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A glycosylphosphatidylinositol (GPI) anchor is a common but complex C-terminal
post-translational modification of extracellular proteins in eukaryotes. Here we
investigate the problem of correctly annotating GPI-anchored proteins for the
growing number of sequences in public databases. We developed a computa-
tional system, called FragAnchor, based on the tandem use of a neural net-
work (NN) and a hidden Markov model (HMM). Firstly, NN selects potential
GPI-anchored proteins in a dataset, then HMM parses these potential GPI sig-
nals and refines the prediction by qualitative scoring. FragAnchor correctly pre-
dicted 91% of all the GPI-anchored proteins annotated in the Swiss-Prot database.
In a large-scale analysis of 29 eukaryote proteomes, FragAnchor predicted that
the percentage of highly probable GPI-anchored proteins is between 0.21% and
2.01%. The distinctive feature of FragAnchor, compared with other systems,
is that it targets only the C-terminus of a protein, making it less sensitive to
the background noise found in databases and possible incomplete protein se-
quences. Moreover, FragAnchor can be used to predict GPI-anchored proteins
in all eukaryotes. Finally, by using qualitative scoring, the predictions combine
both sensitivity and information content. The predictor is publicly available at
http://navet.ics.hawaii.edu/∼fraganchor/NNHMM/NNHMM.html.
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Introduction

The complexity of information contained in protein
sequences is a major challenge for large-scale analy-
sis of proteomics data: some characteristics are easily
identifiable, such as general hydrophobicity, whereas
others are well hidden, such as the presence of short
segments endowed with a specific function but hav-
ing been affected by numerous mutations during their
evolution. Identifying and classifying correctly these
characteristics often requires novel approaches that
assist standard tools of analysis. Furthermore, the
structure of protein sequences translated from genes is
not sufficient to assess the overall complexity of their
functions. Indeed, post-translational modifications
(PTMs) can spawn, for example, changes of activity,
cellular localization, or protein interaction (1 ). PTMs
such as glycosylphosphatidylinositol (GPI) anchors
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are fundamental for understanding biological func-
tions of proteins; however, studies are suffering from
a shortage of efficient methods that could allow to
identify them in large-scale analyses (2 ). The predic-
tion of PTM in protein sequences is then an integral
part of an in-depth study fostering the understand-
ing of biological functions, which turns out to be an
important step in the annotation of proteomes.

Glycosylation is one of the most common and com-
plex forms of PTMs (3 , 4 ). It is classified into three
categories: N-glycosylation, O-glycosylation, and the
attachment of a glycolipide (GPI) to the C-terminus
of a protein. A GPI anchor is a type of membrane at-
tachment discovered fairly recently. Its occurrences in
eukaryotic cells were identified in the 1980s through
the works of several researchers (5–9 ). Among pro-
teins with GPI anchors one finds enzymes, adhesive
proteins, receptors, activation antigens, and so on
(10 , 11 ). Currently the exact function of this at-
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tachment is not well characterized (12 ). Nonethe-
less, its conservation across great taxonomic diver-
sity (yeasts, protozoa, plants, vertebrates, and even
archeo-bacteria) suggests some important functional-
ity (13 ). Proteins with GPI anchors reveal a very
interesting feature that they are exclusively extracel-
lular. This PTM thus provides interesting informa-
tion for the annotation of new sequences by specifying
their cellular localizations. Moreover, this property
of GPI-anchored proteins opens the way to several
potential applications. For example, in the genome
of Plasmodium falciparum (human malaria parasite),
several proteins that are attached to the membrane
by a GPI anchor can be used as vaccine candidates
(14 ).

Proteins linked to the membrane by a GPI an-
chor are not easy to identify with traditional sequence
alignment and pattern recognition approaches that
are used in computational biology. Indeed, there
is no clear constant, approximate, or repetitive pat-

terns, and similarity analysis yields poor results (re-
sults not shown). Nonetheless, some general rules
have been identified. For example, GPI-anchored
proteins have an N-terminal signal for translocation
across the endoplasmic reticulum. However, we dis-
covered that this signal is absent or not clearly pre-
dicted by computational tools in nearly 7% of the
annotated GPI-anchored proteins in the Swiss-Prot
database (http://www.expasy.org/sprot/). Besides
the N-terminal signal, the C-terminal GPI signal,
cleaved off at the time of the addition of the GPI-
lipid anchor, can be further broken down into 4 re-
gions (15 ): (1) an unstructured linker region of about
10 residues; (2) a region of small residues, including
the GPI attachment and cleavage site; (3) a spacer
region, following the cleavage site, of about 7 amino
acids (a.a.); (4) a hydrophobic tail next to the spacer
region, completing the C-terminus (Figure 1).

Such sequence features suggest that rule-based
approaches should be efficient in predicting GPI-

Fig. 1 Structure of GPI-anchored proteins. A. Signals of GPI-anchored proteins at the N-terminus and the C-

terminus, respectively. B. The C-terminal signal can be further decomposed, from left to right, as a polar region, a

sequence of three small amino acids (the anchor site is at position W ), a spacer region, followed by a hydrophobic tail.

C. Illustration of the structure with a fragment of the DAF HUMAN protein.
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anchored proteins, but there are many exceptions that
newly identified GPI-anchored proteins depart from
these rules (for example, unpredictable N-terminal
signals, C-terminal signals with overlapping spacer re-
gion and hydrophobic tail, or length of the spacer re-
gion outside the parameters), lowering automatically
the sensitivity of the predictions based on methods
using such rules in a strict way.

Currently, there exist three different predictors
publicly available: big-π (15 ) from the University
of Vienna (available in two versions, one for meta-
zoa and one for protozoa), DGPI from the University
of Geneva (retrieved from http://129.194.185.165/
dgpi/), and the large-scale annotator GPI-SOM (16 )
from the University of Bern. The first two also pre-
dict potential cleavage sites while the third does not.
These tools target the C-terminal and N-terminal sig-
nals of protein sequences, or require verifying the pres-
ence of the N-terminal signal before submitting se-
quences to the predictor. This affects automatically
their performance in the presence of fragmented or
partial sequences, which happen to be more and more
common in databases. In particular, metagenome
projects generate many fragmented sequences repre-
senting only partial proteins, complicating the anno-
tation process. Moreover, with metagenome projects,
the inability to relate many of the new sequences to
a specific taxonomic group does not favor the use of
a group-specific tool like big-π. Therefore, large-scale
annotation tools, which are able to predict the pres-
ence of a particular motif at different levels of preci-
sion (that is, to assess each prediction in a qualitative
way) with minimal information, are then needed to
address this new reality, since tools that are too re-
strictive or specialized often lack the flexibility needed
to make correct predictions. For example, a recent
analysis of the P. falciparum proteome shows that
big-π, DGPI, and GPI-SOM generated poor results in
predicting proteins selected as biologically validated
or highly probable candidates (14 ). Accordingly, our
system was designed to offer the precision of cleavage
site prediction tools and the flexibility needed for a
large-scale annotator in a noisy environment.

Results and Discussion

We developed a system, called FragAnchor, based on
the tandem use of a neural network (NN) and a hid-
den Markov model (HMM). NN is used to select po-
tential GPI-anchored sequences and HMM classifies

the selected sequences by a qualitative scoring scheme.
The sequences selected by NN are annotated as highly
probable (Class 1), probable (Class 2), weakly prob-
able (Class 3), or potential false positive (Class 4).
HMM is also used to predict the position of the cleav-
age site in the sequence.

Firstly, NN and HMM were trained separately
with different training sets. This choice was made
to ensure an optimal training set for each method.
For NN, a validation test was performed with 134
GPI sequences and 134 non-GPI sequences from the
Swiss-Prot database release 49.0. This test showed
that, for a threshold of selection set to 0.90 (the pos-
sible values for this threshold range from 0.0 to 1.0),
NN had a precision of 93% and a positive correlation
coefficient between prediction and observation (17 )
of 0.86, implying that the predictions are quite ac-
curate. With this validation test set, NN was able
to correctly predict 89.47% of the GPI-anchored se-
quences and 96.27% of the sequences that were not an-
notated as GPI-anchored. These results, along with
the area under the receiver operating characteristic
(ROC) curve, are good indicators suggesting that NN
has an acceptable degree of precision and an interest-
ing generalization power.

We also performed additional tests of NN with a
dataset containing 593 sequences annotated as GPI-
anchored in the Swiss-Prot database, 265 membrane
transport protein sequences, as well as 111 cytoplasm
and nuclear protein sequences (Table 1). The result
showed that NN was able to predict 91.06% of the
annotated GPI sequences in Swiss-Prot. Note that
the training sequences, as well as the sequences that
are very similar to some ones present in the train-
ing set, are present in this dataset and these results
cannot be used to assess precisely the quality of the
predictor. However, these tests indicated that NN
had a specificity of 95%, which means that 5% of the
predictions were false positive. For HMM alone, we
performed similar tests and the results we obtained
showed a higher specificity but a lower sensitivity (re-
sults not shown).

For the tandem system (see Materials and Meth-
ods), we ran a validation test by using four different
sets of sequences (Table 2). The first two are positive
sets (GPI-anchored proteins) while the next two are
negative sets (proteins that are not GPI-anchored).
The first positive set contains 121 sequences among
the 134 sequences used to test NN (13 sequences used
in the training set of HMM were discarded). The sec-
ond positive set contains 30 sequences presented in a
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Table 1 Prediction results of the neural network on different sequence sets

Sequence set No. of sequences Predicted GPI (%)

Cytoplasm and nuclear 111 98.20

Membrane transport 265 92.45

GPI sequences in Swiss-Prot 593 91.06

Table 2 Prediction results of the tandem system on different sequence sets

Sequence set No. of Predicted Class 1 Class 2 Class 3 Class 4 Invalid Rejected

sequences GPI (%) (%) (%) (%) (%) (%) by NN (%)

First positive set 121 88.43 66.94 11.57 4.13 5.79 0.00 11.57

P. falciparum 30 96.67 20.00 26.67 10.00 40.00 0.00 3.33

Cytoplasm and nuclear 1,873 3.20 0.21 0.16 0.27 2.56 0.08 96.80

Membrane transport 4,587 6.21 0.76 0.68 0.44 4.29 0.59 93.79

Table 3 Comparative prediction results between big-π, GPI-SOM, and FragAnchor

Sequence set No. of Predicted GPI (%)

sequences FragAnchor FragAnchor FragAnchor GPI-SOM big-π

(all classes) +SignalP (Classes 1–3)

First positive set 121 88.43 82.64 82.64 82.64 60.33

P. falciparum 30 96.67 80.00 56.67 73.33 46.67

Cytoplasm and nuclear 1,873 3.20 0.85 0.64 1.49 0.54

Membrane transport 4,587 6.21 3.24 1.88 2.83 0.50

recent analysis of the P. falciparum proteome (14 ).
The first negative set contains 1,873 sequences with
a subcellular localization annotated as “cytoplas-
mic” from the human protein localization database
(http://locate-human.imb.uq.edu.au/). The second
negative set contains 4,587 sequences retrieved from
the Swiss-Prot database by using the keywords
“transmembrane”, “transport”, or “secreted” and are
not annotated as GPI-anchored.

These tests revealed an interesting prediction
power of the tandem system and more importantly a
remarkable flexibility offered by the qualitative scor-
ing. The test on the first positive set (121 sequences)
revealed a sensitivity of 88.43% to the GPI anchor
signal if we accept all predictions, and 82.64% if we
want to be stricter by eliminating the potential false
positive class. The specificity varied from 99.89%
to 93.89% depending on the type of sequences and
classes. HMM also gives an annotated prediction with
a potential cleavage site. A test on 330 sequences
with an annotated cleavage site showed that the tan-
dem system correctly predicted 75% of them. In the
25% incorrectly predicted cleavage sites, 58% were
predicted at a distance of at most three amino acids
from the annotated anchor site. An important point
is that many of the GPI anchor sites in the Swiss-Prot

curated database are based on automated prediction.
In the test performed with 30 sequences of those

proposed by Gilson et al (14 ) from the P. falciparum
proteome, FragAnchor was able to predict 29 of them
as GPI-anchored protein sequences (96.67%). How-
ever, it is interesting to note that 40% of these predic-
tions were classified as potential false positive (Class
4).

The tests with the two negative sets gave very
good results as 96.80% and 93.79% of the sequences
were rejected by NN, respectively, while HMM clas-
sified most of the incorrectly selected sequences as po-
tential false positives. These examples illustrate the
importance and usefulness of the qualitative scoring
of the predictions of FragAnchor.

The sequences of the four test sets described above
were also submitted to two publicly available predic-
tors of GPI-anchored proteins: big-π (15 ) and GPI-
SOM (16 ) (Table 3). We did not compare FragAnchor
with DGPI because the design of this tool makes large
dataset analysis difficult. Since big-π and GPI-SOM
require the use of SignalP (18 ) for the N-terminal sig-
nal peptide prediction, we included an evaluation of
FragAnchor combined with SignalP to help the com-
parison process. However, the use of SignalP is not re-
quired before using FragAnchor. Compared with big-
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π, FragAnchor is more sensitive to the GPI-anchoring
pattern even if we consider only the first three classes
(highly probable, probable, and weakly probable).
For the first set of 121 GPI-anchored sequences, Fra-
gAnchor correctly predicted 88.43% of them (82.64%
in Classes 1–3) while big-π accepted 60.33%. For the
newly analyzed P. falciparum sequences, as pointed
out in Gilson et al (14 ), most predictors failed to pre-
dict a significant number of sequences known to bear
GPI anchor. In Table 3, we can see that FragAn-
chor has a very high capacity of prediction with only
one sequence wrongly predicted. Even when discard-
ing the potential false positive sequences, FragAnchor
recognizes more GPI-anchored sequences than big-π
does. One of the reasons of the better performance
of FragAnchor is the fact that it does not need the
presence of the N-terminal signal, which is not clearly
detectable in 6 of the 30 P. falciparum sequences.

On the other hand, FragAnchor shows a lower ca-
pacity of discrimination for the negative sets when
compared with big-π, which is understandable due to
the high stringency of big-π. However, this high strin-
gency is accompanied by a poor capacity of prediction
for the GPI anchor signal. Nonetheless, we achieved a
specificity of FragAnchor comparable to that of GPI-
SOM and big-π. The specificity was computed by
adding the proportions of the first three classes (Ta-
ble 2), for example, for the cytoplasm and nuclear
proteins, it is 0.21+0.16+0.27 = 0.64. For the mem-
brane transport proteins, FragAnchor gave more false
positive predictions. However, for this set of proteins,
it is possible that some of them will eventually be
validated as real GPI-anchored proteins in laboratory
experiments.

When compared with GPI-SOM, FragAnchor is
more accurate. GPI-SOM predicted fewer GPI-
anchored sequences from the first positive set of 121
sequences, with a prediction rate of 82.64% compared
with 88.43% for FragAnchor. It also failed to predict
a significant number of the P. falciparum sequences
with only 73.33% of correctly predicted GPI-anchored
sequences. For the negative sets, the use of FragAn-
chor combined with SignalP showed that FragAnchor
achieved results close to GPI-SOM (better for the first
negative set, slightly lower for the second negative
set).

More interestingly, the analysis of P. falciparum
GPI-anchored sequences showed that a large portion
of the GPI-anchored sequences (40%) fell in the po-
tential false positive prediction, proving the useful-
ness of keeping those potentially wrongly predicted

sequences in a specific class. An analysis of the se-
quences rejected by GPI-SOM showed that 50% of
them were found in the potential false positive class
from FragAnchor. In addition, the analysis result of
P. falciparum sequences demonstrated that 4 of the 11
biochemically validated GPI-anchored sequences did
not have an N-terminal signal peptide recognized by
SignalP. This fact confirms the effectiveness of an an-
notation not based on the prediction of this signal. In
short, the comparison with other tools is not easy due
to the uniqueness of the tandem method. However,
it reveals an interesting power of prediction where, in
a single run, FragAnchor can have a very low num-
ber of potential false positive predictions with a much
higher number of GPI-anchored sequences predicted.

In Figure 2, we show an example of output from
the tandem system (FragAnchor predictor). NN first
selects a protein sequence and then HMM parses
the sequence in order to predict a potential cleavage
site. The first predicted anchor site for that sequence
(5NTD HUMAN) is at position 549. This is the po-
sition annotated in the Swiss-Prot database. In the
output, the predictor proposes a maximum of three
possible anchor sites, ranked by decreasing scores.

We selected 29 eukaryote proteomes available from
the EBI Intergr8 portal (19 ) for large-scale analysis.
The results showed that, in general, the percentage
of GPI-anchored proteins in a proteome is between
0.21% and 2.01% when only the highly probable class
is considered (Table 4). These results are compa-
rable with a study performed by Eisenhaber et al
(20 ) that estimated the proportion of the Arabidop-
sis thaliana proteome consisting of GPI-anchored pro-
teins at 0.75%.

Conclusion

The comparison of FragAnchor with big-π and GPI-
SOM shows that FragAnchor can be used at different
levels of precision, allowing a more selective predic-
tion. In addition, it offers a high level of flexibility
with respect to the organism considered. Studies like
the P. falciparum proteome analysis by Gilson et al
(14 ), where the available predictors failed to predict
the biochemically proposed new GPI-anchored pro-
teins, show that there is a need for a more flexible
and universal predictor. The flexibility and accuracy
achieved by FragAnchor offer an excellent annotator
for the GPI anchor signal designed for all metagenome
projects.
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Fig. 2 Example of the output from FragAnchor and comparison to the Swiss-Prot annotation.

One of the main goals of this large-scale predic-
tion tool is to offer greater flexibility to the users.
We propose a tool that offers different levels of sen-
sitivity to the GPI anchor signal. The tests reveal
that the combination of the two machine learning ap-
proaches yields very good results. The tandem system
is a very general (all eukaryotes) tool for the annota-
tion of GPI-anchored proteins on a large scale by us-
ing minimal information. It produces prediction with
a qualitative annotation allowing the user to choose
the strength of precision that he/she wants. The less
sensitive classes may contain sequences with unusual
GPI anchor signals, which can yield to new discoveries
in the PTM research area.

Materials and Methods

Neural network predictor

Neural networks are designed to classify patterns
through a learning process that allows defining class
boundaries in a non-parametric way. The basic ele-

ments are artificial neurons that: (1) accept numer-
ical input from other neurons or from the external
environment; (2) process their input with a transfer
function; (3) output a value to other neurons or back
to the external environment.

The Stuttgart Neural Network Simulator
(javaNNS 1.1) developed at the University of
Stuttgart (http://www-ra.informatik.uni-tuebingen.
de/downloads/JavaNNS/) was used to design and
train our NN predictor. The learning set for this
experiment is 79 sequences from the Swiss-Prot
database release 49.0 that are annotated as GPI-
anchored proteins, with a length of the C-terminal
section to be 50 a.a., and another 79 sequences of pro-
teins that are known not to be GPI-anchored proteins.
The choice of the length of the C-terminal section was
based on an analysis of Swiss-Prot GPI-anchored pro-
teins, which showed a maximum length of 45 a.a. for
the C-terminal signal. To give some flexibility to the
system, we selected an input vector of 50 a.a. Since
neural networks accept numerical input, and given the
importance of molecular weight and hydrophobicity
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Table 4 Proportion of highly probable GPI-anchored proteins predicted by FragAnchor

for 29 eukaryote proteomes

Organism Proteome size Predicted GPI

(sequences) (Class 1) (%)

Anopheles gambiae 15,135 0.61

Arabidopsis thaliana 33,862 0.83

Ashbya gossypii 4,720 0.91

Aspergillus fumigatus 9,906 0.89

Brachydanio rerio 11,863 0.58

Caenorhabditis briggsae 13,192 0.70

Caenorhabditis elegans 22,362 0.66

Candida glabrata 5,180 1.31

Cryptococcus neoformans 6,442 0.90

C. neoformans var. neoformans 6,442 0.90

Debaryomyces hansenii 6,311 0.82

Dictyostelium discoideum 13,049 1.29

Drosophila melanogaster 16,302 0.79

Encephalitozoon cuniculi 1,909 0.21

Gallus gallus 11,820 0.93

Gibberella zeae 11,638 1.13

Guillardia theta 598 0.33

Homo sapiens 38,039 0.74

Kluyveromyces lactis 5,312 1.02

Leishmania major 8,010 1.02

Mus musculus 32,901 0.82

Paramecium tetraurelia 6,311 0.82

Plasmodium falciparum 5,253 0.19

Plasmodium yoelii yoelii 7,755 0.22

Rattus norvegicus 11,820 0.93

Saccharomyces cerevisiae 5,801 0.95

Schizosaccharomyces pombe 4,964 0.68

Tetraodon nigroviridis 27,810 0.55

Yarrowia lipolytica 6,525 2.01

in the anchoring process, we encoded each amino acid
with its hydropathy on the Kyte and Doolitle scale
(21 ), as well as its molecular weight. The last step
is the normalization of the input vectors. We have
applied a simple min-max normalization:

v′ =
(v − min)

(max − min)
∗ (max′ − min′) + min′

where v′ represents the normalized value of data v,
min′ and max′ represent the minimal and maximal
value of the target interval, while min and max are
the minimal and maximal value of our actual data in-
tervals: [−4.5, 4.5] for hydropathy, and [75.07, 204.23]
for molecular weight.

An alignment of sequences consisting of the last 50
residues of GPI sequences was done with ClustalW

(22 ). It was visually analyzed to target non-
redundant sequences in order to eliminate the risk of
bias toward a type of sequence too abundantly repre-
sented. We retained 79 sequences annotated as GPI-
anchored from the Swiss-Prot database. In order to
discriminate accurately between GPI and non-GPI se-
quences for the model, we retained mostly experimen-
tally verified sequences. We also selected a set of 79
sequences that have a very low probability of being
GPI-anchored (such as cytoplasm and nucleic pro-
teins) or have similar features but without the GPI
anchor (membrane transport proteins). The selection
of the sequences was manually made to ensure a low
level of similarity and to verify the quality of the an-
notation as not GPI-anchored sequences. The combi-
nation of these two datasets defines our training set.
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To validate the model, we used a test set composed
of 134 GPI-anchored sequences. This set features few
redundant sequences and is disjoint from the training
set. We also selected 134 sequences with a very low
probability of being GPI-anchored.

Our validation set of 268 sequences does not rep-
resent the complexity of actual sequence databases.
Therefore, we selected in the Swiss-Prot database the
following types of sequences:

(1) Sequences that have structures or physico-
chemical properties relatively similar to GPI-anchored
and potential false positive proteins. We selected 265
membrane transport proteins with similar hydropho-
bicity characteristics, making them good candidates
for discrimination purpose.

(2) Sequences with a very low probability of being
GPI-anchored. GPI-anchored proteins are exclusively
extracellular, so we selected 111 cytoplasmic protein
sequences based on their subcellular localization.

The architecture of the neural network used in
FragAnchor is a multilayered perceptron using the
RPROP (Resilient Back Propagation) learning algo-
rithm (23 ). The input layer is composed of 100 neu-
rons, corresponding to 2 input values for each of 50
amino acids. A hidden layer of 150 neurons encodes
the classification process, and the output layer con-
tains 1 neuron, giving a score to each sequence. The
number of neurons in the hidden layer is the optimal
architecture selected over different test architectures
(results not shown).

The learning process consisted in gradually adjust-
ing the weights of the processing functions in order to
obtain good scores on known GPI-anchored proteins.
A score greater than 0.90 indicates that the network

has identified a potential GPI-anchored protein.

Hidden Markov model predictor

HMM is a probabilistic model equivalent to a regular
grammar that is built by using machine-learning algo-
rithms, from a set of sequences (amino acid sequences
in this study) called the training set. Given an amino
acid sequence, the automaton reads it and computes
the following data: (1) a score expressing the likeli-
hood that a new sequence is similar to the ones in the
training set; (2) a most likely path in the automaton
that highlights possible features of the structure of
this sequence (24 ).

Based on the known structure of the GPI signal
(Figure 1), we designed our HMM predictor follow-
ing the approach used in SignalP (18 ). The underly-
ing graph of HMM is composed of three parts, corre-
sponding to the GPI signal features (Figure 3). The
score associated to a sequence is the log-score of the
likelihood, normalized by the length of the sequence.

The parameters for HMM were estimated by 100
iterations of the Baum-Welch algorithm (25 ). Pseu-
docounts were used for the two parts of HMM cor-
responding to the spacer region and the hydrophobic
tail. For each of these regions, the distribution of the
amino acids after the initial training in the given re-
gion was used to correct for the rare states that had a
null emission probability for some amino acids. The
training set for HMM was a set of 87 sequences from
Swiss-Prot that are annotated as GPI-anchored pro-
teins. The model was validated using 500 bootstrap
replications on our training set. For each replication,
a dataset composed of 87 sequences (repetitions al-
lowed) was generated. These models were trained and

Fig. 3 The hidden Markov model for the GPI anchor signal representation. The first three states model the three

amino acids around the anchor site. From the third state, transitions are possible to states 4 to 13, modeling the

variable length spacer region. Finally, the hydrophobic tail, also a variable length region, is modeled by states 17 to 41.

128 Geno. Prot. Bioinfo. Vol. 5 No. 2 2007



Poisson et al.

tested using a validation set of 66 sequences.
In the experimental setup, each analyzed sequence

was run through HMM with each putative cleavage
site. These putative cleavage sites were identified
with a sliding window that detects groups of three
amino acids of small molecular weight. This is how
HMM can also predict cleavage sites. The Forward
algorithm computed the likelihood of a sequence, and
the Viterbi algorithm (26 ) computed the most prob-
able path for each sequence. The three best, in terms
of scores, possible cleavage sites were recorded.

Tandem system

In the tandem system (Figure 4), the sequences se-
lected by NN (the ones with a score greater than 0.90)
are presented to HMM. The HMM score obtained on
each sequence is then used to classify the sequence.
This classification ranges from “highly probable” to

“potential false positive” (Table 5). Each class of an-
notation was defined using a graphical representation
of false-positive and true-positive predictions at all
discrimination threshold, the ROC curve. This quali-
tative annotation allows us to keep the high sensitivity
(proportion of all true positives correctly predicted)
obtained with NN, together with the specificity (pro-
portion of all true negatives correctly predicted) and
the capacity of HMM to identify some features of the
GPI signal, such as the cleavage site. The major ad-
vantage of using the qualitative scoring in a large-
scale annotator is its fast and easy identification of
the best predictions and the possible false positives.
NN can detect the GPI anchor motif efficiently but its
architecture does not give us any information about
the primary structure of the motif, while the use of
HMM provides this information. Consequently, we
can refine the prediction depending on the quality of
the signal present in the protein sequence.

Fig. 4 The structure of the tandem system.

Table 5 Qualitative annotation of the tandem system

Category Class HMM score

Probable highly probable (Class 1) score ≥ 5.40

probable (Class 2) 2.20 ≤ score < 5.40

weakly probable (Class 3) 0.20 ≤ score < 2.20

Potential potential false positive (Class 4) score < 0.20
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