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The strongest signal of plant promoter is searched with the model of single motif
with two types. It turns out that the dominant type is the TATA-box. The
other type may be called TATA-less signal, and may be used in gene finders for
promoter recognition. While the TATA signals are very close for the monocot
and the dicot, their TATA-less signals are significantly different. A general and
flexible multi-motif model is also proposed for promoter analysis based on dynamic
programming. By extending the Gibbs sampler to the dynamic programming and

introducing temperature, an efficient algorithm is developed for searching signals

in plant promoters.

Introduction

Methods for gene recognition are based on either
homology analysis, on content search, or on signal
search. Signals are short sequence segments with a
definite structure. The signal search tries to recog-
nize the location in genome where the gene expression
machinery interacts with the nucleic acid. Signals as
biochemical binding sites on DNA, or corresponding
mRNA and pre-mRNA play a key role in transcrip-
tion, splicing or translation. Promoter is the most im-
portant regulatory region which controls the initiation
of transcription. Promoter prediction is crucial for
gene annotation. In eukaryotes, a promoter, encom-
passing a gene’s transcription start site (TSS), con-
tains aggregates of transcription factor binding sites
(TFBSs). Several ubiquitous and cell-specific regu-
latory factors work together to achieve a combinato-
rial control. TFBSs can appear in different combi-
nations on different promoters. The order of TFBSs
in promoters varies, and relative distances of TFBSs
in various promoters differ. Promoter is undoubtedly
extremely complex. Efficient gene hunting using pro-
moter recognition is still impossible. For example,
GenScan uses a very simplified model for promoter:
a 15 bp TATA-box weight matrix model (WMM), a
14-20 bp intergenic-null model of spacer, and then a
8 bp cap site WMM (7). About 30% of eukaryotic
promoters lack an apparent TATA signal. TATA-less
promoters are modelled simply as intergenic-null re-
gions of 40 bp in length.

Weight matrix can be used to describe a signal as
pattern of a multiple sequence alignment, and is good
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for modelling certain TFBSs. This simple type of
probabilistic models for signals assigns a probabil-
ity to each position for signal sequence of some fixed
length 1 (2,3, 4). The assumption of independence
between positions is the main limitation of WMMs.
A natural generalization is an inhomogeneous Markov
model and its modification is called windowed weight
array model, replacing the independent probabilities
with conditional probabilities. To reliably capture the
most significant dependencies between positions, the
maximal dependence decomposition (MDD) model
has been developed (5). We have proposed a simple
way to enhance signals by clustering signal sequences
(6).

To discover novel motif sites, multiple sequence
alignment methods are useful. Some statistical meth-
ods, e.g. expectation-maximization (EM) or Gibbs
sampling algorithm for independent block model
(7,8) or hidden Markov model (9), have been de-
veloped for finding patterns in unaligned sequences
(see reviews, e.g. (10, 11, 12)).

There are 71 monocot and 220 dicot pro-
moter sequences for plants available from the web
(http://www.softberry.com/).  The sequences are
taken at [—200, +51] with respect to the TSS. We
shall search signals with the simplest model of a sin-
gle motif in a noise background for each sequence.
Then, we shall propose a flexible multi-motif model
to cope with the complicated combination of TFBSs
based on dynamic programming.

Single Motif Model

We align the 71 monocot sequences according to their
TSSs, and calculate base frequencies at each position.
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We estimate the 5’ and 3’ noises by taking an average
over 30 bases at the two ends, [-200, —171] and [+22,
+51], respectively. To compare signal with noise, we
need a measure for the distance between two distri-
butions. The most often used distance is the relative
entropy or Kullback-Leibler (KL) distance (13, 14,
15)

D(p,q) = Zpi log(pi/as), (1)

where {p;} and {¢;} are the two probability distribu-
tions. D(p,q) corresponds to a likelihood ratio. D
(p, q) is not convenient when some p; or g; is close to
zero, which is often the case for signals. We introduce
the following modified o distance

d= Z 2(pi — ai)*/(pi + i), (2)

where the summation is taken over those 7 with either
p; or g; not vanishing. This distance is the leading

term of the KL distance when expanding the latter
with respect to p; around p; = ¢;. The KL distance
can be used for distinguishing a signal site from a
noise site.

The distance between the 5’ and 3’ noises is very
small, only 0.002. We then calculate distances of each
base on 5" and 3’ sides of the TSS to its correspond-
ing noise. The distances on the 3’ side are generally
smaller than those on the 5’ side. At 19 bases, the
distances are over 0.15, and two of them reach 0.31.
Two segments of large distance are [—45,—43] and
[—31, —25], inside the so-called core promoter region.
The cap region [—1,+6] is a region of a smaller dis-
tance. Another segment of a moderate distance on 3’
side is at [+12, +16]. The distributions and their dis-
tances to noise for bases around TSS and the 5’ and
3’ noise distributions are listed in Table 1.

Table 1 Position Weight Matrix around the TSS, Noise Distribution, and Distances between Base
Distributions and Noise Distribution (Last Row).

5'noise | —3 -2 -1 +1 +2 +3 +4 +5 +6 +7 | 3’noise
A 1.08 0.79 1.13 090 192 0.62 1.52 0.85 1.69 1.75 0.85 1.07
C 1.11 1.30 1.18 163 1.01 214 090 169 1.41 096 1.58 1.15
G 0.88 0.56 0.62 1.01 0.51 0.56 0.73 0.39 0.62 0.79 0.79 0.91
T 0.93 1.35 1.07 045 0.56 0.68 0.85 1.07 0.28 0.51 0.79 0.87
Distance 0.10 0.03 0.15 0.22 0.26 0.06 0.18 0.26 0.14 0.05

Table 2 Position Weight Matrices of TATA and TATA-Less Signals, Noise Distribution, and Distances

between Base Distributions and Noise Distribution (Last Row) for Monocot.

noise TATA signal: cctataaatacc
A 0.96 0.68 0.15 0.00 3.70 0.00 3.62 264 400 1.06 242 0.15 0.60
C 1.20 181 347 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.30 234 2.04
G 0.84 0.75 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.68 098 0.83
T 1.01 0.75 030 392 030 4.00 038 136 0.00 287 0.60 0.53 0.53
Distance 0.11 135 226 202 239 194 144 246 137 0.64 056 0.22
TATA-less signal: aagaaaaaaaca
A 244 1.78 1.11 3.78 2.89 267 333 222 289 267 022 3.78
C 1.56 044 0.00 0.00 0.00 0.00 0.00 0.44 0.00 0.00 2.00 0.22
GC 0.00 133 244 0.00 0.89 1.11 0.67 133 0.67 0.00 0.44 0.00
T 0.00 044 044 0.22 0.22 0.22 0.00 0.00 044 133 1.33 0.00
Distance 1.27 046 1.11 211 1.34 127 1.77 0.99 1.20 1.45 041 2.10

While averaging will generally blur out signals of
a variable position, a large distribution distance indi-
cates the existence of signal. To extract the strongest
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signal, we consider a simple model of a single motif in
the noise background. Bearing TATA and TATA-less
sequences in mind, we think two types of the motif.
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We apply the model to the region [—200, —1], taking
the cap region as a separator. The algorithm used
for multiple sequence alignment is similar to that de-
scribed in (7, 8). The main difference is that we now
have to determine the position and type of motif at
the same time, instead of just position. We fix the
length of motif to be 12. The optimal length may be
determined from the distance between distributions
of motif and its nearby bases and that of noise back-
ground. The results for monocot and dicot are listed
The TATA signals

of the monocot and the dicot are very similar except

in Tables 2 and 3, respectively.

for one base shift, while their TATA-less signals are
significantly different. The average start positions of
the former for the monocot and the dicot are —49 and
—59. And the average start positions of the TATA-
less signals are —128 and —92. The monocot and
the dicot are also different in the GC content of their
noises and TATA-less signals. Only 18 monocot se-
quences of the 71 are identified as TATA-less, while
100 dicot sequences of the 220 are TATA-less. From
the distance to noise, it seems more appropriate to
take the width for TATA-signal to be 11.

Table 3 Position Weight Matrices of TATA and TATA-Less Signals, Noise Distribution, and Distance

between Base Distributions and Noise Distribution (Last Row) for Dicot

noise TATA signal: ctataaatabrna
A | 133 063 000 360 013 393 217 4.00 1.60 3.50 0.07 143 1.63
c| 079 243 0.10 0.00 0.00 0.03 0.00 0.00 0.00 020 1.27 1.47 0.83
G | 0.61 0.17 0.00 0.00 0.13 0.00 0.07 0.00 0.07 0.00 130 0.50 0.53
T | 127 077 390 040 373 0.03 177 0.00 233 0.30 137 0.60 1.00
Distance 073 191 145 164 1.8 0.75 200 078 1.26 0.76 0.23 0.03
TATA-less signal: ctctcactyctc
A 0.00 0.48 084 048 024 1.84 0.00 0.00 0.52 0.00 0.68 1.00
C 244 128 180 080 3.72 0.24 396 120 140 2.04 124 236
G 0.44 0.00 136 048 0.04 0.00 0.00 0.00 0.48 0.72 0.20 0.00
T 1.12 224 0.00 224 0.00 192 0.04 280 160 124 1.88 0.64
Distance 1.11 0.70 1.03 0.34 222 056 261 130 029 095 0.32 0.82
Multi-motif Search by Dynamic satisfy the recursion relations:
Programming Z(So—1) = 1; (3)
To describe combination of many TFBSs, a general Z(So;k) = Z(So;kfl)ﬂ-op(oaoabk)a 0>k<T7 (4

and flexible multi-motif model is proposed based on
dynamic programming (9). Let us consider the fol-
lowing simple model: 6 motifs of the same width of 8
in the noise background. We introduce the model as
a generating model. Suppose that the probability to
select a noise base is 7y, and those for motifs are ;,
i= 1, 2,..., 6, respectively. Here, X5m; = 1. After a
noise or a motif is selected, another set of probabili-
ties p(0, 0,&) and p (4,7, )i =1,...,6; 5 =0,1,...,
7; a €{A, C, G, T} is then used to generate specific
bases, where ¢ is the index of motif type and j the
position in a motif. Under the statistical model, the
probability to observe the sequence Sp,,, = bgb;... by,
or the partition function, can be calculated by consid-
ering all the possible ways to arrange motifs and noise
on the sequence. The partition function Z (So,;) will
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Z(So;k) = Z(So;k—1)m0p(0,0,by,)

6 7
+ > T 2(Sow—s)mip(i, 4, bryj—7), k> 7. ®)
i=1j=0
For k >7, there are always 7 choices of the state for
each base, corresponding to the 7 terms in the sum-
mation. The terms will be denoted by Z (So.k|qx),
where g € {0,1,...,6} indicates the state of b be-
We

call a path the possible assignment state of each base

ing noise or belonging to one of the 6 motifs.

in the sequence. For our model, in a path any non-
zero qp must appear successively in a multiple of 8.
The path with the greatest probability may be deter-
mined by the following Viterbi algorithm. We record
the state of by which corresponds to the greatest of
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the 7 terms Z (So.x|qr). Once the state of the last
base b,, is etermined, we may trace base states back
to get the whole path. We call this ‘optimal’ path the
Viterbi path. After the Viterbi path is identified for
each sequence in the sequence data set, we may es-
timate the whole probability parameter sets {w} and
{p} just by counting. This corresponds to the greedy
algorithm.

There are recursion relations for Z (Sk.,) similar
to those for Z (So.;). The previous ones are called
the forward relations, while the other ones the back-
ward. In terms of Z (So,) and Z (Sk.,,) the probabil-
ity for any base b; to be at state g; (noise or a certain

position in one of motifs 1 to 6) can be calculated.
This fuzzy assignment will also lead to an estimation
of parameters {w} and {p} . It may be called the
Baum-Welch or EM algorithm.

The greedy algorithm would be easily trapped in
a rather poor local optimal for a generic initiation.
The EM algorithm is not very efficient. We develop
an analog of the Gibbs sampler as follows. Converting
A (50;k|%), qdr = 0, 1, i
state g for by. We keep doing this until reaching b,,

., 6 to weights, we sample a

then we can trace base states back to obtain a full
path, which may be called a Gibbs path. After finding

Table 4 Position Weight Matrix for Monocot Promoter Motifs and Noise Distribution Obtained for
Region [-200, -1] by Dynamic Programming (Motif 1 Fits the Consensus for TATA-Box Signal)

Noise

Motif 1: tataaata(tata) 71=0.007

1.30
0.78
0.64
1.28

0.73
0.52
0.24
2.51

2.83
0.84
0.06
0.28

0.00
0.07
0.00
3.93

H Q Q »

3.80
0.00
0.00
0.20

2.08
0.04
0.00
1.88

3.44
0.17
0.13
0.26

1.88
0.00
0.00
2.12

3.57
0.00
0.22
0.20

Motif 2: aaaanaaa(a-rich) m5=0.013

2.47
1.16
0.10
0.27

3.14
0.86
0.00
0.00

3.68
0.17
0.14
0.00

H Q Q>

2.30
0.01
0.24
1.45

1.05
1.04
0.94
0.97

2.53
1.33
0.13
0.01

2.62
1.14
0.13
0.12

2.69
0.01
1.11
0.19

Motif 3: attttttt(t-rich) m3=0.003

2.85
0.00
0.74
0.41

0.00
0.00
0.00
4.00

1.04
0.15
0.00
2.81

H Q Q>

0.00
0.04
0.15
3.81

0.04 0.52
0.22 0.00
0.00 0.74
3.714 274

0.04
0.74
0.70
2.52

0.44
0.41
0.15
3.00

Motif 4: gagatnaa(r-rich) 74=0.005

0.39
0.00
2.96
0.65

1.65
0.19
0.80
1.36

0.00
0.00
3.64
0.36

H Q Q>

2.47
0.34
1.19
0.00

0.39
0.82
1.12
1.67

1.43
0.61
1.04
0.92

2.11
0.32
1.36
0.22

2.13
0.27
1.58
0.02

Motif 5: ctttyttt(y-rich) m5=0.018

0.09
3.42
0.16
0.33

1.32
0.05
0.10
2.54

0.12
1.81
0.10
1.96

HQ Q>

0.12
1.55
0.18
2.14

0.97
1.33
0.40
1.30

0.81
0.91
0.49
1.79

0.10
2.07
0.00
1.83

1.05
1.20
0.06
1.69

Motif 6: cacgtgkc(even) mg=0.008

0.99
1.65
0.71
0.64

2.38
0.02
0.28
1.32

0.46
1.98
0.31
1.24

H Q Q >

1.09
0.10
1.64
1.17

0.25
0.00
0.15
3.60

0.31
0.33
3.19
0.17

0.98
0.00
1.59
1.44

0.79
1.83
0.28
1.09
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Gibbs path for all sequences, we estimate parameters
{r} and {p} by direct counting. This leads to an
algorithm which may be called the Gibbs algorithm.
Furthermore, we may introduce a temperature 7 to
raise Z(So.x|qx) to the power of 1/7. The tempera-
ture adjusts the relative weighting among Z (So.x|qx)-
The zero temperature gives the greedy limit. Since
the partition function Z(Sy.,) has the clear meaning
being the total probability of observing the sequence
set, which provides a standard for comparison of dif-
ferent models, the partition function is taken as the
objective function.

Let us examine the region [—200,—1] of the 71
monocot promoter sequences. The 6 motifs and the
noise found by the Gibbs algorithm are listed in Ta-
ble 4. One of the 6 motif fits well the TATA pattern
found in last last section. The TATA-less pattern for
the monocot cannot be undoubtedly associated with
any motifs, and is more or less related to motif 2.
We have also examined the 220 dicot sequences in the
region [—200, —1] with the same model. As shown
in Table 5, the 6 motifs found are: tataaata (tata),
aaaanaaa (a-rich), attttttt (t-rich), gagatnaa (r-rich),
ctttyttt (y-rich) and cacgtgke (even), in comparison
with the monocot motifs ctataaat (tata), aaaaawaa
(a-rich), cttttrtt (tr-ich), acrtgrws (r-rich), tctectee
(y-rich) and rccacgsm (c-rich). We see some corre-
spondence between the two sets of motifs, and the
tendency of the increasing GC content from dicot to
monocot.

The average number m of motifs per sequence may
be estimated as follows. Since the number of noise
bases is (200- 8m), we have the relation my = (200-
8m)/(200-7m), which, for the monocot of 7y = 0.926,
leads to m = 9.75. For the dicot, mp= 0.946 leads to
m = 7.84.

Discussion

We have used a multi-type single motif model to find
the strongest motif for promoter. The dominant type
of the motif turns out to be the known TATA-box.
At the same time, a TATA-less signal, as the counter-
part of the TATA-box, is determined. This signal may
be employed in gene finders to improve the promoter
recognition. While the TATA signals for both mono-
cot and dicot are very similar, their TATA-less signals
are significantly different. We have proposed a gen-
eral and flexible multi-motif model based on dynamic
programming. By extending the Gibbs sampler to the
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dynamic programming and introducing temperature,
an efficient algorithm has been developed. We have
applied the algorithm to analyze plant promoter. The
found motifs provide candidates for possible binding
sites.

A classification scheme may be proposed. After
determination of parameters, the Viterbi path can be
identified for each sequence. Sequences can then be
grouped according to the motifs appearing in their
Viterbi paths. Once the sequence data set has been
divided into subsets, the same search algorithm per-
formed on a single subset can help to find more precise
patterns for motifs.

The model discussed is still oversimplified. The
model can be further refined. The width of motifs
need not be the same for each. The tuning of the motif
number and width can be done based on the distribu-
tion distance. If the distribution distance between an
end base of a motif and noise is small, the base should
be removed from the motif. On the other hand, if the
distribution distance between a base next to a motif
and noise is large enough, the base should be included
in the motif. If the probability (;) of a motif is small,
the motif should be removed from the motif list. We
may define the distribution distance between two mo-
tifs of the same width as the sum of the distribution
distance between their bases at each position over the
whole width. When the widths of two motifs are dif-
ferent, the distance may be defined as the minimum of
the distances obtained when sliding the shorter along
the longer and comparing the shorter with substrings
of the longer. When the distance of two motifs is
small, we should join the two motifs into one. The
method is rather general. The use of the method for
poly-A signal analysis near 3’'UTR will be discussed
elsewhere.
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