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Protein domains are conserved and functionally independent structures that play
an important role in interactions among related proteins. Domain-domain inter-
actions have been recently used to predict protein-protein interactions (PPI). In
general, the interaction probability of a pair of domains is scored using a trained
scoring function. Satisfying a threshold, the protein pairs carrying those domains
are regarded as “interacting”. In this study, the signature contents of proteins
were utilized to predict PPI pairs in Saccharomyces cerevisiae, Caenorhabditis ele-

gans, and Homo sapiens. Similarity between protein signature patterns was scored
and PPI predictions were drawn based on the binary similarity scoring function.
Results show that the true positive rate of prediction by the proposed approach
is approximately 32% higher than that using the maximum likelihood estimation
method when compared with a test set, resulting in 22% increase in the area un-
der the receiver operating characteristic (ROC) curve. When proteins containing
one or two signatures were removed, the sensitivity of the predicted PPI pairs in-
creased signif icantly. The predicted PPI pairs are on average 11 times more likely
to interact than the random selection at a confidence level of 0.95, and on aver-
age 4 times better than those predicted by either phylogenetic profiling or gene
expression profiling.

Key words: protein-protein interaction, protein signature, ROC curve

Introduction

Protein-protein interaction (PPI) is the key element
of any biological process in a living cell. Proteins in-
teract through their functional subunits (1 ). Protein
domains, active sites, and motifs (collectively called
signatures) are sub-sequence functional and conserved
patterns that are essential to the functioning of in-
dividual cells and are the interfaces used in interac-
tions at the protein level (2 ). With the completion of
genome sequences of many organisms, genome-wide
characterization of protein signatures is now practi-
cal. Although proteins are specified by unique amino
acid sequences, the signature content of a protein se-
quence is crucial to determining interactions in which
the particular protein is involved.

Protein signature (domain) information has been
used to predict PPI. Naively, when two proteins are
known to interact, their homologs in other organisms
are assumed to interact based on comparative analysis
(3 ). Domain contents of the interacting partners are
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utilized as input to predict more accurate interac-
tions in another organism (4 ). Intermolecular or in-
tramolecular interactions among protein families that
share one or more domains are implemented to in-
fer interactions among proteins (5 ). Domain-domain
relationships are used to predict interactions at the
protein level. In the association method (6 ), interact-
ing domains are learned from a dataset of experimen-
tally determined interacting proteins, where one pro-
tein contains one domain and its interacting partner
contains the other domain. The probabilistic model of
maximum likelihood estimation (MLE) outperforms
the association method through taking the experi-
mental errors into account. Following a recursive cal-
culation procedure, in MLE method probabilities for
domain-domain interactions are predicted based on
the observation of interactions between their corre-
sponding proteins. Then the prediction is extended
to the protein level, assuming that two proteins inter-
act if and only if at least one pair of domains from
the two proteins interact (7 ). Potentially interact-
ing domain (PID) pairs are extracted from an ex-
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perimentally confirmed protein pair dataset using the
PID matrix score as a measure of domain interaction
probability. The information for interacting proteins
could be enriched about 30 folds with the PID matrix
(8 ). In another study, the strengths of protein pairs
are incorporated into the association method to en-
rich the predicting probability (9 ). As many domain
structures are shared by different organisms, the inte-
gration of data from multiple sources may strengthen
the reliability of domain associations and protein in-
teractions (10 ). Moreover, the combination of protein
interaction data from multiple species, molecular se-
quences, and gene ontology is used to construct a set
of high-confidence domain-domain interactions (11 ).

In all above-mentioned methods, if a probability
score meets a certain threshold, then the domains
and subsequently related proteins are considered “in-
teracting”. However, these methods do not distin-
guish between single-unit proteins and multi-unit pro-
teins. To overcome this limitation, a method based
on domain combination was proposed, which pre-
dicts protein interactions according to the interactions
of multi-domain pairs or the interactions of domain
groups (12 ). As an alternative approach, machine
learning techniques have been used to train support
vector machines, called descriptors (13 ). Signatures
have been used to train descriptors and each descrip-
tor reflects the amino acid sequence of a protein that,
in turn, consists of several signatures. However, in
this machine learning approach, signature is defined
as one single amino acid and its two neighbors (three
consecutive letters), which is totally different from
the definition utilized in this article as functional
conserved patterns. Recently, interactomes (14–17 )
and databases, such as the Database of Interacting
Proteins (18 ), have been used as reliable sources for
mining interacting domains, which may contribute
to inferring uncharacterized interacting proteins (19 ).
Therefore, signature contents of proteins play a cru-
cial role in predicting protein interactions. Signature-
based PPI prediction techniques rely on statistically
significant related signatures. When the interac-
tion probability score between two signatures (in two
different proteins) is greater than a threshold value,
such a relationship is extended to the corresponding
proteins and the potential interaction is inferred.

Close assessment of the protein pairs whose signa-
tures possess high interaction probability scores shows
that many of these protein pairs share at least one
common signature. Sprinzak and Margalit (6 ) re-
ported 40 overrepresented signature pairs in the pro-

tein interaction dataset of yeast. More than half of
those signature pairs (22 out of 40 pairs) contained
similar signatures and the rest of them were function-
ally close signatures. Non-identical pairs could not
pass the threshold, even though the threshold was
considered very loose. Okada et al (20 ) studied the
role of common domains in the extraction of accu-
rate functional associations in interacting partners.
It has been shown that, when two proteins share a
similar domain structure, their interaction probabil-
ity score is higher than that of two proteins with non-
similar domains (21 ). In a study of interacting sig-
natures in the SCOP database, interacting signature
pairs were predicted based on the finding that they
use significantly higher surfaces to form these inter-
actions, and interestingly, like-like interacting signa-
tures were observed in high frequency (2 ). As re-
ported by Ramini and Marcotte (22 ), proteins shar-
ing common signatures possess a high possibility of
being co-evolved in a correlated manner. These com-
mon signatures contribute to the similarity of protein
families detected through optimal alignment between
protein family similarity matrices. Therefore, com-
mon signatures between interacting proteins enhance
the interaction probability of two proteins.

In this study, we propose a new genome-wide ap-
proach to predict PPI based on the observation that
proteins with common signatures are more likely to
interact. The signature content of a protein is repre-
sented by a binary profile, called the protein signature
profile, and then the similarity between two profiles
is scored using a binary similarity function. Imposing
a threshold based on a pre-determined significance
level, two proteins are considered “interacting” if they
satisfy the significant threshold value. Furthermore,
by removing proteins with one or two known signa-
tures from the dataset, the false positive rate of the
predicted PPI dataset reduces significantly. Different
from the domain-based methods that score the rela-
tionship between two protein domains and extrapo-
late such a relationship to infer PPI, our approach di-
rectly scores protein relationships based on the signa-
ture content of each individual protein and the extent
of commonality in signature patterns. The more sig-
natures in common, the higher the similarity score will
be between two different profiles. We applied this ap-
proach to three organisms: Saccharomyces cerevisiae
(yeast), Caenorhabditis elegans (worm), and Homo
sapiens (human). Although at the time being, a rel-
atively small portion of genes in each genome have
been identified with their signatures, the proposed
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approach is capable of covering the entire genome as
more genes with known signature contents are discov-
ered.

Results

The protein signature profiling (PSP) approach is il-
lustrated in Figure 1 and it was implemented to pre-
dict PPI pairs for S. cerevisiae, C. elegans, and H.
sapiens. Three predicted PPI datasets for each or-
ganism were generated by removing none, one, or
two known protein signatures in their sequences, re-

spectively. The predicted PPI pairs and their cor-
responding binary similarity scores are presented in
Additional File 1. To evaluate the applicability of
the PSP approach, sensitivity and specificity analysis
was conducted and the predicted results for S. cere-
visiae were compared with those confirmed by the
MLE method over the same dataset (7 ). Further-
more, fold value analysis was performed to compare
the predicted results with those confirmed by two
non-signature-based methods, phylogenetic profiling
(PP) (23 ) and gene expression profiling (GEP) (24 ).
In either case, the PSP approach has higher true pos-
itive rates.
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Fig. 1 Schematic of the protein signature profiling approach to predict PPI pairs. As illustrated, proteins P1 and

P2 contain signatures (S1, S3, S5) and (S1, S3, S4), respectively. Using Equation 2, a binary similarity score of 0.5

is calculated (see Materials and Methods). If the score is greater than a significant threshold value estimated at a

pre-specified confidence level (see Figure 4), then P1 and P2 are considered as an interacting pair. The same procedure

was repeated for all proteins in S. cerevisiae, C. elegans, and H. sapiens. A complete list of all PPI pairs for the

examined species can be found in Additional File 1.

Sensitivity and specificity analysis

The receiver operating characteristic (ROC) curve
was implemented to evaluate the efficacy of the pre-
diction of PPI pairs between our approach and the
MLE method over the same dataset. Both methods
use signature content information to score a relation-
ship between two proteins. To implement the MLE
method, the experimental dataset was randomly split
into two parts: a training set and a test set. Do-
main interactions were predicted based on the ob-
served protein interactions in the training set, and
protein partners were identified based on the assump-
tion that two proteins interact if and only if one pair
of domains from two proteins interact. Then the PPI
dataset predicted by the MLE method was compared

with both the training set and the test set. More de-
tails on the MLE implementation and the numerical
results of comparing the PSP-predicted PPI dataset
with experimental PPI datasets, as well as the MLE-
predicted PPI dataset with both the training and the
test sets are presented in Additional File 2.

The ROC curve portrays the trade-off between
the true positive rate (sensitivity) and the false pos-
itive rate (1−specificity) for different threshold val-
ues. The true positive rate is defined as the fraction
of experimentally confirmed PPI pairs (all positives)
that are correctly predicted. Likewise, the false posi-
tive rate is defined as the fraction of all potential in-
teractions that are predicted and do not match with
experimental pairs. Therefore, the two rates can be
formulated as follows:
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True positive rate (Sensitivity) = TP
TP+FN

False positive rate (1−Specificity) = FP
FP+TN

where TP is the number of experimentally confirmed
PPI pairs that are predicted (matched), FN is the
number of experimentally confirmed PPI pairs that
are not predicted, FP is the number of predicted PPI
pairs that do not match experimentally confirmed
pairs, and TN is the number of potential PPI pairs
that are neither experimentally confirmed nor com-
putationally predicted.

The area under the ROC curve (AUC) is a quan-
titative indicator for ranking the performance of PPI
prediction among various PPI predicting methods. At
an AUC of 1, a perfect PPI prediction is obtained.
The closer the area is to 0.5, the poorer the prediction.
As shown in Figure 2, the AUC of the PSP-predicted
dataset in the case of no protein removal is 0.549.
The AUC of the MLE-predicted dataset is 0.511 when
compared with the test set and is 0.686 when com-
pared with the training set. Approximately 68% of
PSP-predicted PPI pairs have the highest similarity

score of 1, indicating a complete matching signature
profile between two query proteins. Among this por-
tion of predicted PPI pairs, many of them contain
only one or two known protein signatures. As a re-
sult, a high false positive rate was observed through
our method as compared with that calculated by the
MLE method. This is attributed to the low num-
ber of known signatures in these proteins. To reduce
false positive rates of predicted PPI pairs, and thus
increase the accuracy of the PPI prediction, proteins
with one or two signatures were removed consecu-
tively, and the proposed approach was then applied
to the remaining proteins in the dataset. As illus-
trated in Figure 2, the increase in AUC was observed
for both cases. The AUC increased to 0.583 when
proteins with one known signature were removed and
eventually increased to 0.651 when proteins with two
known signatures were also deleted from the dataset.
Thus, the AUC values indicate that the performance
of this approach can be ranked higher than that of the
MLE method with the test set, although lower than
that of the MLE method with the training set.
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Fig. 2 Changes of the ROC curves subjected to the removal of proteins containing one or two known signatures and

their comparison with results obtained by MLE method. Overall, PSP prediction results can be ranked between the

MLE results compared with the training set [MLE (train)] and the MLE results compared with the test set [MLE

(test)]. However, when proteins with one or two known signatures were removed from the dataset, the AUC increased

and the curve approached the MLE (train) results. In this figure each data point represents a threshold value > 0 and

≤ 1. The inset figure illustrates the complete ROC curve for each case, and in this figure each data point represents a

threshold value ≥ 0 and ≤ 1. See Additional File 2 for numerical data.
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Our signature protein dataset does not allow us to
remove proteins with more than two known signatures
from the dataset due to the low number of proteins
with a high number of known signatures; however,
it is expected that with the availability of more in-
formation on signature content of proteins, the true
positive rate of the proposed approach will drastically
increase along with a low false positive rate. Never-
theless, the examination of the ROC curve indicates
that the PSP approach presents a competitive or even
better result compared with other currently available
domain-based methods such as the MLE method with
a test set.

Fold value analysis

The PPI pairs predicted by the PSP approach were
also compared with those predicted by two non-
signature-based methods, PP and GEP. Based on
genomic information, the PP method has been re-
ported as one of the most promising computational
methods to predict PPI pairs (25 ); whereas the GEP
method utilizes conserved co-expression patterns of
genes to predict interacting protein pairs (26 ). For
the PP method, to construct phylogenetic profiles
among proteins, query proteins were blasted against
a reference genome database consisting of 90 species.
Proteins with matching patterns of presence or ab-
sence in reference genomes were paired. The detail
information on implementation of this method is in
Additional File 2. For the GEP method, the co-
expression patterns were constructed based on nor-
malized DNA microarray data confirmed from the
Stanford Microarray Database (27 ). Using the EX-
PANDER program (28 ), genes were clustered accord-
ing to their expression profiles. Genes clustered in the
same group were considered as interacting pairs (see
Additional File 2).

To quantify the statistical significance of the pre-
dicted PPI pairs among the three profiling methods,
a statistical parameter, called fold, was used to facil-
itate the comparison. Fold is the ratio of the fraction
of the experimentally confirmed dataset predicted by
a method to the fraction of total potential PPI pairs
predicted by the same method:

Fold =
k0/K
n/M

where k0 is the number of predicted PPI pairs
matched with the experimentally confirmed dataset
(matched), K is the size of the experimentally

confirmed dataset (observed), n is the predicted PPI
pairs satisfying a threshold value (predicted), and M

is the total number of potential PPI pairs; M =
m(m − 1)/2 where m is the number of proteins. The
m value for S. cerevisiae, C. elegans, and H. sapiens
is 2,242, 1,402, and 8,667, respectively. Fold is the
probability of true interaction in predicted PPI pairs
compared with the random prediction. The greater
the fold value, the higher the probability of interac-
tion will be, as compared with the probability of in-
teraction based on random pairing.

Figure 3 illustrates the changes in fold values
among PSP, PP, and GEP methods applied to S. cere-
visiae, C. elegans, and H. sapiens. Generally speak-
ing, PSP can predict PPI pairs with higher probability
of interaction than other two methods. As one/two-
signature proteins were removed, the fold values of
PPI pairs predicted by PSP increased significantly
than those predicted by PP and GEP methods. This
suggests that as proteins possessing lower number of
known signatures were deleted from the predicted PPI
pairs, the probability of predicting false relationships
would be noticeably reduced. As a result, more PPI
pairs with a high confidence level can be predicted.

Discussion

In this study, we propose that common protein sig-
natures could be used to predict interactions between
two proteins. Different from other domain-based ap-
proaches such as the MLE method that utilizes a
dataset of observed PPI pairs as a learning set to train
a scoring function in order to calculate the domain in-
teraction probability and subsequently predict protein
interactions, the proposed approach does not require
any learning set. In fact, the entire data can be used
as a query dataset. The PSP approach predicts in-
teractions upon the extent of similarity between the
signature contents of the two proteins, while domain-
based methods predict interactions between protein
domains and assume that two proteins are interacting
if one pair of domains from the two proteins interacts.

It is worthwhile to note that as signatures are
small fragments of sequences, interactions between
their corresponding proteins may not be predictable
by simple homology. Homology-based methods rely
on whole sequence alignment of primary structures,
and protein interactions are predicted when the
similarity between sequences is less than a threshold
E-value calculated by BLAST. In signature-based
methods, however, interactions among signatures are
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Fig. 3 Comparison of fold value changes among three different PPI prediction methods applied to S. cerevisiae (yeast),

C. elegans (worm), and H. sapiens (human). See Additional File 2 for support information.

predicted based solely on observed protein interac-
tions by means of statistical evaluations. Moreover,
when two proteins share one or more signatures in
common, it does not necessarily mean that the re-
mainders of their sequences are similar. They may
contain other non-similar signatures as well, making
detecting their relationship impossible through sim-
ple homology. To assess the extent of overlap be-
tween PSP prediction and homology-based prediction,
KOG database was used (29 ). The KOG database
includes orthologous and paralogous proteins of eu-
karyotic species. Each group is associated with a con-
served and specific function. Our investigation illus-
trated that 89.5% of the PPI pairs predicted by PSP
could not be detected by homology-based methods
when using BLAST.

Proteins involving in PPI that are predicted by
homology-based techniques or the PP method often
refer to “functionally interacting proteins”, implying
that these proteins cooperate to perform a given task
without necessarily involving in physical contact. Ex-
perimental PPI detection techniques, such as yeast
two-hybrid and large-scale affinity purification with
mass spectrometry, attempt to discover direct phys-
ical interactions between proteins. However, there
is a limited overlap between sets of interacting pro-
teins identified by functional and physical relation-

ships (30 ). Given the incomplete coverage of exper-
imental results, there is clearly the need to develop
large-scale computational sets of interacting proteins
to be validated by future experiments. The proposed
PSP method is a computational approach that pre-
dicts functionally interacting proteins based on the
signature content of proteins. It is a new effort to
predict robust protein interaction datasets that have
better matches with physical interactions in compiled
experimental datasets compared with those PPI pairs
predicted by PP and GEP methods regarding the fold
value.

Fold is an appropriate parameter that examines
the ability of a computational method to predict ex-
perimentally confirmed PPIs. Furthermore, when
the MLE-predicted dataset was compared with the
test set of physical interactions, it was observed that
the PSP approach outperformed the MLE method in
terms of overlap with experimental data regarding the
AUC. Both methods use signature content informa-
tion of proteins to predict PPI, and the ROC curve
well ranks them over the prediction of experimentally
confirmed PPIs.

The significant threshold values are associated
with the confidence level and the size of predicted
PPI pairs. The significant threshold value in each
confidence level is calculated by (−0.1)log(P ). P ,
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an absolute probability, is defined as the ratio of
confidence level (= 1−significance level) over the size
of predicted PPI pairs, and “0.1” is the scaling factor
that scales the threshold value to its corresponding
binary similarity score between 0 and 1. Figure 4
portrays a significant threshold value with respect to
each confidence level for three investigated organisms.
For instance, at a confidence level of 0.95 (that is, a 1
in 20 chances of being false positive), the significant
threshold value of choosing a binary similarity score
for S. cerevisiae, C. elegans, and H. sapiens is 0.56,
0.53, and 0.72, respectively. At these threshold val-
ues, the predicted PPI pairs will possess a significance
level of 0.05. In other words, there is a 95% probabil-
ity that the predicted PPI pairs are not resulted from
random events.

At a confidence level of 0.975, the correspond-
ing significant threshold value is 0.6 for S. cerevisiae.
From Figure 2, the true positive rate for the case
of two-signature proteins removed, one-signature pro-
teins removed, and no proteins removed under the
PSP approach (see legend shown in the figure) is
28.33%, 14.92%, and 8.25%, respectively; whereas
the true positive rate for the MLE results at the
same confidence level is 7.37% and 1.18% when they
are compared with the training dataset and the test
dataset, respectively. This indicates that the PSP ap-
proach is more sensitive than the MLE method, and
the sensitivity of the approach can be manipulated by
means of deleting proteins containing less signature
content. As a result, more experimentally confirmed
PPI pairs are predicted.

Other than depicting the absolute relationship of
fold value variations among different PPI profiling
methods, Figure 5 presents the effect of removing pro-
teins with different signature contents on the relative
changes of fold values. As seen in the figure, by re-
moving proteins with two signature contents from the
predicted PPI pairs, the relative fold change of PSP
vs. PP is 22.03, 23.60, and 32.41 for S. cerevisiae, C.
elegans, and H. sapiens, respectively; whereas the rel-
ative fold change of PSP vs. GEP is 32.11, 22.66, and
17.45 for S. cerevisiae, C. elegans, and H. sapiens, re-
spectively. The removal of proteins with a low number
of known signatures improves the performance of the
approach significantly. Even at the case of no protein
removal, the PSP approach still outperforms the two
non-signature-based profiling methods.

New putative PPI can be deduced from our re-
sults. In the case of yeast, the experimental dataset
contains 1,438 proteins, while our analysis is focused
on 2,242 proteins whose signature contents are avail-
able. Interactions involved with the additional 804
(= 2242−1438) proteins may point out a direction
for further experimental validation. For example,
proteins YBR208C and YGL062W are found inter-
acting using our approach but they are not reported
in the experimental dataset. Note that YBR208C
contains seven domains, six of which are shared by
YGL062W. Both proteins function as carboxylases.
One may postulate a potential interaction between
YBR208C and YGL062W. Such a clue may be used
to guide a follow-up experiment.
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Protein signature-based methods including our ap-
proach embed more intuitive biological reflection than
others such as the PP method. Upon the notion that
proteins interact through their conserved interfaces,
not the whole sequence, the PP method may not be
able to identify true interacting partners. It relies
on identifying orthologs of a query sequence in a set
of genomes based on whole sequence alignment. In-
stead, PSP identifies interacting partners based solely
on the pattern of functional interfaces involved in pro-
tein interactions. The GEP method provides informa-
tion on co-expression of genes in different biological
events. Although this information is a strong indica-
tion that genes with similar expression profiles may
have functional relationships, it provides a relatively
lower degree of contribution to the prediction of phys-
ical interactions.

Conclusion

Proteins interact with each other through their func-
tionally independent, structurally conserved, and bi-
ologically related signatures. These properties have
established new insights into PPI prediction. Many
existing domain-based prediction methods calculate
the interaction probability score between two signa-
tures. The scoring function is trained based on a
learning dataset and subsequently applied to predict
protein interactions. In contrast, the proposed PSP
approach does not require training information, and
proteins are directly paired based on their signature
contents, providing that they have at least one signa-
ture in common. When proteins with a low number
of known signature contents (one or two signatures)
were removed from the dataset, it resulted in more
predicted PPI pairs at a high confidence level. Thus,
with the availability of more and more proteins with
known signature contents across organisms, the cov-
erage and accuracy of protein interacting pairs pre-
dicted by this approach is expected to increase. The
predicted PPI pairs can, for instance, be incorporated
into metabolic pathway reconstruction, or be used to
reveal existing knowledge gaps in the association of
proteins and pathways.

Meterials and Methods

Signature content information

The signature content of each protein sequence was
confirmed from PROSITE database (31 ), which is a

database of protein families and domains consisting of
biologically significant sites, patterns, motifs, and do-
mains. The entire PROSITE database (Release 19.27,
May 2006) was downloaded and three files were cre-
ated for the three organisms of interest. Each file
contains the signatures found in one genome, includ-
ing 884 signatures in S. cerevisiae, 738 signatures in
C. elegans, and 1,354 signatures in H. sapiens.

Experimental PPI datasets

To evaluate and compare the predicted PPI by means
of the proposed approach, datasets containing experi-
mentally confirmed PPI pairs were compiled to serve
as a common reference. The dataset for yeast contains
16,507 pairs that were confirmed from three sources:
von Mering et al (32 ) (1,920 pairs), BIND database
(33 ) (10,618 pairs), and CYGD database (34 ) (10,472
pairs). Combination of these three sources after re-
moving duplicated pairs resulted in 16,507 pairs, com-
prising 4,391 proteins. Those proteins that were not
found to have any signature in PROSITE were elim-
inated. As a result, 3,745 pairs remained in the final
dataset, consisting of 1,438 proteins.

The worm dataset was constructed from BIND
and Li et al (14 ), which reported 4,960 and 6,629 pro-
tein pairs, respectively. These pairs were confirmed
by the yeast two-hybrid technique and were manu-
ally curated. After removing duplicated pairs, the
dataset consisted of 7,081 pairs, comprising 3,390 pro-
teins. Those proteins not having known signatures in
PROSITE were dropped off, resulting in 344 pairs
remained in the worm dataset, consisting of 220 pro-
teins.

The human dataset is a combination of BIND and
HPRD (35 ), containing 2,332 and 23,187 interactions,
respectively. These pairs were confirmed using either
mass spectrometry or yeast two-hybrid technique, and
were manually curated. Merging the two sources re-
sulted a dataset of 25,000 interactions, consisting of
5,726 proteins. Only 13,319 pairs involved in 3,975
proteins that contain known signatures in PROSITE
were eventually used as the final human dataset.

Signature content representation

A protein is characterized by the signatures existing in
its sequence. Hence, each protein can be represented
by a vector of n features, called signature profile,
where each feature corresponds to a signature and n

is the number of signatures identified in the proteome
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of an organism (for example n = 884 in yeast). Let
Pi = [Si1 , Si2 , . . . , Sin ] represent the feature vector of
protein Pi with n signatures. Si1 = 1 if signature S1

exists in protein Pi and Si1 = 0 otherwise. Therefore,
each genome is represented by an m-dimensional vec-
tor where m is the number of proteins. In this study,
m = 2,242 in yeast, 1,402 in worm, and 8,667 in hu-
man. A similarity measure was implemented to calcu-
late the similarity between signature profiles (feature
vectors). Binary similarity function (36 ) is used in
this study to measure the similarity between a pair of
signature profiles:

µ(Pi, Pj) =

n∑

l=1

(Pi ∧ Pj)l

n∑

l=1

(Pi ∨ Pj)l

(1)

where µ is the similarity score between profiles Pi

and Pj . This score is calculated over n signatures
contained in proteins of a genome of interest. If pro-
tein Pi contains x signatures, protein Pj contains y

signatures, and both proteins contain z signatures in
common, the score can then be calculated as follows:

µ(Pi, Pj) =
z

x + y − z
(2)

Note that 0 ≤ µ ≤ 1. The value of µ increases
when there are more common signatures between the
two proteins. If the similarity score is higher than a
threshold, the two proteins are considered as an “in-
teracting pair”.
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