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To determine cancer pathway activities in nine types of primary tumors and NCI60
cell lines, we applied an in silico approach by examining gene signatures reflective
of consequent pathway activation using gene expression data. Supervised learning
approaches predicted that the Ras pathway is active in ~70% of lung adenocarci-
nomas but inactive in most squamous cell carcinomas, pulmonary carcinoids, and
small cell lung carcinomas. In contrast, the TGF-3, TNF-a, Src, Myc, E2F3, and
[-catenin pathways are inactive in lung adenocarcinomas. We predicted an active
Ras, Myc, Src, and/or E2F3 pathway in significant percentages of breast cancer,
colorectal carcinoma, and gliomas. Our results also suggest that Ras may be the
most prevailing oncogenic pathway. Additionally, many NCI60 cell lines exhib-
ited a gene signature indicative of an active Ras, Myc, and/or Src, but not E2F3,
p-catenin, TNF-a, or TGF-3 pathway. To our knowledge, this is the first com-
prehensive survey of cancer pathway activities in nine major tumor types and the
most widely used NCI60 cell lines. The “gene expression pathway signatures” we
have defined could facilitate the understanding of molecular mechanisms in can-
cer development and provide guidance to the selection of appropriate cell lines for

cancer research and pharmaceutical compound screening.
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Introduction

Cancer is a genetic disease driven by mutations in
three types of genes: oncogenes, tumor suppressors,
and genome stability genes involved in DNA repair
and mitotic processes (1). It has been estimated that
three to seven mutations are required for the develop-
ment of cancers (2). At the molecular level, these mu-
tations drive the neoplastic process through deregula-
tion of cellular pathways and biological processes that
control cell fate, growth, differentiation, and survival.
Mutations of oncogenes and tumor suppressors in-
crease tumor cell number by stimulating cell prolifera-
tion and inhibiting differentiation and apoptosis path-
ways (1). For example, the activation of Ras proteins
by mutations of the ras oncogene recruits the Raf ki-
nase that subsequently activates transcription factors
Fos and Jun through MAP kinase signaling pathways.
Fos and Jun in turn form AP1 and up-regulate growth
promoting genes (2). Mutations of different onco-
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genes or tumor suppressors have been associated
with different cancer types, suggesting that specific
pathways may be responsible for the development of
specific cancers (2). Therefore, determining pathway
activities in cancers is critical not only for understand-
ing molecular mechanisms in tumor progression but
also for designing targeted therapeutic strategies.

Cell lines derived from primary tumor tissues have
provided a valuable tool for the understanding of can-
cer biology at the molecular level. Much of the knowl-
edge that we have today on fundamental processes in
cancer cells has largely depended on the use of cell
lines (2). In addition, since cancer cell lines provide
an unlimited source of malignant cells, they are widely
used in screening for anti-cancer drugs. However, be-
cause cells cultured in vitro lack the overall tissue ar-
chitecture and relevant microenvironment, and cells
continuously maintained in culture may lose the at-
tributes of the tumors from which they are derived
(4), the value of cancer cell lines is limited by the
extent to which they represent the primary tumors’

Vol. 5 No. 1 2007 15



Pathway Activities in Tumors and Cell Lines

origin and activities. Several approaches have been
utilized to characterize cancer cell lines. The ability
to form tumors when cell lines were transplanted sub-
cutaneously into nude mice allows a direct compari-
son of histopathology between tumors formed in nude
mice and the human tumors of origin (5). Efforts
have been made to delineate morphological features
of cell lines in comparison with archival tumor tis-
sues that the cell lines are derived from (6, 7). At
molecular levels, expression of key proteins such as
HER2/neu and p53 in breast and non-small cell lung
cancer cell lines as well as their corresponding tu-
mors have been assessed using immunohistochemistry
(6, 7). Previously, we carried out a direct comparison
between NCI60 cell lines and 9 primary tumor types
using gene expression profiling data generated from
more than 500 primary tumor samples (8). Our com-
putational analysis suggested that 51 of the 59 NCI60
cell lines represent their presumed tumors of origin.
These cell lines were also classified into tumor sub-
types or different stages in cancer development (8).
However, it remains unclear that what pathways are
activated in each of these cell lines. Therefore, fur-
ther analysis of pathway activation status in cancer
cell lines could provide guidance to the selection of
cell lines as appropriate models for studying cancer
pathways and for target-based drug screening.

DNA microarray technology has created a new
paradigm for understanding cancer biology by simul-
taneous measurement of tens of thousands of genes in
malignant or normal cells. Gene expression profiles
have been utilized to identify gene signatures that
are associated with tumor progression and alterations
in cancer pathways. Recently, gene expression sig-
natures have been identified to reflect the activities
of five oncogenic pathways, namely Ras, Myc, Src,
E2F3, and (-catenin (9).
from primary cell cultures have been validated in

These signatures derived

transgenic animal models and are correlated with sen-
sitivity to therapeutic agents targeting specific path-
ways (9). Here we exploited the gene expression sig-
natures for these five oncogenic pathways and two
receptor-mediated signaling pathways, namely trans-
forming growth factor (TGF)-8 and tumor necrosis
factor (TNF)-a, to predict pathways in nine ma-
jor types of primary cancers and NCI60 cell lines.
Supervised learning-based prediction suggested that
different pathways are involved in the development
of different tumor types. Moreover, our assessment
of pathway activation status in NCI60 cells highlights
the value of specific cell lines in studying these path-
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ways and their roles in oncogenesis.

Results

Developing gene signatures represent-
ing active pathways and building super-
vised models for classification

We used gene expression profiles generated in primary
mammary epithelial cell cultures (9) to derive signa-
tures for the activated Ras, Myc, Src, E2F3, or (-
catenin pathways. The training dataset includes two
groups, cells transfected with adenovirus expressing
green fluorescent protein (GFP) or one of the onco-
genes. Gene signatures for the activated TGF-3 or
TNF-a pathways were identified using gene expres-
sion profiles of TGF-G or TNF-« treated by a non-
small cell lung cancer cell line Calu6 or of the vehicle
control (Yingling and Ye, unpublished results). Two
criteria were considered in our selection of signature
gene sets for the pathways. First, several candidate
signatures were determined, which would give rise to
a minimal cross validation error rate. Second, from
multiple signature gene sets that satisfy a threshold of
cross validation error rates, we selected the one with
the smallest number of genes. As a result, there is lim-
ited overlap between the gene signatures for different
pathways. Unlike the previous study on the five onco-
genic pathways where authors built gene classifiers
that are overlapping between different pathways (9),
we believe our approach has generated signature gene
sets that are more specific for each pathway and may
provide more accurate predictions. Lists of genes se-
lected for subsequent principle component analysis
(PCA) and classification are provided in Supporting
Online Material (Table S1). Many of these genes are
known downstream targets for each of the pathways.

To predict what pathways are active in each of
the primary tumor samples and NCI60 cell lines, we
used supervised learning approaches (Figure 1). After
gene features were selected from the training dataset,
supervised predictors were built using a support vec-
tor machine (SVM) algorithm. Parameters were ad-
justed in model building to ensure minimal leave-one-
out cross validation (LOOCV) error rates. Table S2
illustrates an example of this process for the Ras path-
way. Analysis of variance was carried out to identify
genes differentially expressed between the two groups
in the training dataset, that is, cells transfected with
adenovirus expressing GFP or the activated H-Ras.

Vol. 5 No. 1 2007



Feng et al.

Gene expression training data

Known classes: e.g.
inactive and active
pathways

_—

Gene feature selection

Data reduction
using PCA

Build supervised predictor «——

Model evaluation and selection by LOOCV

Prediction of tumors and cell lines into known classes

Fig. 1 Feature classification using supervised learning
methods. PCA: principal component analysis; LOOCV:

leave-one-out cross validation.

Figure 2A clearly depicts a completely opposite ex-
pression pattern of these genes in the control group
and in the group with a constitutively active Ras
pathway. Then the data reduction using PCA and
the subsequent building of classification models were
carried out. Multiple models were evaluated using
different numbers of principle components, different
SVM kernel functions, and different cost parame-
ters. Based on the criteria described in Materials
and Methods, we chose three principle components as
the discriminants, the Sigmoid kernel function, and
a cost parameter of 8 that gave rise to the optimal
error rate in LOOCV. Supervised models for other
pathways were also built and tested using the same
approach (data not shown).

Classification of primary cancers

We first attempted to classify lung cancers into an ac-
tive vs. inactive status for each pathway. The testing
gene expression profiling data were previously pub-
lished using 186 primary lung cancer samples, includ-
ing 139 adenocarcinomas, 21 squamous cell lung carci-
nomas, 20 pulmonary carcinoids, and 6 small cell lung
cancers (10) (Table 1). Our prediction results (Table
2) suggest that the Ras pathway is activated in almost
70% of lung adenocarcinoma patients, but is inactive
in most squamous cell carcinomas, pulmonary carci-
noids, and small cell lung carcinomas. In contrast,
the Src, Myc, E2F3, (-catenin, TGF-3, and TNF-«a
pathways are inactive in almost all of the lung ade-
nocarcinomas. Figure 2B is a graphic illustration of
gene expression patterns in lung cancers with an ac-
tive or inactive Ras pathway. It is noteworthy that
differential expression of these signature genes in ac-
tive vs. inactive primary tumors (Figure 2B) has less
magnitude than that observed in the primary cell cul-
tures (Figure 2A), raising the possibility that subtle
changes in the pathways may be sufficient to trigger
tumorigenesis. An alternative explanation is that tu-
mor biopsy samples often contain a certain percentage
of tumor cells and other non-tumor cell types. There-
fore, gene expression patterns in tumors are mixed
with noise from non-tumor cells. Significant num-
bers of pulmonary carcinoid and small cell lung can-
cer samples exhibited a gene signature representing
an active E2F3 pathway (Table 2). Our prediction of
the activity status of the Ras pathway in lung adeno-
carcinomas and squamous cell lung carcinomas using
the dataset from Bhattacharjee et al (10) is consis-
tent with the results reported by Bild and colleagues
based on a different cohort of patients (9).

Table 1 Gene expression profiling datasets on NCI60 cell lines and primary tumors

analyzed in this study

Cancer type Sample size  Data format

URL for data downloading

Ref.

NCI60 cell lines - MAS5 http://dtp.nci.nih.gov/mtargets/madownload.html -

Lung 186 MAS5 http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi 10
Prostate 52 MAS5 http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi 25
Leukemia 72 MAS5 http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi 26
CNS 50 MAS5 http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi 27
Melanoma 29 MAS5 http://www.mskcc.org/genomic/ccsmsp/ 28
Breast 171 MAS5 http://data.cgt.duke.edu/oncogene.php 9

Ovary 146 MAS5 http://data.cgt.duke.edu/oncogene.php 9

Colon 23 MAS4 http://www.gnf.org/cancer/epican/ 29
Kidney 11 MAS4 http://www.gnf.org/cancer/epican/ 29
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Table 2 Pathway activity in lung cancers*

Pathway  Adenocarcinoma Squamous cell carcinoma Pulmonary carcinoid Small cell lung cancer

Ras 0.683 (95/139) 0.14 (3/21) 0 (0/20) 0.17 (1/6)
Myc 0.029 (4/139) 0 (0/21) 0 (0/20) 0.17 (1/6)
Sre 0.029 (4/139) 0 (0/21) 0 (0/20) 0 (0/6)
E2F3 0.022 (3/139) 0 (0/21) 0.40 (8/20) 0.50 (3/6)
[B-catenin 0 (0/139) 0 (0/21) 0 (0/20) 0 (0/6)
TGF-3 0 (0/139) 0 (0/21) 0 (0/20) 0 (0/6)
TNF-a 0.065 (9/139) 0 (0/21) 0 (0/20) 0 (0/6)

*The percentages of patients with predicted active pathways are shown. The numbers in parentheses are the numbers
of patients with active pathways vs. the total numbers of patient samples in each subtype of lung cancers. Bolded
numbers indicate a significant percentage (> 20% for sample size > 20) of samples exhibiting a gene signature of active

pathways.
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Fig. 2 Classification of primary lung cancers and NCI60 cell lines with respect to active vs. inactive Ras pathways.

A. A 30-gene signature developed from the training dataset for the Ras pathway. Red and blue represent high and
low levels of expression respectively. The y-axis represents the 30 genes and the x-axis represents two groups in the
training dataset, that is, cells transfected with adenovirus expressing the activated H-ras or GFP as a control. B. Gene
expression patterns of the signature genes in 186 lung cancers and 59 NCI60 cell lines with an activated or inactive Ras
pathway.
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We next carried out classification of other tumor
types with publicly available oligonucleotide microar-
ray data (Table 1). Analysis results (Table 3) reveal
that Ras may be the most prevailing oncogenic path-
way, since gene expressions in significant amount of
tumor samples in each cancer type are indicative of an
active Ras pathway according to our computational
prediction. Different cancer types, however, behave
differently with respect to activities of other path-
ways. For example, while Ras is the only active path-
way in lung adenocarcinomas, we predicted an ac-
tive Ras, Myc, Src, and E2F3 pathway in 73%, 70%,
21%, and 30% of breast cancer patients, respectively.
Upon further investigation, 74%, 67%, and 69% of
Myc, Src, and E2F3 active samples, respectively, also
have an active Ras pathway, suggesting multiple onco-
genic pathways may coordinately promote breast can-
cer progression in these patients. The observations of
multiple and overlapping activated pathways in breast
tumors reflect the heterogenous nature of cancer. An
active status in multiple pathways has also been pre-
dicted in brain, colon, kidney, and ovarian cancers. In
contrast, Ras is the only active pathway in leukemia,
melanoma, and prostate cancers, which is similar to
what was observed in lung adenocarcinomas. Except
for ovarian cancers, the §-catenin, TGF-3, and TNF-
« pathways are inactive in almost all of the primary

notion that different pathways may play critical roles
in the development of different cancer types.

Classification of NCI60 cell lines

NCI60 represents the most commonly used cancer cell
lines in cancer research and drug screening. In order
to evaluate them as models for primary tumors, we
estimated pathway activities in NCI60 cell lines using
the supervised learning-based classification. Listed
in Table 4 are the cell lines with predicted active
pathways. Although these results await further ex-
perimental validation, they could provide directions
to the selection of specific cell lines to study specific
pathways in cancer cells. Even though most of the
NCIG60 cell lines were suggested to represent their cor-
responding tumor origin (8), we postulate that dis-
tinct pathways are active in each of these cell lines ac-
cording to our in silico analysis. For example, except
for NCI/ADR-RES, all of the breast cell lines in the
NCI60 panel have global gene expression profiles more
similar to that of primary breast cancers than other
tumor types (8), but their expression patterns for
pathway specific gene signatures are different. BT-
549, MDA-MB-231, and HS578 exhibited an active
expression signature for the Ras pathway, and MCF7
is the only line that we predicted to have an active

tumors. Collectively, these results substantiate the Src pathway (Table 4). Interestingly, many cell lines
Table 3 Pathway activity in other primary cancers*
Pathway Breast CNS Colon Kidney Leukemia Melanoma  Ovarian  Prostate
cancer cancer  cancer cancer cancer cancer
Ras 0.73 0.44 0.43 0.72 0.36 0.31 0.48 0.50
(125/171)  (22/50) (10/23)  (8/11) (26/72) (9/29) (70/146) (26/52)
Myc 0.70 0.42 0.35 0.091 0.055 0.14 0.22 0.19
(120/171)  (21/50)  (8/23) (1/11) (4/72) (4/29) (32/146) (10/52)
Src 0.21 0.56 0.91 0.91 0.014 0.069 0 0.019
(36/171)  (28/50) (21/23) (10/11) (1/72) (2/29) (0/146) (1/52)
E2F3 0.30 0.12 0.043 0 0.17 0.17 0.28 0.17
(51/171) (6/50) (1/23) (0/11) (12/72) (5/29) (41/146) (9/52)
[B-catenin 0 0 0 0 0 0 0 0
(0/171) (0/50) (0/23) (0/11) (0/72) (0/29) (0/146) (0/52)
TGF-3 0 0 0 0 0 0 0.82 0
(0/171) (0/50) (0/23) (0/11) (0/72) (0/29) (120/146) (0/52)
TNF-a 0.058 0.04 0.087 0 0.055 0.10 0 0.038
(10/171) (2/50) (2/23) (0/11) (4/72) (3/29) (0/146) (2/52)

*The percentages of patients with predicted active pathways are shown. The numbers in parentheses are the numbers

of patients with active pathways vs. the total numbers of patient samples in each cancer type. Bolded numbers indicate

a significant percentage (> 20%) of samples exhibiting a gene signature of active pathways.

Geno. Prot. Bioinfo.
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Table 4 NCI60 cell lines with predicted active pathways*

Tumor type Ras Myc Src E2F3 TNF-«
Breast BT-549, MDA-MB-435, MCF7 - MDA-MB-231,
MDA-MB-231, BT-549, HS578T
HS578T NCI/ADR-RES
CNS - SF-268 - - SF-268
Colon HT-29, COLO205, KM12, HCT-15 -
COLO205, KM12, HCC-2998
HCT-15, HCT-116,
KM12, SW-620
HCT-116
Kidney 786-0 - RXF-393, - -
786-0
Leukemia - RPMI-8226, RPMI-8226, CCRF-CEM, -
CCRF-CEM, SR, MOLT-4
K-562, K-562,
MOLT-4, HL-60
HL-60
Lung NCI-H460, NCI-H460, NCI-H23 EKVX, -
NCI-H23, EKVX, NCI-H522
NCI-H522, NCI-H522
HOP-92
Melanoma LOX IMVI, LOX IMVI, LOX IMVI, - -
UACC-257, UACC-62, UACC-62,
SK-MEL-28 SK-MEL-2, UACC-257,
SK-MEL-5 SK-MEL-5
Ovary OVCAR-5 IGROV1, IGROV1, - -
OVCAR-4, OVCAR-8
OVCAR-8
Prostate PC3, PC3 PC3 - -
DU-145

*The (-catenin and TGF-( pathways were predicted to be inactive in all of the cell lines and thus are omitted in the

table.

are active in only one or two pathways. This is not un-
expected given the homogeneity of the cultured cells
due to clonal selection.

Discussion

Although genome-wide expression profiling has be-
come a mainstay in cancer research, it remains a
challenge to extract biological insight from gene ex-
pression data. In a typical experiment, individual
genes are identified according to their differential ex-
pression between the control group and the experi-
mental group, followed by mapping of these genes to
biological pathways. However, it has been demon-
strated that a biological pathway could play a sig-
nificant role in physiological processes even though
each gene in the pathway only exhibits subtle gene ex-
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pression changes to external perturbations but collec-
tively they exert significant impact to the cells (11).
Several algorithms have been proposed to analyze ex-
pression data focusing on pathways rather than on in-
dividual genes (12, 13). However, before we consider
applying these methods to cancer microarray data,
two issues need to be addressed. First, it has been
a common practice to measure pathway activity by
analyzing expression of genes involved in signal trans-
duction. We believe this approach is problematic in
studying signaling pathways in cancers.
of those pathways often involves post-translational
modification of proteins in the signaling but does not

Activation

depend on an increased expression of genes encoding
those proteins. A more sensitive and robust approach
would be interrogating downstream genes, that is,
gene expression changes that reflect pathway acti-
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vation. Second, the frequently used computational
methods for pathway analysis compare gene expres-
sion patterns between the control group (such as nor-
mal tissues) and the experimental group (such as can-
cerous cells). Given the variability between individ-
uals and limited sample sizes typical of human stud-
ies, it could be difficult to distinguish true difference
from noise. In this study, we developed a strategy to
overcome the above mentioned shortcomings in the
current methodology. Gene signatures for the seven
pathways were developed from experimental data. Al-
terations in signature gene expression are associated
with and can be used as a direct “readout” of path-
way activation. Furthermore, we applied supervised
learning methods to predict pathway status in indi-
vidual samples, which should provide more accurate
and sensible results.

Computational analysis requires laboratory exper-
imentation to validate the results. Some of our pre-
dictions have already been confirmed by experimental
data reported in the literature. It shows that 68% of
lung adenocarcinomas exhibited a gene expression sig-
nature of active Ras pathways (Table 2). This is con-
sistent with the finding that PCR-based method has
detected ras mutations in non-small cell lung cancers
at frequencies that may exceed 50% (14). We pre-
dicted an active Src pathway in the majority (21 of 23,
91%) of colorectal carcinoma samples (Table 3), which
is supported by studies that described over expression
of c-src and deregulation of the Src pathway in more
than 70% of human colon cancers (15). Previously,
gene amplification has been examined in glioblas-
tomas using an array-based comparative genomic hy-
bridization, and Myc amplification was detected in
42% of the samples (16). This again is consistent with
our in silico pathway analysis indicating 42% of the
gliomas have an active Myc pathway. Gene expression
patterns in 70% of breast cancer samples represent an
active Myc pathway (Table 3). This is not surprising
since immunohistochmistry has detected over expres-
sion of ¢c-Myc proteins in 45% of 440 primary breast
carcinomas (17). Even though some oncogenes are
not mutated or amplified in certain cancer types, it is
still possible that the oncogenic pathways are active
in these cancers through other mechanisms. For ex-
ample, we report here that half of the prostate cancers
may have an activated Ras pathway, yet it has been
well documented in the literature that ras mutations
are rare in prostate cancers (18-20). However, in a
very recent study Ras downstream MAP kinase ac-
tivity in prostate cancers was investigated using im-
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munohistochemistry for p44/ERK1 and p42/ERK2,
and active MAPK signaling was detected in 51% of
the analyzed tumors (21), strikingly similarly to our
predictions. High and low frequencies of an activated
Ras pathway in lung adenocarcinomas and squamous
lung cell carcinomas respectively reported by us in
this study are in agreement with recent results also
based on computational prediction but using gene ex-
pression data generated from a different cohort of pa-
tients (9). Taken together, these evidence strongly
supports our approach to examine pathway activity
using gene expression profiling data.

We also recognize the limitations in our study.
First, gene signatures were developed from an in vitro
system where the pathways were experimentally ac-
tivated. The differential expressions of the signature
genes are augmented artificially. While the control
group and the experimental group in the training
dataset can be clearly defined into two classes, there
is a significantly greater variability of pathway ac-
tivity in primary tumors. Therefore, our prediction
of a pathway in cancers into either the inactive or
the active status is rather arbitrary. Second, gene
signatures were derived from data using the primary
mammary epithelial cells or non-small cell lung cancer
cells Calu6. However, downstream genes regulated by
these pathways could be cell type specific. As a result,
using the gene signature identified from one cell type
to predict pathway activity in other cell types may
cause high rate of false negatives. Third, although
mutations occur primarily in tumor cells, some path-
ways play a pivotal role in non-tumor cells to provide
a microenvironment for promoting tumor progression
and angiogenesis. For example, an activated TGF-g3
pathway creates a favorable microenvironment for tu-
mor growth and invasion (22). The effects of TGF-43
pathway activation is mainly executed in tumor mi-
croenvironment but not in tumor cells. Consequently,
the importance of TGF-3 pathway in cancer develop-
ment should not be undermined even though it is in
an inactive state in primary tumor cells. Fourth, one
of our main goals is to predict pathway activation sta-
tus in NCI60 cell lines. An inactive pathway in a cell
line, however, only indicates a low baseline activity
and does not necessarily exclude the cell line as an
ideal model to study the pathway. In fact, TGF-3
target genes in Calu6 cells are expressed at minimal
levels but are robustly up-regulated in response to
the TGF-g ligand. Accordingly, if a cell line has in-
tact signaling components of a pathway and responds
to ligand stimulation, it should be still considered as
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a good model system even the basal pathway activ-
ity is minimal. Finally, gene expression profiles in
cell culture in vitro may not reflect gene expressions
evaluated when cells are grown in vivo, as evidenced
by a recent study that although two glioblastoma cell
lines (U251 and U8T) have disparate gene expression
profiles when grown in monolayer cell cultures, they
share similar gene expression patterns when grown as
intracerebral xenografts in nude mice (23). Therefore,
the next level approach to evaluate cell lines would
be using gene expression profiles of cell lines grown in
xenograft models when such data become available.
Nevertheless, we believe that with more gene expres-
sion profiling studies being carried out, gene signa-
tures for more pathways can be developed in multiple
cell types. Our computational approach in predicting
pathway activities provides a valuable tool that can
be generally applied to studying biological pathways
under normal and pathological conditions.

Materials and Methods

Data source

The gene expression profiling data on NCI60
provided by NCI’s
(http://dtp.nci.nih.gov/mtargets/madownload.html)
are based on Affymetrix U95Av2 oligonucleotide ar-
ray platforms. While oligonucleotide arrays measure
the amount of mRNA in a single sample, gene expres-

cell lines DTP program

sion data generated using cDNA array platforms are
ratios of expression values in experimental samples
over those in a reference sample. The fundamental
difference between the two array platforms poses a
technical barrier in integrative analysis of gene ex-
pression data based on these two different platforms.
Therefore, we chose only Affymetrix oligonucleotide
array-based data in publicly available gene expression
profiling databases on primary tumors (Table 1).
Gene expression data on NCI60 cell lines and pri-
mary tumor samples were downloaded from the URL
addresses shown in Table 1. Gene expression data
of lung, prostate, central nervous system (CNS) can-
cers, and leukemia were originally generated with
Affymetrix MAS4 software.
ian cancer datasets were in gcRMA format. We
downloaded the .cel files and analyzed them using
Affymetrix MAS5 algorithm with trimmed mean val-
ues normalized to 500. A trimmed mean is the average
value after removing the lowest 2% and the highest 2%
of all expression values. The downloaded array data

The breast and ovar-
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for NCI60 cell lines and melanomas were in MAS5
format and we re-normalized the data by setting the
trimmed means to 500. Data were only available for
59 of the NCI60 cell lines. For colon and kidney can-
cers, we were only able to obtain MAS4 gene expres-
sion data and similarly, these data were normalized
with trimmed means equal to 500.

We compiled the gene expression data for a total
of 799 samples after averaging the expression values
over the technical replicates in the lung dataset and
in NCI60 cell lines. Expression of each probe set was
standardized to a mean of 0 and standard deviation of
1. The standardization procedure is performed for the
training dataset and the testing dataset separately.

Feature selection and classification

All statistical analysis was implemented using SAS
and R statistical languages. Pair-wise t-tests were
used to identify genes differentially expressed between
the control group and the active pathway group in the
training dataset. Probe sets were ranked by p-values.
Multiple p-values were tested as thresholds to select
gene features for subsequent PCA and classifications.
For each pathway, we chose a cutoff p-value that gave
rise to minimal cross validation error rates in clas-

sifications (see below).

SVM was used as the classification method (24).
We performed PCA after gene features were selected.
The number of principal components p and the pa-
rameter cost that corresponding to constant of the
regularization term in the Lagrange formulation was
determined based on LOOCYV error rate. LOOCV is a
procedure in which we trained classifier based on the
training dataset after one object is removed and the
classifier was tested on the removed one. The proce-
dure was implemented for each object in the dataset
and the proportion of errors counted throughout the
process is called LOOCYV error rate. The value p and
the cost parameter were chosen to be the smallest one
that satisfies two criteria: (1) the LOOCV error rate
of the classifier is smaller than 0.05; and (2) the three
consecutive classifiers built on the features with p,
p+1, and p+2 principal components give consistent
predictions. Four most commonly used SVM kernel
functions were tested: linear, polynomial with degree
3, radial bases, and neural network. Similarly, we
chose a kernel function that minimizes the LOOCV

error rate for analysis of each pathway.

Vol. 5 No. 1 2007



Feng et al.

Authors’ contributions

SGH, JYS, BRL, and SYL designed the study. XDF
and SYL carried out data analysis. JMY, XY, XL,
and LMG generated microarray data for the TGF-(
and TNF-a pathways. XDF, SGH, JTS, JEO, and
SYL interpreted the results. XDF and SYL drafted
the manuscript. SGH, JYS, BRL, XY, LMG, EWS,
and JEO revised the manuscript. All authors read
and approved the final manuscript.

Competing interests

The authors have declared that no competing inter-
ests exist.

References

1. Vogelstein, B. and Kinzler, K.W. 2004. Cancer genes
and the pathways they control. Nat. Med. 10: 789-
799.

2. Vogelstein, B. and Kinzler, K.W. (eds.) 2002. The
Genetic Basis of Human Cancers (second edition).
McGraw-Hill Companies, Inc., New York, USA.

3. Masters, J.R. 2002. HeLa cells 50 years on: the good,
the bad and the ugly. Nat. Rev. Cancer 2: 315-319.

4. Kamb, A. 2005. What’s wrong with our cancer mod-
els? Nat. Rev. Drug Discov. 4: 161-165.

5. Fogh, J., et al. 1977. One hundred and twenty-seven
cultured human tumor cell lines producing tumors in
nude mice. J. Natl. Cancer Inst. 59: 221-226.

6. Wistuba, II, et al.
human breast cancer cell lines and their correspond-
ing tumors. Clin. Cancer Res. 4: 2931-2938.

7. Wistuba, II, et al.
human lung cancer cell lines and their corresponding
tumors. Clin. Cancer Res. 5: 991-1000.

8. Wang, H., et al. 2006. Comparative analysis and inte-

1998. Comparison of features of

1999. Comparison of features of

grative classification of NCI60 cell lines and primary

tumors using gene expression profiling data. BMC
Genomics 7: 166.

9. Bild, A.H., et al. 2006. Oncogenic pathway signatures
in human cancers as a guide to targeted therapies. Na-
ture 439: 353-357.

10. Bhattacharjee, A., et al. 2001. Classification of hu-
man lung carcinomas by mRNA expression profiling
reveals distinct adenocarcinoma subclasses.  Proc.
Natl. Acad. Sci. USA 98: 13790-13795.

11. Mootha, V.K., et al. 2003. PGC-lalpha-responsive
genes involved in oxidative phosphorylation are coordi-
nately downregulated in human diabetes. Nat. Genet.

34: 267-273.

Geno. Prot. Bioinfo.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Vol. 5

Pang, H., et al. 2006. Pathway analysis using random
forests classification and regression. Bioinformatics
22: 2028-2036.

Subramanian, A., et al. 2005. Gene set enrichment
analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc. Natl. Acad.
Sci. USA 102: 15545-15550.

Clements, N.C. Jr., et al. 1995. Analysis of K-ras
gene mutations in malignant and nonmalignant endo-
bronchial tissue obtained by fiberoptic bronchoscopy.
Am. J. Respir. Crit. Care Med. 152: 1374-1378.
Griffiths, G.J., et al.

defective mutants of c-Src in human metastatic colon

2004. Expression of kinase-

cancer cells decreases Bel-xL and increases oxaliplatin-
and Fas-induced apoptosis. J. Biol. Chem. 279:
46113-46121.

Hui, A.B., et al. 2001.

amplifications in glioblastoma multiforme using array-

Detection of multiple gene

based comparative genomic hybridization. Lab. In-
vest. 81: 7T17-723.

Naidu, R., et al. 2002. Protein expression and molec-
ular analysis of c-myc gene in primary breast carci-
nomas using immunohistochemistry and differential
polymerase chain reaction. Int. J. Mol. Med. 9:
189-196.

Carter, B.S., et al. 1990. ras gene mutations in human
prostate cancer. Cancer Res. 50: 6830-6832.
Gumerlock, P.H., et al. 1991.
in human carcinoma of the prostate are rare. Cancer
Res. 51: 1632-1637.

Moul, J.W.; et al. 1992. Infrequent RAS oncogene mu-
tations in human prostate cancer. Prostate 20: 327-
338.

Burger, M., et al.

Activated ras alleles

2006. Mitogen-activated protein
kinase signaling is activated in prostate tumors but
not mediated by B-RAF mutations. Eur. Urol. 50:
1102-1109.

Yingling, J.M., et al. 2004. Development of TGF-beta
signalling inhibitors for cancer therapy. Nat. Rev.
Drug Discov. 3: 1011-1022.
2005.

growth on human glioma cell line gene expression:

Camphausen, K., et al Influence of in wvivo
convergent profiles under orthotopic conditions. Proc.
Natl. Acad. Sci. USA 102: 8287-8292.

Hastie, T., et al. 2001. The Elements of Statistical
Learning. Springer-Verlag, New York, USA.

Singh, D., et al. 2002. Gene expression correlates of
clinical prostate cancer behavior. Cancer Cell 1: 203-
209.

Armstrong, S.A., et al. 2002.

specify a distinct gene expression profile that distin-

MLL translocations

guishes a unique leukemia. Nat. Genet. 30: 41-47.

Nutt, C.L., et al. 2003. Gene expression-based clas-
sification of malignant gliomas correlates better with
survival than histological classification. Cancer Res.

No. 1 2007 23



Pathway Activities in Tumors and Cell Lines

63: 1602-1607. man carcinomas by use of gene expression signatures.

28. Segal, N.H., et al. 2003. Classification of clear-cell sar- Cancer Res. 61: 7388-7393.

coma as a subtype of melanoma by genomic profiling. Supporting Online Material

J. Clin. Oncol 21: 1775-1781. https://netfiles.uiuc.edu/xfeng2 /shared/
29. Su, A.IL, et al. 2001. Molecular classification of hu- Tables S1 and S2

24 Geno. Prot. Bioinfo. Vol. 5 No. 1 2007



