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High-throughput SNP genotyping platforms use automated genotype calling algo-
rithms to assign genotypes. While these algorithms work eff iciently for individual
platforms, they are not compatible with other platforms, and have individual biases
that result in missed genotype calls. Here we present data on the use of a second
complementary SNP genotype clustering algorithm. The algorithm was originally
designed for individual f luorescent SNP genotyping assays, and has been opti-
mized to permit the clustering of large datasets generated from custom-designed
Affymetrix SNP panels. In an analysis of data from a 3K array genotyped on 1,560
samples, the additional analysis increased the overall number of genotypes by over
45,000, signif icantly improving the completeness of the experimental data. This
analysis suggests that the use of multiple genotype calling algorithms may be ad-
visable in high-throughput SNP genotyping experiments. The software is written
in Perl and is available from the corresponding author.
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Introduction

Single nucleotide polymorphisms (SNPs) are the most
common form of genetic variation in the human
genome, and are the marker of choice for disease
association studies due to their prevalence and ease
of genotyping. Large-scale SNP genotyping arrays
are improving the speed and volume of genomic re-
search. Whilst these techniques are highly accurate
and efficient, there remains a desire to maximize the
amount of data obtained.

In recent years, a number of reports have described
algorithms that can be used to replace or supplement
Affymetrix genotype calling algorithms (1–6 ). How-
ever, these algorithms are all designed to be used with
data generated from genome-wide SNP arrays, and
are not compatible with other genotyping platforms
or formats. As specific chromosomal regions are iden-
tified as being linked to a phenotype of interest, there
is an increasing need to target high-density genotyp-
ing to these loci. The Affymetrix custom-designed
SNP panels based on molecular inversion probe tech-
nology (7 , 8 ) allow for such an approach. One major
difference in the output from this assay is that there
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is only one chip feature per SNP rather than mul-
tiple averaged sites as generated with the genome-
wide arrays. Thus, it is difficult to assess the accu-
racy and reliability of genotype calls from the anal-
ysis software without additional experimental work,
and some SNPs result in poor call rates in the au-
tomated analysis although manual inspection of the
data suggests clear distinction of three different geno-
type clusters. For custom high-resolution SNP geno-
typing, data completeness is essential, and a high per-
centage of missed calls for an individual SNP or the
complete lack of data for any SNP significantly im-
pedes the subsequent analysis.

To overcome this challenge in the automated data
analysis and to improve overall data quality, an in-
house clustering algorithm designed for analysis of
single SNP assays was modified to analyze the data
from genotyping 1,560 individuals of 261 families on
an Affymetrix GeneChip custom 3K array. As shown
below, the combined analysis using both the commer-
cial algorithm and the custom supplementary cluster-
ing algorithm (MCW CA) significantly improves the
overall call rate, and “rescues” individual SNPs elim-
inated in the initial analysis using the commercial al-
gorithm alone.
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Results and Discussion

In total, 3,345 SNPs were genotyped using 1,560 sam-
ples from the MRC-OB cohort using an Affymetrix
GeneChip custom 3K array. Initially, data were ana-
lyzed using the commercial analysis tools provided by
Affymetrix. In this analysis, 99.6% of all SNPs suc-
cessfully passed the quality control criteria. However,
our subsequent analysis revealed that not all passed
SNPs were informative. Based on the Affymetrix
genotype calls, 41.8% (345/825) of SNPs assayed on
Chromosome 3 were identified as monomorphic fol-
lowing determination of allele frequencies (Table 1),
supporting the anecdotal evidence that SNP failures
are due to under-calling of heterozygotes. This per-
centage was significantly reduced to 1.1% (9/825)
when based on the MCW CA results, and it was
possible to rescue 15 SNPs previously identified as
monomorphic. Based on this analysis, the geno-
type distribution was in Hardy-Weinberg equilibrium
(HWE), and greater than 80% of the cohort were
successfully genotyped. Further four SNPs on Chro-
mosome 3, which were identified as polymorphic by
the Affymetrix genotype calling algorithm but not in
HWE, were also rescued (passed HWE and greater
than 80% genotyped) by MCW CA (Table 1). In ad-
dition, of the 250 SNPs that passed both forms of
analysis, it was possible to improve the call rate of
148 (59.2%) SNPs using MCW CA. This supplemen-
tary analysis resulted in a total of 29,683 additional
genotypes identified on Chromosome 3.

Corresponding values for the remaining chromo-
somal regions investigated are presented in Table 1.
Similar to the analysis described for Chromosome 3,

it was possible for MCW CA to rescue further five
SNPs and increase the call rates for another 1,086
SNPs. In total it resulted in an extra 47,578 genotypes
identified, an average of 30 genotypes per individual
tested. This number of genotypes would correspond
to an additional 15 SNP arrays worth of data.

Overall, our analysis strongly suggests that it is
highly beneficial to re-analyze high-throughput SNP
genotyping data with more than one genotype call-
ing algorithm. A significant number of additional
genotype calls can be made, and more complete data
are obtained, a result essential for fine-mapping stud-
ies. While several algorithms have been developed to
help in the analysis of genome-wide 100K and 500K
SNP arrays, our algorithm is also suitable for use
with custom 3K, 5K, or 10K arrays. Furthermore,
a significant advantage of MCW CA over other clus-
tering algorithms is the ability to set a user-defined
confidence threshold. This allows users to select their
own cut-off value depending on individual require-
ments. Altering the threshold level will have an effect
on both the number of genotypes per SNP and on the
number of SNPs that remain in HWE. For example,
on Chromosome 7, at a confidence level of 0%, 50%,
90%, and 95%, the number of SNPs with a call rate
above 80% were 1,023, 1,020, 824, and 772, and the
number of SNPs in HWE were 633, 633, 615, and 605,
respectively. Thus, users can select and statistically
define the confidence of genotype calls. If the sample
set only includes unrelated individuals, the confidence
level can be set conservatively to only include geno-
types called with high accuracy and confidence. Al-
ternatively, if family-based samples are used, an initial
analysis with a lower confidence level followed by a

Table 1 Distribution of SNPs with call rates greater than 80% after clustering by the Affymetrix and

MCW CA algorithms*

Chromosome Algorithm In Not in Mono. Rescued Rescued mono. Improved call rate Total

(SNPs assayed) HWE HWE SNPs (new gt) SNPs (new gt) (extra gt) new gt

3 (825) Affymetrix 465 15 345

MCW CA 215 87 9 4 (5,751) 15 (22,441) 148 (1,491) 29,683

7 (1,048) Affymetrix 980 43 25

MCW CA 581 104 2 2 (2,720) 1 (1,512) 458 (4,460) 8,692

12 (1,055) Affymetrix 1,024 12 19

MCW CA 600 114 2 2 (2,699) 0 (0) 470 (4,746) 7,445

14 (354) Affymetrix 344 8 2

MCW CA 211 47 1 0 (0) 0 (0) 158 (1,758) 1,758

Total 47,578

*The table summarizes the additional genotypes obtained in a second analysis using the MCW CA algorithm.

gt = genotype; Mono. = monomorphic.
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comprehensive analysis of Mendelian errors in indi-
vidual families may result in a higher rate of genotype
calls.

Materials and Methods

Population and genotyping

The 1,560 individuals studied were a subset of the
MRC-OB population recruited from the TOPS mem-
bership as described previously (9 , 10 ). All individ-
uals were genotyped on a 3K custom-designed SNP
chip, with 3,345 SNPs distributed across 5 chromoso-
mal regions: one on Chromosomes 3, 7, and 14, re-
spectively, and two on Chromosome 12. The SNP
selection strategies have been described previously
(11 ). Briefly, for the regions on Chromosomes 3 and
14, SNPs were selected using a gene-centric approach
with an emphasis on putative functional SNPs; those
on Chromosome 7 were selected based on the linkage
disequilibrium (LD) patterns of the CEPH population
of the HapMap; and those on Chromosome 12 were
located within known genes, based on LD patterns
and putative functionality.

Algorithm

The algorithm was initially described by Olivier et
al (12 ). Briefly, each datapoint is assigned to one
of four clusters: 1, 2, 3, or 4, representing no-target
(negative) controls (NTCs), homozygotes one (XX),
homozygotes two (YY), and heterozygotes (XY), re-
spectively. Clusters are described by an ellipse whose
major and minor axes are the standard deviations in
the x and y directions of the component points, which
are rotated so that their covariance is equal to zero.

Fluoresence values are extracted from the MegAl-
lele results for all samples and SNPs. Initially,
fluorescence values for each SNP are scaled to be-
tween 0.05 and 0.95, and four negative control values
are appended to the data to provide a reference start
point for the analysis.

An ellipse containing the negative control data-
points is determined, and the probability of other dat-
apoints belonging to this cluster is calculated using
an empirically determined cut-off value. The ellipse
is then redefined to include any new points.

The center of the genotype cluster locations is de-
termined by a two-step process. Initially, a Cartesian
coordinate system is overlaid on the data with its ori-
gin at (0.55, 0.55). The center of each quadrant is

identified by averaging the component points. New
coordinate systems are drawn in each quadrant with
their origin at each quadrant’s center. This process
continues outward—towards the upper left corner, up-
per right, and lower right—until one point remains in
each quadrant. Secondly, circles are drawn around
the extreme point(s). The average location of the
points inside the circle is computed and the circle cen-
ter moves to this position. This process repeats until
the circle center moves negligibly.

If either of the homozygote clusters are missing,
the existing homozygote cluster center is mirrored to
create the missing datapoint. If the heterozygote clus-
ter is absent, the x axis coordinating from one ho-
mozygote cluster and the y axis coordinating from
the other are used to determine the cluster center.

Cluster center locations are then separated by
lines drawn through the NTC cluster center and ex-
actly halfway between the identified cluster centers.
All points above or to the left of the uppermost line
are considered to be homozygote cluster one; the
points between the lines are heterozygotes; and the
points to the right or below the bottommost line are
homozygote cluster two.

Based on the determination of cluster centers and
bisecting lines, ellipses are calculated for each cluster.
The probability that an individual datapoint belongs
to each cluster is calculated using the two-dimensional
normal distribution function represented by the prob-
ability ellipses. New ellipses are then created to reflect
the new datapoints in the cluster, and this is repeated
for three times. The p-value for a point belonging to a
particular cluster is equal to the probability that it is
in that cluster, which is divided by the summation of
the individual probabilities of the point being in each
of the four clusters.

The results are output depending on the p-value
selected by users, and points are assigned to one of the
four regular clusters or are considered as a no call.

Data analysis

Once genotypes were determined for all SNPs and in-
dividuals at a confidence level of 99.0%, data accuracy
was checked by ensuring that the allelic distribution
for all loci does not significantly differ from HWE. As
family-based samples were used, a modified allele fre-
quency estimation method taking account of family
relationships was employed (13 ). Predicted genotype
frequencies were then compared with the observed val-
ues and statistically significant (p < 0.05) differences
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were determined by a Chi-squared test. Only SNPs
with a call rate greater than 80% were described,
and the data below this threshold were classed as in-
sufficiently informative. A Bonferroni correction was
applied to the data to account for multiple testing.
SNPs with predicted allele frequencies of 1.0 or 0.0
were classed as monomorphic.
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