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Optimal experimental design is important for the efficient use of modern high- 
throughput technologies such as microarrays and proteomics. Multiple factors in- 
cluding the reliability of measurement system, which itself must be estimated from 
prior experimental work, could influence design decisions. In this study, we de- 
scribe how the optimal number of replicate measures (technical replicates) for each 
biological sample (biological replicate) can be determined. Different allocations of 
biological and technical replicates were evaluated by minimizing the variance of 
the ratio of technical variance (measurement error) to the total variance (sum of 
sampling error and measurement error). We demonstrate that if the number of 
biological replicates and the number of technical replicates per biological sample 
are variable, while the total number of available measures is fixed, then the opti- 
mal allocation of replicates for measurement evaluation experiments requires two 
technical replicates for each biological replicate. Therefore, it is recommended to 
use two technical replicates for each biological replicate if the goal is to evaluate 
the reproducibility of measurements. 
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Introduction 
Optimal experimental design ensures that experi- 
ments are cost-effective, internally valid, and statisti- 
cally powerful. Optimal design has particular impor- 
tance for modern high-throughput technologies, such 
as microarrays or proteomics, because it can consid- 
erably increase the efficiency of experiments (1). In 
this context, it is useful to distinguish between two 
broad categories of experiments. We use the term 
“Type A” experiments to refer to the experiments 
conducted to address specific biological questions 
such as “What genes are differentially expressed or 
what proteins are differentially accumulated in tissue 
X among mice exposed versus not exposed to stimulus 
Y?” We use the term “Type B” experiments to refer 
to the experiments that are meant to evaluate aspects 
of the measurement technology and answer questions 
such as “What is the reliability of our gene expression 
or proteomics measurements under such-and-such 
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conditions?” The results of Type B studies that esti- 
mate measurement reliability are often important in 
helping us design optimal Type A studies. 

A number of experimental layouts such as loop 
and common reference have been proposed, and gen- 
eral recommendations have been given such as neces- 
sity of proper randomization, replication, and block- 
ing (2-4). However, while great efforts were directed 
toward the design for Type A studies, little attention 
has been given to the design for Type B experiments 
where the reproducibility [the terms “reliability” and 
“reproducibility” are often used interchangeably ( 5 ) ]  
of measurements is assessed. Here, we address the 
problem of finding an optimal allocation of biological 
and technical replicates for such measurement evalua- 
tion studies. We provide an analytical solution based 
on the assumption that the total number of available 
measurements is fixed while biological and technical 
error terms are independent and normally distributed. 
The correctness of our analytical result is illustrated 
by simulations. 
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Results and Discussion 

Accurate information about measurement reliability 
(or its complement, the degree of unreliability) is often 
important for the design and interpretation of Type 
A experiments addressing specific biological questions 
(for example, detecting differences in gene expression 
levels or protein amounts between two or more con- 
ditions). Therefore, Type B experiments are needed 
to assess measurement reliability. While a number 
of experiments addressing the reproducibility of mi- 
croarray and proteomics studies have been conducted 
(6-12) ,  optimal design could have made such an ex- 
periment more cost-effective. For example, the sta- 
bility of measurements for evaluation of two kinds of 
hybridization standards was analyzed using five repli- 
cates without rationalization for the number of repli- 
cates used (13 ) .  Here, we find an optimal design for 
Type B experiments using an analytical approach and 
simulations. 

Briefly, we consider a scenario in which the to- 
tal number of available measurements is fixed, but 
the number of biological replicates and the number 
of technical replicates are variable. Biological repli- 
cates are independent biological samples, such as rats 
or mice, or cell lines that have been separately sub- 
jected to biological treatments. Technical replicates 
are repeated measures of one biological sample. We 
define an allocation of replicates as optimal if it min- 

imizes the variance of the ratio of technical sample 
variance to the total sample variance. By minimizing 
the variance of this ratio, we will be able to make more 
precise estimates of reliability defined as a ratio of a 
biological variance to the total variance. The results 
are presented in Figure 1. The variance of the ratio of 
technical variance to the total variance was minimal 
when the number of technical replicates per biological 
replicate equals to 2 and increased as the number of 
technical replicates increases. This is true for all levels 
of proportion of biological variance in total variance 
p2. Simulations were used to illustrate our analytical 
results. Slight differences in the shape of the plots 
were probably due to the fact that the approximate 
formulas were used in the analytical solution. 

Real microarray or proteomics data are affected 
by multiple factors that cause variation in observed 
values. The choice of platform (such as cDNA arrays 
vs. Affymetrix), image processing algorithm (such 
as MAS 5.0 vs. RMA), as well as normalization and 
transformation techniques has a significant impact on 
results. Sources of variation and their magnitudes 
are determined experimentally and vary for different 
experimental systems. For example, relative contri- 
bution of biological variation ranges from -20% to 
-80% of total variation ( 6 ,  7,10,11). Yet, it is an 
important factor for experimental design, such as the 
planning of mRNA pooling in microarray experiments 
(14) and the determination of a sample size ( 1 1 , 1 3 ) .  

Fig. 1 The optimal number of technical replicates for measurement evaluation experiments. The graphs show the 
dependence of the variance of the ratio of technical variance to the total variance (Variance) on the number of technical 
replicates (Tech Rep) and the relative contribution of the biological variability [Rho squared (p2 ) ] .  The total number of 
available measurements ( M )  is fixed in both cases as M = 30. A. Visualization of the analytical solution. B. Results 
of 10,000 times of simulations. 
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Our analysis uses certain assumptions to make the so- 
lution easily analytically tractable. In this study, we 
assume that there are two sources of variation: biolog- 
ical variation, which is a combination of all biological 
factors, and technical variation, which is a combina- 
tion of all technical factors. Although this assumption 
is a simplification, we believe that it is reasonable and 
allows us to construct a realistic model. 

We use a normality assumption to take advantage 
of approximate formulas of sample variance. While 
our conclusions do not depend critically on this as- 
sumption, it simplifies derivations and setup of simu- 
lations. The distribution of data remains a controver- 
sial topic in high dimensional biology. Distribution of- 
ten depends on experimental system ( 9 , 1 5 , 1 6 ) .  For 
example, two- or three-modal distributions are not 
uncommon for tumor samples and may reflect un- 
derlying genetic polymorphism (17). In most cases, 
it is hard to reliably determine characteristics of the 
distribution due to small sample sizes. Hoyle et a1 
(15 )  found in their analysis of multiple microarray 
datasets that distribution of spot intensities could be 
approximated by log-normal distribution. Giles and 
Kipling (16) used 59 Affymetrix GeneChips to test 
the normality of expression data and found that the 
majority of probe sets showed a high correlation with 
normality, with the exception of low-expressed genes. 
Similarly, in an experiment involving 56 independent 
arrays, N o d  et a1 (9) found that the distribution of 
data processed with Affymetrix GeneChip Analysis 
software was very close to normal. Thus, our normal- 
ity assumption is quite reasonable and can be further 
relaxed in future studies. In cases where the distribu- 
tions of experimental data are clearly non-normal, a 
number of normalization and transformation methods 
exist to remedy the situation (18). 

Decisions about the number of replicates are of- 
ten influenced by available funds. Currently, in many 
cases, technical costs such as price of microarrays plus 
the cost of their processing (for example, labeling and 
hybridization) are significantly higher than the cost 
of biological samples such as mice. However, certain 
biological samples can be very expensive (for exam- 
ple, brain tumors), but it is unlikely that they will be 
used for evaluation of technology. 

It is also noteworthy that neither the methods 
nor the results of our study require microarray or 
other high-throughput data. Our major finding- 
that the optimal number of technical replicates equals 
to two in designing studies to estimate measurement 
reliability-holds for any ratio of technical to biolog- 
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ical variance. Thus our result applies not only to 
the microarray context that inspired it, but also to 
other contexts. Additionally, our model may appear 
to apply only to one-channel microarrays. Yet on two- 
channel microarrays, our conclusions will also hold as 
long as we have a single value per gene per array- 
it could be a direct measure of intensity for single- 
channel arrays or a ratio (or log) difference of two 
measures for two-channel systems. 

Based on results of this study, we give the fol- 
lowing recommendations: use a sufficient number of 
samples; use appropriate normalization and transfor- 
mation techniques if necessary to hold the normality 
assumption. It should be pointed out that our conclu- 
sion that the optimal number of technical replicates 
is two only applies to Type B studies to determine 
measurement reliability and has no direct bearing on 
the optimal number of technical replicates in Type A 
studies. 

In summary, in this study we demonstrate that 
if the number of biological replicates and the num- 
ber of technical replicates are variable, while the total 
number of available measurements is fixed, then the 
optimal allocation of replicates for measurement eval- 
uation experiments requires two technical replicates 
for each biological replicate. Therefore, when inves- 
tigators design measurement evaluation studies, we 
advocate that they use only two technical replicates 
for each biological replicate. 

Materials and Met hods 

Sources of variation 

The multiple factors influencing measurements in mi- 
croarray and proteomics experiments could be divided 
into two major categories: biological variation and 
technical variation (1). Biological variation is caused 
by deviation of mFtNA and protein levels within cells 
and among individuals (6 ,7 ) .  We consider the situa- 
tion where biological variation is not the major focus 
of studies, but rather a sampling error in traditional 
definition. Sample preparation, labeling, hybridiza- 
tion, and other factors can contribute to technical 
variation, which is essentially a measurement error (8- 
12). A common way to represent an observed value 
(X) is a combination of its “true” value (0) and a 
measurement error (c): X = 0 + B (19). We model 
an observed value Xi (for example, an expression level 
of a particular gene or an amount of a particular pro- 
tein in a particular experiment after appropriate pre- 
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processing techniques such as normalization or trans- 
formation have been applied) as a combination of its 
expected value (e) ,  a deviation (“error term”) due to 
true biological variation (g i i0 ) ,  and a deviation (“er- 
ror term”) due to technical variation (ogeCh), that is: 
xi = 0 + ffiio + ggech. we assume that the biolog- 
ical variance is a combination of errors coming from 
different biological sources and the technical variance 
is the sum of errors from various technical sources. 
We define s i io  and s$,& to be estimates of uiio and 
ggech, respectively. We further assume that both bi- 
ological and technical error terms are normally dis- 
tributed: S B ~ ~  N N(0,  n i i 0 )  and  ST^^^ N N(0,  fl$ech). 

Thus, the biological variance of a sample is si io ,  and 
the technical variance of a sample is s$,,~. We assume 
that biological population variance and technical pop- 
ulation variance are independent ( ( T i i o h $ e c h )  per- 
haps after suitable transformation (18), and the total 
population variance is the sum of biological and tech- 
nical variance (ggOt = uiio + ugech). Assuming that 
there are only two sources of variation in measurement 
X i ,  with biological and technical error terms that are 
independent, then the total variance in a sample is 
the sum of biological and technical sample variance: 

(1) 
2 2 2 

‘Tot = SBio + ‘Tech 

Reliability 
Reliability is generally defined as the ratio of a “true” 
variation to the total variation in a set of measure- 
ments. We define the reliability, p2,  as a proportion 
of a biological variation in the total variation, that is, 
as a ratio of biological population variance to the to- 

. Note that tal population variance: p2  = 

our definition of reliability is essentially the intraclass 
correlation coefficient (18,20). The biological popu- 
lation variance can be expressed as a function of the 
technical population variance and p2: 

LTii0 

G i o + 4 e c h  

The estimate of reliability in a sample is: 

Definition of the problem 

Let the total number of measurements (we define a 
“measurement” as the observation of a single quanti- 
tative variable on a single case) affordable in a mea- 
surement evaluation study be M ,  the number of bi- 
ological replicates utilized be N ,  and the number of 
technical replicates per biological replicate be K ,  thus 
M = K N .  We define a biological replicate as a 
biological sample, such as a rat or a tumor sample. 
The technical replicates are repeated measures of the 
same biological sample, for example, labeling and hy- 
bridization in a microaxray experiment. We only con- 
sider the case of balanced design where the number 
of technical replicates for each biological replicate is 
the same. Under the assumption of the independence 
of biological variation and technical variation, we can 
estimate the biological sample variance and the tech- 
nical sample variance separately. Though the ratio of 
technical population variance to the total population 
variance is a constant, the ratio of technical sample 
variance estimate to the total sample variance esti- 
mate, R = %, is a random variable whose variance 
depends on the sample size. The variance of the ratio 
R may vary as a function of the number of techni- 
cal replicates. We evaluate different ways to allocate 
technical replicates with respect to the efficiency of 
an estimate of the ratio of the variance of technical 
replicates to the total variance. By minimizing the 
variance of R, we will be able to better estimate re- 
liability in a sample, and thus better estimate relia- 
bility in a population, p2. Therefore, we define the 
problem of finding an optimal allocation of technical 
replicates for measurement evaluation experiments as 
follows: For a fixed M,  what value of K minimizes the 
variance of R? In the following, we provide details 
of analytical solution to the problem and illustrate 
our findings using a simulation experiment. Both ap- 
proaches clearly show that the optimal value ( K )  of 
the number of technical replicates equals to 2. 

‘Tot 

Variance of the ratio R 

We utilize an approximate formula for variance of the 
ratio of two random variables X and Y ( 2 1 ) :  

1 Var (8 = (d2 [ ( E ( X ) ) 2  + (E(Y) )2  - E ( X ) E ( Y )  
E ( X )  V u r ( X )  Var(Y)  C o v ( X ,  Y )  

(3) 

199 Geno. Prot. Bioinfo. Vol. 4 No. 3 2006 



Optimal Allocation of Replicates 

where E ( X )  and E ( Y )  is the expected value of X 
and Y ,  respectively, V a r ( X )  and V a r ( Y )  is the vari- 
ance of X and Y ,  respectively, and C o v ( X , Y )  is the 

covariance of X and Y .  Equation 3 does not make 
assumptions about distributions of X and Y .  In our 
case, Equation 3 can be written as: 

As we assume the independence of biological and technical sample variance, s2gi01s$ech, the covariance can 
be expressed in variance terms: 

We assume that both biological and technical er- 
ror terms are normally distributed, s i i o  N N(0 ,  ui,)  
and s $ , , ~  N N(O,ageCh).  By the law of large num- 
bers, the sample variance will converge to the pop- 
ulation variance, thus the expected values of sample 
variance are those of population variance: 

E(4ech)  = c$ech (8) 

An approximate formula for the variance of a sam- 
ple variance of a random variable X is as follows: 
V a r ( V a r ( X ) )  M (p4 - p i ) / S ,  where p4 is the fourth 
moment and p2 is the second moment of X ,  and S 
is the sample size (22). In the case of a normally 
distributed variable X N N(0,a2), the variance of 
sample variance is: V a r ( V a r ( X ) )  M (2u4)/S, where 
u4 is the square of the population variance of X (22). 
Note that the following adjusted formula gives an un- 
biased estimate: 

V a r ( V a r ( X ) )  M - u4 (9) s - 1  

Thus, the approximate variance for estimates of the 
biological variance and the technical variance respec- 
tively is: 

2 
N - 1  Var(s;io) = - (c2gio)2 
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By substituting Equations 7, 8, 10, and 11 into 
Equation 6, we obtain a formula for V a r ( R )  in. terms 
of biological and technical population variance as well 
as the numbers of biological and technical replicates 
(see details of derivation in the appendix): 

Finally, by substituting Equation 2 into Equation 
12, we obtain a formula for the variance of the ratio of 
technical sample variance to the total sample variance 
(see details of derivation in the appendix): 

Simulations 
To illustrate our analytical solution, we performed 
simulations using the following algorithm: 

1. Sample random number Bi of K ,  i = 1 to K ,  
from a standard normal distribution Bi N N ( 0 , l ) .  To 
represent “true” or biological variation, multiply each 
of the numbers by p, where p2  is the ratio of biological 
population variance to the total population variance 
(see above). 

2. For each of the number Bi, sample random 
number Tij of N ,  j = 1 to N ,  from a standard nor- 
mal distribution Tij m N ( 0 , l ) .  To represent technical 
variation, multiply each of the numbers by d m .  

3. Thus, the observed value of measurements is 
Xij = Bi p + Tij Jm. 
Vol. 4 No. 3 2006 
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4. Compute the variance of all T& numbers (“tech- 
nical sample variance”) and €4 numbers (“total bio- 
logical variance”). 

Va?(Ti .) 5. Compute the ratio R = Var(Bi)+V&.(Ti,) .  

6. Repeat Steps 1 to 5 for desired number of times 
(for example, 10,000). 

7. Compute the variance Var(R) of the 10,000 
ratios from Step 6. 

Repeat Steps 1 to 7 for different N and K (given 
that M = K N  is fixed), and for different levels of p 2  
ranging from 0 to  1. 
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Appendix 
1. Derivation of Equation 6: 

2. Derivation of Equation 12: 

3. Derivation of Equation 13: 

= 2p4(1-p2)2  (- 1 +L) 
M - 1  N - 1  
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