro analysis using mouse osteoblast cells sup-
ported involvements of the predicted TFBMs such as PPAR, Ikaros 3, and LMO2
in response to mechanical loading. Taken together, the results would be useful to
derive a set of testable hypotheses and examine the role of specif ic regulators in
complex transcriptional control of bone formation.

Key words: microarray, transcription-factor binding motif, mechanical loading, bone mor-
phogenic protein, ant algorithm

Introduction

One of the goals of systems biology is to raise testable
hypotheses based on the large amount of experimen-
tal data generated from high-throughput technolo-
gies such as microarray. With the availability of
genomic DNA sequences, computational tools have
been developed to predict the cis-acting elements—
transcription-factor binding motifs (TFBMs)—in the
promoter and enhancer regions that cause the global
gene expression patterns to emerge (1 , 2 ).

*Corresponding authors.
E-mail: hyokota@iupui.edu;

yunliu@iupui.edu

We previously reported an ant algorithm to pre-
dict functional TFBMs from the microarray data for
chondrogenesis (3 , 4 ). The ant algorithm (5 , 6 ) is a
branch of swarm intelligence techniques (7 ), and it
was inspired by the foraging behavior of ant colonies
of Linepithema humile that communicate each other
through deposition of a chemical named pheromone.
The concentration of pheromone on trails is consid-
ered “distributed information” and is constantly evap-
orated and re-deposited by ants to reflect their expe-
rience while searching for food. In ant algorithms, ar-
tificial pheromone, which is given by ant-like agents
to a potential solution, is used as a clue to obtain
sub-optimal solutions in combinatorial problems. The
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identification of TFBMs is formulated as a combi-
natorial optimization problem with the assumption
that the mRNA level is determined by multiple tran-
scription factors and each transcription factor con-
trols multiple genes. In the current study, each ant
represents a particular selection of putative TFBMs
and deposits a varying amount of artificial pheromone
based on how well the occurrence of this choice of mo-
tifs correlates with the observed mRNA levels. The
algorithm is suited to identify a heterogeneous set of
motifs whose length varies from 4 bp to more than 20
bp.

Here we developed a set of web-based software,
Ant Modeler, in order to facilitate model-based com-
parative prediction of TFBMs. In many biological
systems, more than one treatment can induce a
common outcome such as cellular proliferation and
differentiation as well as apoptosis. In order to iden-
tify TFBMs in more than one treatment, a model-
based comparative analysis is useful. Among many
TFBMs involved in those treatments, the analysis al-
lows us to distinguish a group of TFBMs that are com-
monly utilized from other TFBMs that are specific
to each treatment. Ant Modeler is built to provide
a user-friendly platform through which putative TF-
BMs are identified from microarray data in a public
or local domain. It receives a list of genes and their
fold changes in response to any treatment, and gener-
ates a report for a group of putative TFBMs, where a
concentration of pheromone deposited to TFBMs by
artificial ants represents a predicted contribution of
each TFBM to the observed expression profile.

In this study, we applied Ant Modeler to pre-
dict TFBMs involved in two independent treatments
for bone formation: mechanical loading (8 ) and ad-
ministration of bone morphogenic proteins (BMPs)
(9 ). Bone is a dynamic system that is constantly
destroyed by osteoclasts and rebuilt by osteoblasts
(10 , 11 ). It is therefore important, particularly in
the aging population, to enhance bone formation and
prevent bone loss. Although the two treatments are
known to stimulate bone formation, their patterns
of gene expression are significantly different. An in-
triguing question is whether the two treatments share
any common TFBMs essential for bone formation.
With Ant Modeler, a comparative analysis was con-
ducted using two sets of microarray data in the public
domain for “in vivo mechanical loading” and “in vitro
administration of BMPs”.

Results and Discussion

Two datasets were employed from the microarray
data in response to mechanical loading published by
Xing et al (8 ) and BMP administration by Peng et al
(9 ). We included all genes that were biologically iden-
tified with clear annotation (69 genes in mechanical
loading and 53 genes in BMP administration). To our
surprise, only two genes (lysyl oxidase and neuropilin)
are common to the two datasets. We searched TFBM
candidates using 1,000-bp DNA sequences flanking to
the 5′-end of the genes. The prediction of TFBMs was
conducted using 100 artificial ants with 1,000 itera-
tions (see Materials and Methods for details).

Prediction of 5-bp TFBM candidates

We first applied Ant Modeler to evaluate 5-bp TFBM
candidates in the two datasets. There are 512 can-
didates without considering the polarity of DNA se-
quences. The plot of pheromone distributions for
512 TFBM candidates exhibits multiple peaks (Fig-
ure 1). Among them, two local peaks (“AAGGG”
and “GGGCA”) appeared to be common to the two
examples. They are part of the consensus sequences
of stress responsive element (STRE) (12 ) and perox-
isome proliferator-activated receptor (PPAR) (13 ).

Linkage to biologically known consensus

sequences using 6-bp TFBM candidates

The results based on 5-bp TFBM candidates indi-
cate a common usage of some TFBMs in the two
responses, but most biologically known motifs are
longer than 5 bp. In order to investigate the role of
regulatory sequences longer than 5 bp, we selected 6-
bp TFBM candidates and mapped them to TRANS-
FAC database version 9.2 (14 ). Firstly, using Ant
Modeler, the 6-bp DNA sequences whose pheromone
concentration is significantly higher [> 3 standard de-
viation (s.d.)] than the average were chosen as poten-
tial core TFBMs (Figure 2). There were 29 and 25
outliers in the prediction for mechanical loading and
BMP administration, respectively. Secondly, these
outliers were mapped to biologically known TFBMs
in TRANSFAC database and a cumulative score for
each of the known TFBMs was defined:

K∑
k=1

Sk

√
K

√
Lcov

Ltot
(1)
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Fig. 1 Spectrum of pheromone concentrations for 5-bp TFBM candidates (512 in total starting from “AAAAA” along

the x-axis). A. Spectrum of pheromone concentrations for the dataset linked to mechanical loading. B. Spectrum of

pheromone concentrations for the dataset linked to BMP administration.
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Fig. 2 Distribution of the total number for each of the 6-bp TFBM candidates (2,080 in total) to be selected by Ant

Modeler. A. Distribution for the dataset linked to mechanical loading. B. Distribution for the dataset linked to BMP

administration.

where K = the number of 6-bp outliers that match
to the known TFBM of interest; Sk = similarity score
of the predicted motif to the position-specific scor-
ing matrix of the biologically known binding sites in
the TRANSFAC database (15 ); Ltot = total length
(in bp) of the known TFBM of interest; and Lcov

= length (in bp) covered by 6-bp outliers. Besides
STRE/Nrf2 and PPAR, which were predicted in the
analysis with 5-bp candidates, the linkage analysis
through mapping to TRANSFAC also identified other
known motifs and transcription regulators, such as

HEN1 (basic helix-loop-helix protein), Ikaros 3 (zinc
finger protein), Helios A (Ikaros-related protein),
NRSF (neuron-restrictive silencer factor), major T-
antigen binding site, LMO2 (LIM domain transcrip-
tion regulator 2), GCNF (germ cell nuclear factor),
STAT6 (signal transducer and activator of transcrip-
tion 6), ER (estrogen receptor), and ERRα (estrogen-
related receptor α) (Table 1). Since the TRANSFAC
database often includes a few stretches of nonspecific
nucleotides as part of consensus sequences, the pre-
dicted percent coverage in Table 1 is underestimated.
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Table 1 TFBM candidates predicted for mechanical loading and BMP administration

Motif* Total Treatment# Score Coverage Sequence

score

HEN1 26.5 ML 19.8 73% (16/22) nngGGNCGCAGCTGCGNCCcnn

BMP 6.6 36% (8/22) nngggncGCAGCTGCgncccnn

PPAR 23.5 ML 14.9 62% (13/21) nnwgRGGTCAAAGGTCAnnnn

BMP 8.65 33% (7/21) nnWGRGGTCaaaggtcannnn

COUP 23.4 ML 15.2 100% (13/13) TGACCTTTGACCC

BMP 8.2 54% (7/13) tGACCTTTgaccc

HNF4 20.4 ML 15.9 87% (13/15) nRGGNCAAAGGTCAn

BMP 4.5 40% (6/15) NRGGNCaaaggtcan

LXR 8.7 ML 9.0 71% (12/17) YGAMCTnnasTRACCYn

BMP 8.7 71% (12/17) yGAMCTNnastRACCYN

Ikaros 3 22.4 ML 4.5 40% (6/15) NRGGNCaaaggtcan

BMP 12.1 85% (11/13) tNYTGGGAATACc

Helios A 17.3 ML 12.0 82% (9/11) nNTWGGGANNn

BMP 5.3 55% (6/11) nNTWGGGannn

NRSF 22.0 ML 8.1 57% (12/21) ttcagCACCACGGACAGmgcc

BMP 13.9 71% (15/21) ttcaGCACCACGGACAGMGcc

major T-antigen 21.1 ML 16.8 84% (16/19) GGGAGGCAGAGGCAGGygg

BMP 4.3 32% (6/19) gggagGCAGAGgcaggygg

LMO2 18.2 ML 11.4 75% (9/12) cNNCAGGTGBnn

BMP 6.8 50% (6/12) cnncAGGTGBnn

GCNF 17.8 ML 11.1 67% (12/18) ntcaAGKTCAAGKTCAnn

BMP 6.7 44% (8/18) ntcAAGKTCAAgktcann

STAT6 16.8 ML 10.4 88% (7/8) NNYTTCCy

BMP 6.4 75% (6/8) NNYTTCcy

ER 14.1 ML 7.6 55% (6/11) nAGGTCAnnny

BMP 6.5 55% (6/11) NAGGTCannny

ERRα 12.9 ML 6.9 43% (6/14) nnntnaAGGTCAnn

BMP 6.0 43% (6/14) nnntnAAGGTCann

STRE 13.6 ML 6.3 75% (6/8) TMAGGGgn

BMP 7.2 75% (6/8) TMAGGGgn

*HEN1: helix-loop-helix protein 1; PPAR: peroxisome proliferator-activated receptor; COUP: chicken ovalbumin up-

stream promoter; HNF4: hepatocyte nuclear factor 4; LXR: liver X receptor; NRSF: neuron-restrictive silencer factor;

LMO2: LIM domain transcription regulator 2; GCNF: germ cell nuclear factor; STAT6: signal transducer and activator

of transcription 6; ER: estrogen receptor; ERRα: estrogen related receptor α; STRE: stress responsive element.
#ML: mechanical loading; BMP: BMP administration.

Biological considerations

Out of the top ten candidates in Table 1, four mo-
tifs, namely PPAR, STAT6, ER, and STRE/Nrf2, are
reported to be related to bone formation or resorp-
tion. The suppression of PPAR is shown to stimulate
differentiation of osteoblast cells through Wnt signal-
ing pathway (13 ). STAT6 is known to inhibit osteo-
clast differentiation and thereby bone resorption (16 ).
ERs are demonstrated to mediate skeletal growth and

differentiation and their effects are modulated by gen-
ders (17 , 18 ). STRE/Nrf2 is reported to interact with
activating transcription factor 4, which is an essential
transcription factor in bone formation (19 ). Six other
motifs, including HEN1 (20 ), Ikaros 3 and Helios A
(21 ), NRSF (22 ), Major T-antigen (23 ), LMO2 (24 ),
and GCNF (25 ), have not been shown with any link-
age to bone formation or resorption. All these six
motifs, however, play critical roles in the processes of
development and regeneration in other tissues (26–31 ).
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In vitro biological evaluation in response to me-
chanical shear stress supports some of the predic-
tion by Ant Modeler (Figure 3). For instance, po-
tential involvements of PPAR, Ikaros 3, and LMO2
are suggested (Table 1). Real-time PCR revealed
that their mRNA levels in mouse osteoblasts were sig-
nificantly altered by 1 h exposure to mechanical load-
ing both at 10 dyn/cm2 and 20 dyn/cm2. Five hours
after loading, the level was reduced to 0.22±0.04
and 0.11±0.04 (mean±s.d.) (PPAR), 0.33±0.04 and
0.24±0.04 (Ikaros 3), and 0.35±0.06 and 0.14±0.02
(LMO2) for 10 dyn/cm2 and 20 dyn/cm2, respec-
tively. In summary, the model-based analysis herein
would be useful to generate a series of new hypotheses
that can be experimentally tested to unravel a novel
pathway to stimulate bone formation.

Materials and Methods

Two datasets for bone formation

The two datasets analyzed in the present study were
employed from the microarray data in response to me-
chanical loading published by Xing et al (8 ) and BMP
administration by Peng et al (9 ) (Figure 4). In the
first dataset, mechanical loads were applied to the
right tibia of the mice with the left tibia used as un-
loaded control. Agilent mouse development oligonu-
cleotide microarray slides (containing approximately
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Fig. 3 mRNA expression levels of PPAR, Ikaros 3, and

LMO2 in mouse MC3T3 osteoblast cells (C4 clone) in re-

sponse to fluid shear for 1 h. A. Responses to 10 dyn/cm2

fluid shear. B. Responses to 20 dyn/cm2 fluid shear.

22,000 markers) were used, and the results were pre-
sented in the paper as well as in the supplemen-
tary data of Xing et al (8 ). In the second dataset,
mouse pluripotent mesenchymal precursor line C2C12
was infected with three viruses consisting of BMP-2,
BMP-6, and BMP-9 genes and the effects of these
BMPs were assayed using the Affymetrix’s mouse
genechip U74Av2 (containing approximately 12,000
markers). The genes with significantly altered mRNA
levels were presented (9 ).

Ant Modeler

The web-based software Ant Modeler was constructed
in combination of the script language Perl (version
5.8.5), rational database mySQL (version 4.1.20),
and statistical computing package R (version 2.3.1)
(Table 2). It is applicable for three mammalian
species (Homo sapiens, Mus musculus, and Rattus
norvegicus) commonly employed in expression anal-
yses (Figure 5). The start page requests input in
a form of a tab-delimited or comma-delimited file.
The file documents a list of genes whose expression
levels are altered with their fold changes, the species
of the sample of interest, and the length of promoter
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Fig. 4 Flow chart for the application of Ant Modeler.

Two mRNA expression datasets (mechanical loading and

BMP administration) were used to predict TFBMs in-

volved in bone formation.
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Table 2 Configuration of three subsystems in the web interface

Subsystem Function Software

User interface Input microarray data and set up parameters Perl

Database annotation* Retrieve DNA sequences of the genes of interest mySQL

Computation Predict a set of TFBMs R

*The following genes, which were included in the two original datasets, were not included in the present analysis.

Dataset 1: BC015839, BC030010, BG071710, BG071952, BG072471, NM021584, NM008788, and 10 genes starting

with “XM”; Dataset 2: AI851750, AF004874, AV109962, U68267, AV093331, AV359510, and L10076.

Fig. 5 Web-based interface of Ant Modeler. The required inputs include a data file (gene accession number and fold

change), an organism of interest (Mus musculus, Rattus norvegicus, or Homo sapiens), and 9 parameters to run the

ant algorithm.

sequences (upstream of the transcription starting site)
for prediction of TFBMs. In addition, a set of pa-
rameters are needed to be defined for the prediction,
including the number of artificial ants, number of it-
erations, pheromone preference factor (ε), pheromone
evaporation factor (δ), and power factor for error eval-
uation (α). For the detailed definition of each param-
eter, please refer to Liu et al (3 ). Default parameter
values, which seem appropriate for most applications,
were provided.

Formulation with multiple TFBMs

The fold change values of gene expression were ex-
pressed in a piecewise logarithmic model (15 ):

Zn = Hn×mXm (2)

where Zn = logarithmic ratios of differential gene ex-
pression levels, hij in Hn×m = the j-th TFBM in the
regulatory region of the i-th gene, Xm = functional
levels of TFBMs, m = number of TFBMs, and n =
number of genes. For each gene, we searched through
the contig file and identified the position of the tran-
scription start site. A 1,000-bp region upstream of the
transcription-starting site was used as the regulatory
region. To estimate the functional level of each motif,
the least-square method was employed:

X̂m = (HT
n×mHn×m)−1HT

n×mZn (3)

Geno. Prot. Bioinfo. Vol. 5 No. 3–4 2007 163
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Ant Modeler was used to minimize the cost func-
tion, which was defined as: (differences between
the experimental and equation-predicted expression
levels)α, α > 1.

Strategy for pheromone deposition,

pheromone-guided selection, and phe-

romone evaporation

Pheromone deposition

Each ant was assigned a set of m random TFBM can-
didates. The cost function for each ant was evaluated,
and the amount of pheromone deposited on each can-
didate motif was defined as the inverse of the cost
function.

Pheromone-guided selection

The candidate selection was based on the pheromone
concentration of each potential TFBM. The probabil-
ity of selecting potential motif j in the (i+1) iteration
step was defined as:

pj, i+1 =

1
M + ε

Fj,i

M∑
j=1

Fj,i

1 + ε
(4)

where ε = pheromone preference factor (ε > 0), Fj,i

= cumulative pheromone concentration of motif can-
didate j at iteration I, and M = total number of
TFBM candidates. The variable ε controls weight to
the current pheromone concentration. Greater val-
ues of ε will produce results with heavy preference
to pheromones, while a value of ε = 0 would con-
duct a random selection without any preference to
pheromones.

Pheromone evaporation

At each iteration, the pheromone concentration was
updated, including a process of evaporation with δ as
the pheromone evaporation factor (0 ≤ δ ≤ 1). Note
that with δ = 0 the pheromone concentration is con-
served without evaporation, whereas with δ = 1 the
previous pheromone concentration is totally lost.

Biological evaluation in response to me-

chanical loading using mouse osteoblast

cells

MC3T3 osteoblast cells (C4 clone) were grown on a
glass slide coated with 40 µg/mL type I collagen (BD

Biosciences) in αMEM containing 10% FBS and an-
tibiotics. Prior to mechanical loading, the cells were
incubated in the medium containing 1% FBS for 24 h.
They were then exposed to 1 h flow shear at intensity
of 10 dyn/cm2 or 20 dyn/cm2 in a Streamer Gold
flow device (Flexcell International) (32 ). Total RNA
was extracted 1 h, 3 h, and 5 h after the onset of
flow shear using an RNeasy plus mini kit (Qiagen).
Reverse transcription was conducted, and real-time
PCR was performed using ABI 7500 with SYBR green
PCR kits (Applied Biosystems). The PCR primers
were PPARγ (5′-GGAAAGACAACGGACAAATCA-
3′ and 5′-TACGGATCGAAACTGGCAC-3′), Ikaros
3 (5′-ATGGATGTCGATGAGGGTCAAG-3′ and
5′-TTAGCTCAGGTGGTAACGATGC-3′), LMO2
(5′-TCAGCTGTCACCTCTGTGG-3′ and 5′-CACC
CGCATCGTCATCTC-3′), and GAPDH (5′-TGCAC
CACCAACTGCTTAG-3′ and 5′-GGATGCAGGGA
TGATGTTC-3′), where GAPDH was used for inter-
nal control.
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