
Article 

Predicting the Subcellular Localization of Human Proteins Using 
Machine Learning and Exploratory Data Analysis 

George K. Acquaah-Mensahl*, Sonia M. Leach2, and Chittibabu Guda3 

Department of Pharmaceutical Sciences, School of Pharmacy- Worcester, Massachusetts College of Pharmacy 
and Health Sciences, Worcester, M A  01 608-1 715, USA; Center for Computational Pharmacology, Department 
of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80010, USA; Gen*NY*Sis Center 
for Excellence an Cancer Genomics, Department of Epidemiology and Biostatistics, State University of New 
York at Albany, Rensselaer, N Y  12144-3’456, USA. 

Identifying the subcellular localization of proteins is particularly helpful in the func- 
tional annotation of gene products. In this study, we use Machine Learning and Ex- 
ploratory Data Analysis (EDA) techniques to examine and characterize amino acid 
sequences of human proteins localized in nine cellular compartments. A dataset 
of 3,749 protein sequences representing human proteins was extracted from the 
SWISS-PROT database. Feature vectors were created to capture specific amino 
acid sequence characteristics. Relative to a Support Vector Machine, a Multi-layer 
Perceptron, and a Ndive Bayes classifier, the C4.5 Decision Tree algorithm was 
the most consistent performer across all nine compartments in reliably predict- 
ing the subcellular localization of proteins based on their amino acid sequences 
(average Precision=0.88; average Sensitivity=0.86). Furthermore, EDA graphics 
characterized essential features of proteins in each compartment. As examples, 
proteins localbed to the plasma membrane had higher proportions of hydrophobic 
amino acids; cytoplasmic proteins had higher proportions of neutral amino acids; 
and mitochondrial proteins had higher proportions of neutral amino acids and 
lower proportions of polar amino acids. These data showed that the C4.5 classifier 
and EDA tools can be effective for characterizing and predicting the subcellular 
localization of human proteins based on their amino acid sequences. 
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Introduction 
Intensified efforts at characterizing gene function are 
a natural consequence of the recent surge in high- 
throughput sequencing of eukaryotic genomes. Pro- 
tein subcellular localization is an important charac- 
teristic of gene function since most proteins in specific 
activity states are typically localized within a specific 
cellular compartment. Localization of proteins in ap- 
propriate compartments is vital for the function and 
integrity of the internal structure of the cell. Thus, 
identifying the subcellular localization of proteins is 
particularly helpful in their functional annotation. 
Exhaustive experimental studies have been carried 
out to elicit the subcellular localization of the entire 
yeast proteome (1 ) and the mitochondrial proteomes 
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of human (2), rat ( 3 ) ,  and Arabidopsis ( 4 ) ;  however, 
such large-scale experimental studies are not feasi- 
ble for all genomes. Hence, experimental annotation 
of protein localization is unable to keep up with the 
pace at which new gene sequences emerge from high- 
throughput genome sequencing projects. As a result, 
the gap between the sequenced and functionally anno- 
tated genes in the genome databases is rapidly widen- 
ing. 

A number of computational methods have been 
developed over the past decade for automated pre- 
diction of the subcellular localization of eukaryotic 
proteins. These methods may be broadly catego- 
rized into four classes: (1) Methods based on sort- 
ing signals that rely on the presence of localization- 
specific protein sorting signals, which are recognized 
by the localization-specific transport machinery to en- 
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able their entry [for example, MitoProt ( 5 ) ,  PSORT- 
I1 ( 6 ) ,  and TargetP (7)l; (2) Methods based on 
differences in the amino acid composition or amino 
acid properties of proteins from different subcellu- 
lar localizations [for example, Sub-Loc ( 8 ) ,  Esub8 
(9), and pSLIP ( lo ) ] .  In this category, methods 
using neural networks and Support Vector Machines 
(SVMs) have been developed; (3) Methods based on 
lexical analysis of key words in the functional anno- 
tation of proteins [such as LOCkey (11)]; (4) Meth- 
ods using phylogenetic profiles or domain projection 
(12), or localization-specific protein functional dc- 
mains ( 1 3 , 1 4 ) .  

In this study, we combine the use of Ma- 
chine Learning (ML) with Exploratory Data Anal- 
ysis (EDA) techniques to examine and characterize 
amino acid sequences of human proteins localized 
in nine cellular compartments, including the cyto- 
plasm, nucleus, golgi apparatus, lysosome, plasma 
membrane, endoplasmic reticulum, peroxisome, ex- 
tracellular compartment (for example, secretory pro- 
teins), and mitochondrion. ML is useful for the pur- 
pose of class prediction. It is a field of scientific 
study that concentrates on methods for computer pro- 
grams to improve their performance by learning (that 
is, modifying behavior) from previous data examples. 
During the learning process, structural patterns in the 
given dataset (“training set”) are established; these 
patterns then constitute the basis upon which predic- 
tions are made when presented with data of unknown 
classification (“test set”). 

Since proteins localized in particular cellular com- 
partments have certain features in common, ML algo- 
rithms have been used previously to predict the sub- 
cellular localization of proteins (8). The ML methods 
used in the current studies were: 548, an implementa- 
tion of the C4.5 Decision Tree algorithm (15) ;  SVM 

~ 

Table 1 Amino Acid Groupings 

(16); Multi-Layer Perceptron (MLP; a neural net- 
work implementation); and Naive Bayes (NB) clas- 
sifier (17).  There are three classes of features of 
amino acid sequences used in ML ( I t?) ,  namely Com- 
position, Transition, and Distribution. These features 
have been successfully used in ML algorithms to pre- 
dict protein secondary structure (19) and subcellular 
localization (8). 

On the other hand, EDA tools (20) seek to iden- 
tify patterns within datasets by emphasizing graph- 
ics. EDA graphics do not rely on means and variances 
but rather on the median, ranks, depths, and outlier- 
insensitive spread measures (such as the fourth- 
spread) inherent in a distribution. They quickly lead 
to the identification of inherent underlying structures 
of datasets. In contrast to confirmatory analyses, ex- 
ploratory analyses are robust and resistant to the un- 
due influence of data outliers. In this study, the Deci- 
sion Tree (548) emerges as being the most consistent 
performer across all the nine human cellular compart- 
ments, relative to SVM, MLP, and NB classifier. In 
addition, the promise of EDA in characterizing under- 
lying structures within data distributions is exploited 
to identify primary protein structure features unique 
to specific subcellular localizations. 

Results and Discussion 
The current studies have identified certain properties 
shared by proteins localized in specific cellular com- 
partments, which rely on the physicochemical prop- 
erties (electronic, bulk, and steric) of amino acid side 
chains as detailed in Table 1. The categorizations 
used for Hydrophobicity and Charge are non-numeric 
(Table 1); nonetheless, they detail the propensity of 
each amino acid for localization in the hydrophobic 
(membranes) and soluble environments of the cell. 

Group 1 Group 2 Group 3 

R K E D Q N  G A S T P H Y  C V L I M F W  
Hydrophobicity polar neutral hydrophobic 

NVWV 0-2.8 2.954.0 4.43-8.08 
G A S C T P D  N V E Q I L  M H K F R Y W  

Polarity 4.9-6.2 8.0-9.2 10.0-13.0 
L I F W C M V Y  P A T G S  H Q R K N E D  

G A S D T  C P N V E Q I L  K M H F R Y W  
Polarizability 0-0.108 0.128-0.186 0.219-4.409 

Charge positive negative other 
H R K  D E  M F Y W C P N V Q T L N  
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Categorizations used for Normalized van der Wads 
volume (N W), Polarity, and Polarizability were 
based on previously calculated values (21,22). These 
calculated biophysical parameters of amino acid side 
chains are orthogonal. For instance, Polarizability is 
related to molar refractivity while NVWVs model dis- 
persion forces (21); whereas molar refractivity and 
dispersion forces are not directly related. There are, 
nonetheless, correlations between certain parameters. 
For instance, there is strong correlation between Po- 
larizability and NVWV values (21). Since these cal- 
culated values constitute the basis upon which the 
amino acids were grouped in the current study (Table 
l), the elements of the feature vector, though incon- 
gruent, are not completely independent of each other. 
Instead, they complement each other, providing a rich 
dataset for any given amino acid sequence. For each 
given amino acid side chain, the measured van der 
Waals volume (V) was normalized as follows: 

NVWV (side chain) = [V(side chain) - V(H)] / V(CH2) 

The side chain of alanine has NVWV=l; each addi- 
tional CH2 increases this by one unit. 

Machine Learning 

To evaluate the accuracy of ML classification, two 
scenarios were considered: (1) using the entire data 
as both the training and test set, and (2) separat- 
ing the dataset into disjoint training and test sets us- 
ing a ten-fold cross validation technique (Table 2; ref. 
23,244). In Table 2A, when the test option is “train 
set only”, all test instances were part of the training 
set. On the other hand, when the test option is “ten- 
fold cross validation”, an average value was obtained 
for ten different sets of the reorganized data such that 
in each case, 90% of the data were used for training 
and 10% for testing. The former case represents the 

Table 2 Evaluation of Machine Learning Algorithms* 

Table 2A 
Method Test option Correctly classified Incorrectly classified 
548 Train set only 3,560 (95.0%) 189 (5.0%) 

ten-fold cross validation 2,390 (63.8%) 1,356 (36.2%) 

ten-fold cross validation 2,892 (77.1%) 857 (22.9%) 
SVM Train set only 2,927 (78.1%) 822 (21.9%) 

ten-fold cross validation 2,842 (75.8%) 907 (24.2%) 
NB Train set only 1,634 (43.6%) 2,215 (56.4%) 

ten-fold cross validation 1,595 (42.5%) 2,154 (57.5%) 

MLP Train set only 3,370 (89.9%) 379 (10.1%) 

Table 2B 
Method Test option Correctly classified Incorrectly classified 
548 Train set (All species); Human test set 3,584 (95.6%) 165 (4.4%) 
SVM Train set (All species); Human test set 2,726 (72.7%) 1,023 (27.3%) 
MLP Train set (All species); Human test set 1,397 (37.3%) 2,352 (62.7%) 
NB Train set (All species); Human test set 1,294 (34.5%) 2,455 (65.5%) 

Table 2C 
Method Test option Correctly classified Incorrectly classified 
548 Train set (Non-human species); Human test set 3,069 (67.4%) 1,483 (32.6%) 
SVM Train set (Non-human species); Human test set 3,032 (66.6%) 1,520 (33.4%) 
MLP Train set (Non-human species); Human test set 2,779 (61.1%) 1,773 (38.9%) 
NB Train set (Non-human species); Human test set 1,379 (30.3%) 3,173 (69.7%) 

*Evaluation of a variety of Machine Learning algorithms when applied to the methods characterizing human protein 
amino acid sequences. A. Training and testing were performed on human sequences only, B. Training was performed 
with 22,565 sequences from a variety of species available on SWISS-PROT but testing was performed on a subset of 
3,749 human sequences only. C .  Training was performed with 18,013 sequences from a variety of non-human species 
available on SWISS-PROT but testing was performed on 4,552 human sequences only. 
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most optimistic possible performance of each learning 
scheme (training set error). Table 3 shows that even 
with this most optimistic measure, SVM and MLP 
did not classify as accurately as J48 for the nucleus, 
lysosome, and peroxisome. NB recorded the highest 

number (57.5%) of incorrectly classified human pro- 
tein instances (Table 2A). 

The ten-fold cross validation test option was the 
better indicator of the learning schemes' generalizabil- 
ity by calculating its performance on an independent 

Table 3 Impact of Attribute Type Pool on the Performance of Machine Learning Algorithms* 

Type Localization 548 NB SVM MLP 
P S P S P S P 5 

C, T, and D CYT 
NUC 
GOL 
LYS 
PLA 
END 
POX 
EXC 
MIT 

0.919 1 
0.951 0.980 
0.779 0.831 
0.793 0.767 
0,971 0.982 
0.876 0.829 
0.731 0.576 
0.959 0.936 
0.971 0.880 

0.085 
0.780 
0.067 
0.062 
0.920 
0.357 
0.049 
0.593 
0.368 

0.241 1 
0.418 0.734 
0.348 0.667 
0.767 0 
0.536 0.813 
0.324 0.679 
0.424 0 
0.367 0.786 
0.184 0.795 

0.025 
0.903 
0.022 

0 
0.948 
0.324 

0 
0.669 
0.663 

0.653 0.405 
0.889 0.968 
0.686 0.393 
0.875 0.350 
0.929 0.987 
0.891 0.624 
0.364 0.242 
0.893 0.900 
0.903 0.848 

C and T CYT 
NUC 
GOL 
LYS 
PLA 
END 
POX 
EXC 
MIT 

0.908 1 
0.943 0.968 
0.798 0.753 
0.833 0.583 
0.950 0.982 
0.890 0.806 
0.810 0.515 
0.920 0.911 
0.924 0.832 

0.156 
0.749 
0.091 
0.110 
0.905 
0.224 
0.038 
0.498 
0.395 

0.291 0 
0.570 0.690 
0.124 0 
0.650 0 
0.544 0.748 
0.471 0.522 
0.455 0 
0.470 0.681 
0.291 0.738 

0 
0.878 

0 
0 

0.932 
0.206 

0 
0.466 
0.492 

0.407 0.278 
0.842 0.883 
0.477 0.348 
0.623 0.550 
0.899 0.943 
0.577 0.571 
0.286 0.061 
0.851 0.777 
0.733 0.754 

C and D CYT 
NUC 
GOL 
LYS 
PLA 
END 
POX 
EXC 

0.878 1 
0.942 0.980 
0.871 0.685 
0.745 0.683 
0.961 0.985 
0.884 0.759 
0.769 0.606 
0.941 0.934 

0.099 0.266 
0.799 0.397 
0.060 0.348 
0.056 0.783 
0.925 0.517 
0.336 0.276 
0.058 0.394 
0.595 0.375 

1 0.025 0.563 0.456 
0.735 0.878 0.879 0.916 

1 0.022 0.692 0.404 
0 0 0.697 0.383 

0.760 0.941 0.889 0.960 
0.644 0.224 0.860 0.653 

0 0 0.429 0.182 
0.787 0.629 0.836 0.828 

MIT 0.964 0.877 0.354 0.184 0.768 0.579 0.872 0.819 
D a n d T  CYT 0.888 1 0.100 0.215 1 0.025 0.442 0.532 

NUC 0.942 0.965 0.729 0.307 0.664 0.815 0.841 0.852 
GOL 0.766 0.809 0.066 0.427 0 0 0.643 0.303 
LYS 0.667 0.633 0.048 0.750 0 0 0.611 0.367 
PLA 0.957 0.980 0.849 0.505 0.697 0.919 0.798 0.973 
END 0.883 0.712 0.270 0.159 1 0.006 0.720 0.424 
POX 0.682 0.455 0.054 0.303 0 0 0.500 0.091 
EXC 0.939 0.911 0.554 0.331 0.753 0.555 0.919 0.708 
MIT 0.926 0.887 0.271 0.136 0.663 0.369 0.871 0.657 

*Performed on the human protein sequences (training set). C=Composition type attributes, T=Transition type at- 
tributes, and D=Distribution type attributes. CYT=cytoplasm, NUC=nucleus, GOL=golgi complex, LYS=lysosome, 
PLA=plasma membrane, END=endoplasmic reticulum, POX=peroxisome, EXC=extracellular/secretory compart- 
ment, MIT=mitochondrion. P=Precision, S=Sensitivity. 

Geno. Prot. Bioinfo. Vol. 4 No. 2 2006 123 



Predicting Protein Localization with Decision n e e  

test set; it is also a measure of each scheme’s predicted 
error rate (test set error). When the classification was 
conducted based on the training set along with ten- 
fold cross validation, the accuracy rates for human 
proteins decreased across all learners. MLP, SVM, 
and 548 emerged best with 2,892, 2,842, and 2,390 
(out of 3,749) correctly classified human protein se- 
quences, respectively (Table 2A). 

Comparing both testing schemes in Table 2A, 548 
did best (relative to MLP, SVM, and NB) when tested 
with sequences derived from the training set only. On 
the application of ten-fold cross validation (a predic- 
tor of the error rate), 548 did not perform as well as 
MLP. Nonetheless, 548 was the more consistent high 
performer across all compartments (Table 3; Figure 
Sl). Furthermore, upon training with the data gen- 
erated from 22,565 sequences from all species, and 
testing with a subset of human sequences, 548 outper- 
formed the other learning schemes in correctly classi- 
fying 95.6% of instances (Table 2B). This speaks to 
the fact that testing with instances derived only from 
the training set results in the most optimistic out- 
comes, which makes an estimate of the model’s error 
rate a necessity. Indeed as shown in Table 2C, upon 
training with a separate dataset of sequences from 
a variety of non-human species available on SWISS- 
PROT and then testing with only a dataset of human 
sequences, J48 and SVM ranked highest for accuracy, 
correctly classifying 67.4% and 66.6% of instances, re- 
spectively (Table 2C). The lowered performance in 
this latter case is attributable to the fact that the 
training data were derived from the sequences from 
a diverse set of eukaryotic organisms with no repre- 
sentation of human sequences. Thus 548 performs 
creditably in terms of the ability to generalize unseen 
sequences. 

A closer look at the data indicated that although 

the accuracy of classification for SVM was high for 
other subcellular localizations, it consistently clas- 
sified cytoplasm, golgi, lysosome, and peroxisome pro- 
teins poorly (Table 3). Similarly, MLP consistently 
classified cytoplasm, golgi, lysosome, and peroxisome 
proteins poorly (Table 3). Thus J48 emerged as the 
most consistent accurate classifier for all the subcel- 
lular localizations considered (Figure Sl). 

Even with the high-performance 548 classifier, 
outcomes varied with subcellular localizations. Rel- 
atively speaking, proteins localized in the golgi ap- 
paratus, lysosome, and peroxisome were less likely 
to be correctly classified than proteins of the cyto- 
plasm, plasma membrane, nucleus, extracellular com- 
partment, and mitochondrion (Table 4). The contrast 
became stark when the ten-fold cross validation was 
applied: although there was a precipitous drop in the 
accuracy of prediction for proteins of other localiza- 
tions, those of the nucleus, plasma membrane, extra- 
cellular compartment, and cytoplasm remained rela- 
tively high. This could be attributed to the relatively 
smaller training sets available for golgi, lysosome, and 
peroxisome. 

The effect of using subsets of the features with the 
ML algorithms was examined. Precision is a measure 
of the positive predictive value, that is, the propor- 
tion of the claimed subcellular localizations that are 
indeed those specified subcellular localizations: 

Precision = True Positives/(True Positives + False 
Positives) 

Sensitivity (or Recall) is a measure of the probability 
that the test would reject a false null hypothesis: 

Sensitivity = True Positives/(True Positives + False 
Negatives) 

Table 4 Performance of Decision Tree (548) Using Instances for Training 

Localization TP rate FP rate Precision Sensitivity F-measure 
PLA 0.982 0.020 0.971 0.982 0.977 
NUC 
CYT 
EXC 
MIT 
END 
GOL 
LYS 
POX 

0.980 0.017 0.951 
1 0.002 0.919 

0.936 0.007 0.959 
0.880 0.002 0.971 
0.829 0.006 0.876 
0.831 0.006 0.779 
0.767 0.003 0.793 
0.576 0.002 0.731 

0.980 
1 

0.936 
0.880 
0.829 
0.831 
0.767 
0.576 

0.965 
0.958 
0.947 
0.924 
0.852 
0.804 
0.780 
0.644 
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As Table 3 indicates, the Precision and Sensitivity 
values of all the learners decreased from the highest 
values (when all attribute types were used) when only 
pairs of attribute types (from among Composition, 
Transition, and Distribution) were available. Models 
that used a combination of all attribute types per- 
formed better, in terms of Precision and Sensitivity, 
than those that only used any attribute type subset 
(or subset combinations). 548 performed better than 
SVM and MLP in classifying proteins of the golgi, 
lysosome, endoplasmic reticulum, and peroxisome (all 
of which present a more difficult classification prob- 
lem than the other compartments). 

There were high J48 True Positive rates and low 
False Positive rates for all compartments, with the 
exception of the peroxisome and lysosome (Table 4). 
The F-measure is the harmonic mean of Precision and 
Sensitivity and can be used as a single measure of a 
test’s performance: 

F-measure = (2xPrecisionxSensitivity)/(Precision 
+ Sensitivity) 

Accordingly, the highest 548 F-measures were those 
for proteins of the plasma membrane and nucleus; the 
lowest were those for the peroxisome and lysosome 
proteins. 

NB classifiers work best if all attributes are truly 
independent of each other; they classify correctly as 
long as the correct class is more probable than any 
other class. Correlations exist between certain val- 
ues present in the vector, for example between Po- 
larizability and NVWV ( 2 1 ) ;  this could explain the 
less than impressive performance of NB. The advan- 
tage that Decision Trees have, in this regard, are their 
ability to choose the best attribute to split on at each 
node. 

The 548 version of the C4.5 Decision Tree ( 1 5 )  
is implemented as follows: the algorithm works top- 
down, seeking at each stage an attribute that best 
separates the classes. The attribute with the great- 
est information gain is chosen. It then recursively 
processes the sub-problems resulting from the split 
until the information is zero or reaches a maximum. 
The information measure (entropy) is calculated as 
follows: 

E ~ ~ ~ w ( P I  P Z ,  . . ., Pn) 
= -PI 1092 PI - PZ log2 ~2 * * - Pn log2 Pn 

where p l , p Z , .  . . , pn are fractions representing the data 
distribution at a node (attribute) and sum up to 1. 

Exploratory Data Analysis 

Following the application of Tukey’s Median Polish 
(MP) algorithm (25)  to the data, a diagnostic plot 
of the comparison values against the residuals yielded 
no clear pattern (Figure S2), indicating that there was 
no systematic departure from the additive model as- 
sumption underlying the MP algorithm. A clear and 
consistent diagnostic plot would have indicated non- 
additivity and signaled a need to transform the data 
before further analyses. 

The vectors derived from the human protein 
dataset were grouped, depending on which of the nine, 
compartments they are localized in. For each of the 
localizations, the median value for each attribute was 
the entry used for the table to which MP was applied 
(Figure 1). The MP procedure laid out the column 
effects (Figure 2). The lowest effects were due to 
the Composition of the ungrouped individual amino 
acids; the highest effects were due to the Distribution 
of grouped amino acids. These observations were con- 
sistent with the attributes used by the 548 learner for 
its initial splits (Figure 3). These indicate that it is 
the set of physicochemical properties of the individual 
amino acids, rather than their unique identities, that 
help determine the subcellular localization of the pro- 
teins of which they are a part. It has been known that 
the distribution of charge and hydrophobicity is cru- 
cial for targeting a protein to its intended subcellular 
localization ( 7). 

The row effects (range: -0.2 through 0.1; median: 
0) were much lower than the column effects (range: 
-25.1 through 74.9; median: 0), indicating that the 
measured amino acid feature influenced the numeri- 
cal response more than the cellular localization of a 
protein did. This indicates that the individual ele- 
ments of the vector generated for a protein are less 
dependent on the cellular compartment to which the 
protein belongs than they are on the attribute of the 
sequence they represent. There were differences in the 
row effects (Figure S3): the extracellular compmt- 
ment, peroxisome, cytoplasm, and lysosome had the 
lowest effects. This signifies that, in relative terms, 
these compartments presented the more difficult clas- 
sification tasks. This observation is largely supported 
by the Precision and Sensitivity values noted in Tables 
2 and 3 (where all attribute types were used). A stem- 
and-leaf display of the column effects (Figure S4) in- 
dicated that the extremely low and extremely high 
responses had to do with the Distribution of amino 
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Fig. 1 A description of the table to which Tukey's MP algorithm was applied. The vectors derived from the human 
protein dataset were grouped, depending on which of the nine compartments they are localized in (cytoplasm, nucleus, 
golgi apparatus, lysosome, plasma membrane, endoplasmic reticulum, peroxisome, extracellular compartment, and mi- 
tochondrion). For each of the localizations, the median value for each attribute was the entry used for the table. 

Attribute TvDes 
1-20: Composition, Individual 

Amino Acids 
8 21-23: Composition, Hydrophobicity 

0 27-41 : Distribution, Hydrophobicity 
V 42-44: Composition, M M N  

24-26: Transition, Hydrophobicity 

t; 4547: Transition, NVWV 
t 48-62: Distribution NWW 

63-65: Composition, Polarity k 8  
6668: Transition, Polarity 
69-83: Distribution, Polarii 
84-86: Composition, Polarizability 
87-89: Transition, Polarizability 
90-1 04: Distribution, Polarizability 
1051 07:Composition, Charge 

120 108-1 10: Transition, Charge 

0 

8 

11 1-125: Distribution, Charge 
0 20 40 80 80 1 0  

INDNBxlALCOLuMJ 

A 

Ill I l l  

1 I 1 

10 m 30 40 

INDIVIDUAL COLUMN 

B 

' 4  I '  

50 0 5 10 15 20 25 

INDIVIDUAL COLUMN 

C 

30 35 

Fig. 2 The impact of attribute pool on relative contributions of attribute types to data. Changes in MP column effects 
(effects of 125 sequence amino acid characteristics) occurred with the diversity of attribute type used. A. Composition, 
Transition, and Distribution attributes were used. B. Only Composition and Transition attributes were used. C. Only 
Composition attributes were used. Column effect patterns were preserved in all cases, the lowest being the Composition 
of individual amino acids (A). In the absence of Distribution type (B and C) and/or Transition type (C) attributes, 
the effects of the remaining attribute type(s) increased. 
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Fig. 4 Boxplots depicting the distribution, based on Composition (Hydrophobicity) of human amino acids within the 
specific cellular localizations. 

amino acids. Table 5 summarizes the observations 
from 50 boxplots, depicting the distribution of the 
data derived from Composition and Transition type 
attributes. 

Generally, the more discriminative attributes of 
a Decision Tree appear closer to the root. The first 
three splits of the tree (Figure 3) involve both a Com- 
position type attribute measuring percent polarity of 
Group 1 and a Distribution type attribute of Group 
1 Polarity (PolarityPercent-Group1 and Polar- 
ity-GP1Distributi0n-25~~Percentile-Occurrence, re- 
spectively). Notably, the Polarizability attributes 
were the only class of features that did not appear in 
the first few informative splits of the tree. This may 
be attributable to the fact (21) of correlations be- 
tween calculated Polarizability values for amino acid 
side chains and those of NVWVs (Table 1). 

As can be seen from Figure 3, 548 was most 
strongly influenced by attributes characterizing P e  
larity Percent Groupl (polarity between 0-0.108) of 
the amino acid sequence. Closer examination of plots 
of the column effects indicates distinct differences in 
the patterns of effects between those human sequences 
with Polarity Percent Groupl 5 37.9 and those with 
Polarity Percent Groupl > 37.9 (Figure 5). For exam- 
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ple, there are differences in the patterns of the Per- 
cent W as well as the Percent Charge Group3 col- 
umn effects. In both cases, the column effect de- 
creases dramatically between those two groups (Po- 
larity Percent Groupl 5 37.9 or > 37.9). How- 
ever, there was a dramatic increase in column effect 
for the 20th column (Percent W) between those two 
groups. There were several other contrasting changes 
in effect between those two groups involving Composi- 
tion, Transition, and Distribution type columns (Fig- 
ure 5) .  Similar EDA examination of different groups 
of amino acid sequences based on the 548 tree cate- 
gorizations (Figure S6) would demonstrate contrasts 
that confirm the underlying reason for the success of 
this learning scheme. 

In some instances, the level of difficulty in clas- 
sifying proteins of certain compartments may be at- 
tributable to a number of factors. Firstly, cellular or- 
ganelles are not as homogenous (26) as most current 
annotations would seem to suggest. The nucleus, for 
instance, has a matrix, a nucleolus, and an envelope. 
Each sub-compartment often has a proteome with a 
unique set of features and functions, some of which 
could more closely resemble features of other localiza- 
tions or organelles. Database annotations with such 
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Fig. 3 A depiction of the root (initial splits) of the Decision Tree (548) on the human amino acid sequence data 
following training with human sequences. The root includes Composition, Transition, and Distribution type attributes. 

acids across the sequences: the low values indicated the magnitude of the effects of the remaining at- 
that low proportions of the specified amino acid type tribute type(s) increased in the absence of Distribu- 
occurred at the beginnings of the sequences, and the tion and/or Transition type attributes. Composition, 
high values confirmed that high proportions were Transition, and Distribution type columns together 
stretched across entire sequences. They also showed provided higher effects than any subsets in particular. 
that, next to the low response Distribution data, the The pattern of column effects changed when Compo- 
directly measured proportions (Composition) of indi- sition and Transition type columns or only Composi- 
vidual amino acids influenced the numerical responses tion type columns were used. This observation was 
least. borne out by the mix of attributes upon which the 

An investigation was implemented to find out if initial J48 splits occurred (Figure 3). 
all the three attribute types (Composition, Transi- When sequence amino acids were grouped in terms 
tion, and Distribution) were necessary to best char- of hydrophobicity, NVWV, polarity, polarizability, 
acterize each protein. The MP algorithm was per- and charge, interesting patterns emerged. EDA 
formed in the presence of different attribute types, 
and the column effects were plotted (Figure 2): (1) 
Composition, Transition, and Distribution attributes 
were used; (2) Only Composition and Transition at- 
tributes were used; (3) Only Composition attributes 
were used. This confirmed (Figure 2A) that the high- 
est effects were attributable to the Distribution data 
and that the lowest effects were attributable to the 

graphics confirmed certain expected patterns. For ex- 
ample, a stem-and-leaf display of the residuals of MP 
showed that plasma membrane proteins have high in- 
cidences of transitions between hydrophobic and neu- 
tral amino acids (Figure S5); this observation was 
borne out by boxplots (Table 5 ;  transitions between 
Hydrophobicity Groups 2 and 3). Similarly, boxplots 
in Figure 4 showed that nuclear proteins tend to have 

Composition of individual amino acids, as well as Dis- 
tribution (the first occurrence of each amino acid clas- 
sification member along a sequence). Even in the ab- 
sence of Distribution type attributes (Figure 2B and 
C) and/or Transition type attributes (Figure 2C), the 
patterns of column effects were preserved, the low- 
est being the Composition of individual amino acids. 
However, note that while the patterns were conserved, 

higher proportions of polar amino acids and lower prc- 
portions of hydrophobic amino acids. In contrast, pro- 
teins localized on the plasma membrane have higher 
proportions of hydrophobic amino acids and lower 
proportions of polar amino acids; cytoplasmic pro- 
teins have higher proportions of neutral amino acids; 
and mitochondrial proteins have higher proportions 
of neutral amino acids and lower proportions of polar 
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Table 5 Notable Composition and Transition Patterns from Boxplots 

Localization Composition Transition 
High level Low level High level Low level 

CYT NVWV Group 2; NVWV Group 1 Hydrophobicity NVWV Groups 1 and 3 
Polarizability Group 2; 
Charge Group 2 

Groups 1 and 3; 
Polarity Groups 1 and 3; 
Charge Groups 2 and 3 

NUC Hydrophobicity Hydrophobicity Hydrophobicity Hydrophobicity 
Group 1; Group 3; Groups 1 and 2; Groups 2 and 3; 
NVWV Group 1; 
Polarity Group 3; Polarity Group 1 Polarizability 
Polarizability Group 1 

NVWV Group 2; Polarity Groups 2 and 3; Polarity Groups 1 and 2; 

Groups 2 and 3 
GOL NVWV Group 2; NVWV Groups 2 and 3 

NVWV Group 3 

LYS NVWV Group 1; NVWV Group 2 NVWV Groups 1 and 3; 
Polarizability Group 1 

PLA Hydrophobicity Hydrophobicity Hydrophobicity Hydrophobicity 
Group 3; Group 1; Groups 2 and 3; Groups 1 and 3; 
N W  Group 2; 
Polarity Group 1 

Polarizability Groups 1 and 3 

Polarity Group 3; 
Charge Group 1; 
Charge Group 2 

NVWV Groups 1 and 2 Polarity Groups 1 and 3 

END Hydrophobicity NVWV Group 1; Hydrophobicity Groups 1 and 3; 
Group 3; Polarizability Group 1 NVWV Groups 2 and 3; 
NVWV Group 2; Polarity Groups 1 and 3; 
NVWV Group 3; Polarizability Groups 2 and 3 
Polarizability Group 3 

Hydrophobicity Groups 1 and 3; 
NVWV Groups 2 and 3; 
Polarity Groups 1 and 3; 
Charge Groups 1 and 3 

POX 

EXC NVWV Group 1; NVWV Group 3; Hydrophobicity NVWV Groups 2 and 3 
Polarizability Group 1; Polarizability Group 3 Groups 1 and 3 
Polarizability Group 2 Polarity Groups 1 and 3 

Polarizability Groups 1 and 2 

Polarity Groups 1 and 3; 
Charge Groups 1 and 3 

MIT Charge Group 1 Polarizability Group 2 Hydrophobicity Groups 1 and 3; 

distinctions are not yet widely available. Scott et al 
(27) have sought to reduce the effects of this short- 
coming by factoring in protein interaction data and 
specific sub-compartmental protein data in a pro- 
cess that improves subcellular localization prediction. 
Secondly, there are instances in which proteins typi- 
cally associated with certain organelles have been de- 
tected in the proteome of other organelles (28,29). 
While these could be artifacts of fractionation pro- 
cedures, they are sometimes biologically significant 

(29). Thirdly, isoforms of certain proteins occur in 
or shuttle between multiple localizations, such as the 
cytoplasm and the nucleus. These include a num- 
ber of enzymes with multiple isoforms that are local- 
ized in multiple localizations depending on the spa- 
tial and temporal patterns of protein expression. As 
an example, the enzyme adenylate kinase [AK (EC 
2.7.4.3)] has six isoforms in humans, which are dis- 
tributed across the cytoplasm, mitochondrion, and 
nucleus (30).  Since the features of these proteins are 
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Fig. 5 An illustration of the contrasting patterns in MP column effects between amino acid sequences on either side 
of a 548 split. The chart highlights two of the columns whose effects differ sharply between the two groups: Percent 
Charge Group3 and Percent W. 

very similar, it is difficult to predict the localization 
of such proteins. 

Conclusion 

Previous subcellular localization predictors that use 
amino acid compositions have used neural networks 
(31) ,  the covariant discriminant algorithm (32 ) ,  and 
SVMs (8); each predictor has achieved a unique ac- 
curacy rate over up to four eukaryotic or prokaryotic 
subcellular compartments. In this study, nine hu- 
man (eukaryotic) cellular compartments were exam- 
ined, and the Decision Tree J48 emerged as perform- 
ing consistently better at classifying across all com- 
partments (including those that present with difficult 
classification tasks). This scheme is better able to 
handle functional annotation tasks that involve gene 
products localized outside of those eukaryotic cellu- 
lar compartments. Furthermore, the unique features 
of the nine human compartments in terms of amino 
acid composition and transition have been outlined; 
this result provides a ready guide for such annotation 
tasks. 

Materials and Methods 

Data collection and filtering 

We used protein sequences from the SWISS-PROT 
database release 45 .O (htt p: / /www .ebi.ac.uk/swissprot ) 
for training and testing purposes in this study. To 
obtain high-quality datasets, we filtered the data as 
follows: (1) Include sequences only from the ani- 
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ma1 species that have experimentally derived anno- 
tations for “subcellular localization”. (2) Remove 
sequences with ambiguous and uncertain annota- 
tions, such as “by similarity”, “potential”, “proba- 
ble”, “possible”, and so on. (3) Remove sequences 
known to exist in more than one subcellular 10- 
calization, such as those that shuttle between the 
cytoplasm and the nucleus. Finally, we selected 
only those subcellular localizations with at least 
100 annotated sequences. These localizations in- 
clude (the number of sequences are shown in paren- 
theses): CYT-cytoplasm (2,673), END-endoplasmic 
reticulum (794), EXC-extracellular/secretory com- 
partment (7,077), GOL-golgi complex (253), LYS- 
lysosome (179), MIT-mitochondrion (2,019), NUC- 
nucleus (4,112), PLA-plasma membrane (5,273), and 
POX-peroxisome (185). From these datasets, we sep- 
arated a subset of 3,749 proteins belonging to human. 

Machine Learning 

Three classes of features of amino acid sequences were 
used in the current study, including Composition, 
Transition, and Distribution. These features are fo- 
cused on physicochemical properties of the primary 
structure of proteins. Composition is a reference to 
the proportions of amino acid types contributing to 
the protein sequence. Transition represents the fre- 
quency with which specific amino acid types are fol- 
lowed or preceded by other amino acid types within 
the sequence. Distribution captures the dissemina- 
tion of specific amino acid types within specific por- 
tions of the sequence (or the entire sequence). These 
feature types have been used in previous ML algo- 
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rithms to  characterize amino acid sequences based on 
hydrophobicity, NVWV, polarity, polarizability, and 
charge (Table 1). 6A. 

amino acid Composition, Transition, and Distribution 
along with the categories just outlined (Table l), a 
Common Lisp algorithm (33)  was used to generate a 

vector of size 125 for each protein. The breakdown 
of the elements of each vector is outlined as in Figure 

Based on numerical attributes characterizing A matrix consisting of a vector of each of the pro- 
teins (Figure 6B) was thus generated and used as a 
training set for ML (32). Based on the data, predic- 
tive classifications (based on instances derived from 

Fig. 6 Structure of the data used. A. For each amino acid sequence examined, Composition (C), Transition (T), 
and Distribution (D) data (as described in the text) were calculated and placed in a vector in the order shown. 1-20: 
Composition, individual natural amino acids; 21-23: Composition, Hydrophobicity (members of Groups 1, 2, and 3, 
respectively); 24-26: Transition, Hydrophobicity (between members of Groups 1 and 2; between members of Groups 
2 and 3; and between members of Groups 1 and 3, respectively); 27-41: Distribution, Hydrophobicity (the lst, 25th, 
50th, 75th, and looth percentile occurrences for members of Groups 1, 2, and 3, respectively). Similarly, the rest of 
each vector was constituted as follows: 42-44: Composition, N W W ;  45-47: Transition, NVWV; 48-62: Distribution, 
N W ;  6345:  Composition, Polarity; 66-68: Transition, Polarity; 69-83: Distribution, Polarity; 84-86: Composition, 
Polarizability; 87-89: Transition, Polarizability; 90-104: Distribution, Polarizability; 105-107: Composition, Charge; 
10&110: Transition, Charge; 111-125: Distribution, Charge. B. From each protein’s amino acid sequence, a vector 
was generated as above. A matrix consisting of an aggregate of all the vectors generated was then created and used for 
ML and EDA. 
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the training set alone as well as the training set in con- 
junction with ten-fold cross validations) were made by 
using 548, SVM, MLP, and NB classifier. These algo- 
rithms are all available through the Weka ML work- 
bench (http://www.cs.waikato.ac.nz/ml/weka/). 

Exploratory Data Analysis 

The data was also analyzed using EDA tools. The MP 
algorithm (25) was used along with boxplots (35) in 
these studies to  help establish effects. The MP pro- 
cedure fits an additive model: 

Response Variable = Common Value + Row Effect 
+ Column Effect + Residual 

where the Common Value is constant throughout the 
table; the Row Effect is constant by rows; the Coi- 
umn Effect is constant by columns; and the Residu- 
als or remaining effects represent departures of each 
data array element from the purely additive model. 
MP works iteratively on a data table, alternatively 
finding and subtracting column medians and row me- 
dians until all columns and rows have zero medians. 
The residuals, row effects, or column effects may then 
be illustrated graphically by the way of a stem-and- 
leaf display or boxplot. -Boxplots depict the distri- 
bution’s central tendency (median), spread (fourth- 
spread), skewness (based on the relative positions 
of the median, lower fourth, and upper fourth), tail 
length, as well as outliers. 

The R language (http://www.r-project.org/) sta- 
tistical environment was used to implement the EDA 
aspects of the study. Furthermore, for each subcel- 
lular compartment, Boxplots (36 )  were generated for 
each amino acid category and feature. Comparisons 
were made within and between the data for the cell 
compartments. 
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