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In this study, 107 types of human papillomavirus (HPV) L1 protein sequenct 3s were 
obtained from available databases, and the nuclear localization signals (NlLSs) of 
these HPV L1 proteins were analyzed and predicted by bioinformatic analysis. 
Out of the 107 types, the NLSs of 39 types were predicted by PredictNLS soft- 
ware (35 types of bipartite NLSs and 4 types of monopartite NLSs). The NLSs 
of the remaining HPV types were predicted according to the characteristics and 
the homology of the already predicted NLSs as well as the general rule of NLSs. 
According to the result, the NLSs of 107 types of HPV L1 proteins were classified 
into 15 categories. The different types of HPV L1 proteins in the same NIX cat- 
egory could share the similar or the same nucleocytoplasmic transport patthway. 
They might be used as the same target to prevent and treat different types of HPV 
infection. The results also showed that bioinformatic technology could be used to  
analyze and predict NLSs of proteins. 
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Introduction 
Human papillomaviruses (HPVs) are small, non- 
enveloped DNA viruses ( 1  ). HPV infection is asso- 
ciated with more than 90% of all the cases of cervical 
cancer, which is the second leading cause of cancer 
death among women worldwide ( 1 , Z ) .  HPVs have 
been classified into more than 100 types based on the 
nucleotide sequence homology of a single molecule of 
8-Kb double-stranded circular DNA. Each HPV type 
has different specificity for infection of skin or mucosa 
( 3 ) .  

HPV virion (55-60 nm in diameter) is contained 
within an icosahedral capsid, which comprises L1 ma- 
jor and L2 minor capsid proteins ( 4 ) .  L1 proteins 
form pentamers (capsomeres), and 72 capsomeres as- 
semble into a T-7d icosahedral lattice (5, 6 ) .  An HPV 
capsid comprises 360 molecules of L1 proteins. L2 
proteins interact with L1 pentamers ( 5 ) .  The molar 
ratio of L1 and L2 proteins is estimated to  be 30:l 
(7,B).  L1 proteins can self-assemble into virus-like 
particles, which have the similar size, shape, and con- 
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formational epitope to  native virion capsid proteins, 
although L2 proteins increase the efficiency of DNA 
encapsidation by at least 50 folds (8-1 0). 

HPVs infect basal cells of epithelium through mi- 
crolesions and replicate only in the differentiating 
cells. These cells are difficult to  culture in vitro; 
hence, no tissue culture system for the large-scale 
propagation of HPV virions in vitro. is available at 
present. The study of these viral structural proteins 
is behind that of the oncoproteins of their counter- 
feits. Consequently, little is known about the cellular 
and viral factors that control the switch and process 
of papillomavirus genome replication and viral pro- 
tein expression. Many events in the papillomavirus 
life cycle have not been elucidated, and particularly 
the nuclear transport process of the viral genome and 
structural proteins is poorly understood. 

However, at present the knowledge of L1 proteins 
of HPVs is understood at the molecular level in a 
certain extent. During the virus life cycle, L1 pro- 
teins seem to enter the nuclei of host cells twice. In 
the initial stage of HPV infection, immediately af- 
ter the virions infect the undifferentiated proliferat- 
ing epithelial cells, L1 proteins together with the vi- 
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ral genome are transported into the nuclei of prolif- 
erating epithelial cells. During the late stage of HPV 
infection, the newly synthesized L1 proteins in cyto- 
plasm are transported into the nuclei of terminally 
differentiated keratinocytes to package the replicated 
HPV genomic DNAs and assemble into infectious viri- 
ons, together with L2 proteins (11). This would sug- 
gest that the nuclear import of L1 proteins plays a 
very important role in HPV infection and production. 
The ability of the virus importing into the nucleus is 
determined by the nuclear localization signal (NLS) 
in the C-terminal of HPV L1 proteins, so it is impor- 
tant to investigate the NLSs of HPVs. To date, more 
than 120 HPV types have been isolated and partially 
characterized, and about 100 distinct HPV types have 
been identified and fully sequenced. But only few 
NLSs of HPV L1 proteins have been experimentally 
determined. The fact means that it is very difficult 
and unpractical to identify the NLSs of all HPV types 
by experiments. In this paper, we attempt to analyze 
and predict the NLSs of 107 types of HPV L1 proteins 
by bioinformatic analysis. 

Results 

The full sequences of 107 types of HPV L1 pro- 
teins were obtained from available databases (see Ma- 
terials and Methods). Out of the 107 types, the 
NLSs of 39 types were predicted by PredictNLS soft- 
ware (http://cubic.bioc.columbia.edu/predictNLS/). 
Among them, 35 types contain bipartite NLSs, where 
the two tight clusters of basic residues (one is KRKR, 
KRKRK, KRKKRK, the other is KR, RKR, KRK) 
are preceded, with a spacer of 10-14 amino acids. 
The other four types (HPV22, HPV34, HPV48, and 
HPV73) were predicted to contain monopartite NLSs, 
where these arginines and/or lysines form a tight clus- 
ter of basic residues as typified by the simian virus 40 
large T antigen (SV40 T). 

The NLSs of the remaining HPV types were pre- 
dicted according to  the characteristics and the homol- 
ogy of the already predicted NLSs as well as the gen- 
eral rule of NLSs. According to the result, the NLSs 
of 107 types of HPV L1 proteins were classified into 
15 categories (Table l), among which the categories 
XIV and XV contain monopartite NLSs. In addition, 
the NLSs of HPV L1 proteins 1, 6, 11, 16, 31, 33, 
35, and 45 can also be obtained from the literature 
(12-1 5 ) .  

Discussion 

In eukaryotic cells, the nucleus has a highly special- 
ized structure that participates in the regulation of 
cell processes, including the regulation of cell cycle 
and the induction of antiviral responses (16). The 
nuclear pore complex (NPC) has a large supramolec- 
ular structure with a mass of 125 kDa in vertebrates, 
which is embedded in nuclear envelope as the only 
gateway between nucleus and cytoplasm (1 7-20). 

Over the past years, a consensus model of the 
three-dimensional (3D) architecture of NPC shows 
that it is composed of an eight-fold symmetric cen- 
tral framework ( 2 1 ) .  In the course of biological evo- 
lution, NPC keeps a very high homology in eukaryotic 
cells, sharing a similar nuclear transport mechanism 

The nuclear import of proteins typically requires 
the presence of NLSs, which are characteristically rich 
in basic amino acids (22-24). NLS motifs play a key 
role in the nuclear transport mechanism. In order to 
enter into nucleus, the transport of proteins with a 
molecular weight (MW) at 45-60 kDa must be made 
through NPC via an NLS or be associated with an- 
other protein via a piggyback mechanism, whereas the 
nuclear import of small proteins (MW<40 kDa) cross 
NPC via passive diffusion (25-27). 

NLSs are subsequently found in numerous viral 
and nuclear proteins of eukaryotic cells. At present, 
they can be classified into two major categories. 
The first category includes the monopartite (single 
type) NLSs that contain 3-5 basic amino acids with 
the weak consensus Lys-Arg/Lys-X-Arg/Lys residues 
preceded by a helix-breaking residue, which are sim- 
ilar to  the SV40 T NLS (pKKKRKv) (28). They 
are now referred to as classical NLSs. The sec- 
ond category includes the bipartite NLSs that con- 
tain two clusters of basic regions of 3-4 residues 
with a basic dipeptide upstream from a simple ba- 
sic sequence, each separated by approximately 10 
amino acids, which are similar to the nucleoplasmin 
NLS (KRpaatkkagqaKKKKldk) (29,30) .  The se- 
quences (pKKKRKv and KRpaatkkagqaKKKKldk) 
found in SV40 T and nucleoplasmin are prototypes 
for monopartite and bipartite NLSs, now known to be 
present in many, probably thousands of different pro- 
teins. NLSs are capable of directing a non-karyophilic 
protein into nucleus when conjugated genetically or 
chemically. However, not all experimentally known 
NLSs comply with the above rules (32-33). Several 
other NLS sequences have been identified, which are 

(19,ZO). 
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Table 1 The Homologous Analysis of the NLSs of 107 Types of HPV L1 Proteins 

HPV type Accession No. NLS 

1 (17)  
HPV60 
wv3 
HPv94 

HPVlO 
HPV28 

HPV68 

HPV68ME180 
H P m  

HPV39 
H F W O  
HPVcand85 
HPv2 

HPV2a 
w v 2  7 
HPV27b 
HPVJC9710 

HPv95 

11 (3) 
HPv5 5 
HPv4 4 
HPm4 

I11 ( 6 )  
HPv5 7 

HPV57b 
HPV91 (cand89)  

HPVl3 
HPv7 
HPV4 0 

(4 )  
HPv84 
HPV87 
HPV86 
WV9 

v (7)  
HPVl8 
HPv4 5 
wv59 
HPm1 
HPv72 

HPV61 
WV83  

VI. (5 )  
HPV50 

HPv53 

HPV30 
HPV56 

w V 6  6 
V I I  (3) 
HPV29 
wm7 

U31792 
X74462 

AJ620211 
X74465 
U31783 

X67161 

M73258 
P27964 
M62849 
U21941 
AF131950 

NC-001352 
X55964 
x74473  
AB211993 
AF042837 

CAF05708 

U31791 

U31788 
U40822 

X55965 

AAC56600 
AF436128 

X62843 
X74463 
X74478 

AF293960 
CAC17718 
AF349909 
X74464 

X05015 
x74479 
X77858 
NC-002644 
X94164 

U31793 
AF151983 

U31790 
XI4482 

x74474 

X74483 
U31794 

U31784 
Y15175 

[RKRlxI9,16) [ m l  
KRYLYQYGLLNG 
RKFI&QLGVGTRSSIS~ATTTSRTAAA mTKK * 
RKFLIQLGVFSRSAISWTAASGSTAA mTKK * 
RKFLLQLGVRSRSAV-ATSATGSTAA mTKK * 
RKFUQWGAFGSVS~ASTTRGSSAA * 
RKFLL@GVRRRPTIGPETATATTTST S KH m V S K  * 
RKFLIQAGWRRPTIGPmATATTAST S KH m V S K  
RKFLLQAGVRRRPTIGPRKRpATATTAST S KH m V S K  

RKFLL@+RVRRRPTIGF'RKRpAASTSSSSA TKH m V S K  * 
PKFLIQVGAWRPT1GF'~ASAKSSSSAS KH m V S K  * 
RKFLLQAGLEPKPTIGPEVASTSTATRPS m T A K  * 
RKFLLQRW PT VS-VSGTTPPTS mVRR 

RKFLIQRGAM PT V S W V S G T T P P T S  mVRR * 
RKFLLQRGTT PT VSETAVGRGH 
RKFLLQRGTT PT VSETAMGAAAPTS mVRR * 

mASSEVTKK S K??r mTK * 

RKFLLQRGTWXSPVS~AF'STAPST m K R S  * 

[R (K) KRI X I  9 ,10  1 [KP (Q) KRI 

RRFLYQSGLING SEQMTSQTATG-SK * 

RKFLLQTGVQARSSVRVWASAATSSSS KpKRsRKK 

RKFLLQTGVQARSSVRVGWASAATSSS KQKRSRKK 
RKFLLQTGVQARSSVRVS-TAPSSAT KQKRSFXR 
[RKRlxI10,14) [ M I  

RKFLLQRGATPTVS RKRAAATAAApTA 
RKFLLQRGATPTVS RKRAAATAAAPTA -* 
FKFLLQLCZFPSSVP RKRAAPVSTSKW 

RKFLLQTGVQSRSPIRV-TSTATPTT 

RKFLKQAGLRTGPKFKS m A P T S S S S S G S W m T K R  * 
RKFLKQAGVRAGPRFKS mAF'SSSSSSKPVTPmTKR * 
[ R K R I X I ~ O , ~ ~ )  [ m ( R )  1 
RKFLLQSAPRSTLVS ETASASTPPAS * 
RKFLLQSAPRVSRVS RKRpASTSTASTS * 
RKFLLQSAPRVSHVS W A S T S T A S S S  m T K K  

RKFLFQAGLQT RKRpIKTSVKTSKNA =T * 
[RKRIx{10,15} [KR(K) K(V)K (R/V)K(R)K(R) 1 
RKFLVQAGLW(KPTIGP__KRsAPSATTSSKPA KRVRVRANZ 
R K F L V Q A G ~ T I G P ~ A ? G T S T A S T A S ~ A K R V R I F S K K  # 
RKFLLQLGARPKPTIGF'WAPTSTPSP KRVKRRKSSRK * 
RKFLLQSGTRSRPTAT.S~VA?GTTSTAP KRKRVKFSR 
RKFLLQVGSRAVSVS m P S S T S T P A P T  KRKKRKK * 
RKFLIQAGPRSVSVS m S S T P T S S P A T  m Q  * 
RKFLLQLGPRSVSVS RKRpASTAPSAPS KKKWCBK 

[KR (K) Rl XI 1 0 r 1 4  } [KRKRK (R) 1 
RKFLFQTGLL rnVRTDYWAWSKP~TR * 
RKFLKQVGVRTKPPVSS m A S T T S T S A P S S  KRwu( * 
RKFIMQLGVRnsSTTT m A P S S S T S T P S A  * 
RKFLKQLGTRSKPAVATS =TSTSTP A * 
RKFLKQLGPEPPRPKAsVSAS-TS SSSSPA * 
[ m l  X i  7 r 9 1  [m (R) RRI 

~ I G A R R R S V V P S  ~ T P S P A S ~ K K  * 
RKFLLQIGARRRSWPS R K R R T T T T A P T P W K K  * 

36 

HPV63 X70828 RKFLYQSGLAQRSVPK-SWlVA * 
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Table 1 Continued 

HPV type Accession No. NLS 

V I I I  (5) 
HPV4 2 

HPVl6 
HPVl6R 
HPVlaR 
HPVla 

I X  (2)  
HPv4 
HPV65 

x (12) 
HPV6 
WV6A 
HPVGb 
HPV6bR 
HPVll 
WVl 1R 
HPV82 
HPV82 IS39/AE2 
HPV51 
HPv93 

HPV38 
HPV2 4 
X I  (11) 
HPV2 3 
HPV31 
HPv43 
HPVJC9813-A 
HPV32 
HPv35 
HPV35h 
WV52 
HPV58 
HPv33 
WV67 
X I 1  (6)  
HPV4 1 
HPV4 8 
HPV9 6 
HPV92 
HPv54 
HPV69 
X I 1 1  (4)  

HPV2 6 
HPv22 
HPv73 
HPv34 
XIV (7)  
HPV15 
HPV80 
HPv37 
HPVl7 

HPv75 
HPWS75L1 

M73236 
U37217 

N/A 
V01116 
A0 92 92 

X70827 
X70829 

AY015006 
P69898 
AF322411 
X00203 
AY541029 
Ml4119 
AAK28456 
AF293961 
M62877 
AY382778 
U31787 
U31782 

U31781 
504353 
AJ620205 
AF070938 
x74475 
P27232 
x74477 
X74481 
D90400 
M12732 
D21208 

X56147 
U31789 
AY382779 
AF531420 
U37488 
AB027020 

X74472 
U31780 
X94165 
X74476 

X74468 
Y15176 
U31786 
X74469 

Y15173 
x79945 

[KRKlxI8,12) [KRK(R)K(R)K(R)K(H) 1 
RKFLLQAGLRARPKLSVG m T A K S V S S  AKRKKTHK * 
RKFLLQAGFKAKPKFTLG mTPTTSSTSTTAKRKKRKZ, *# 
RKFLLQAGFKAKPKFTLG p&YIF'TTSSTSTTAKRKKRKL 
RKFLYQSWQRTATSST-V STS *# 
RKFLYQSNQRTATSSTTlW7V STS # 
[KRWII X I  1 4 , E  I [KRKRSL (1) Kl 
RRFLYQSGLINGS~IISSSHAQTNlxRsAKRKRsLK * 
RRFLYQSGLINGT~TINSQAPTSI KRSAKRXRSIKQ * 
[KRIxl8,13} [ m l  
RKFLLQSGYRGRSSIRTGVKJPAV 
RKFLLQSGYRGFGSIRTWAV 
RKFLLQSGYRGRSSIRTWAV 

FKFLLQSGYRGRSSIRTWAV 
RKFLLQSGYRGRTSARTGI_KRPAV 
RKFLLQSGYRGRTSARTGIWAV 
RKFLLQIGAQ RK A R P G W A F  
RKFLLQIGAQ RK ARP-AE 

HPV76 Y15174 RKFLFQAGL PJVG_RVSBTAWTASBG- 
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Table 1 Continued 

HPV twe Accession No. NLS 

xv (15) I K l x { 3 , 4 )  [K(R)  l X { 3 )  [K(R) I X I 2 )  [-(R) 1 
HPV8 M l 2 7 3 7  PXFLFQAGLQQTTVNGT =IS EGS@G- 
HPvl2 X74466  FKFLFQAGJLQTTVNGT~SS~SI&G- 

HPvR7 P 8 8 8 0 4  PXFWQAGLQQTTVNGT KpSWS@GIKRKRI(N 
HPV3 6 U31785  RKFLFQAGLQQTTVSGT ESVSyRGFBG-Q 
HPv2 1 U31779  RKFLFQAGLQQTTVNGT ETLSSEVSBGI- 
HPVl9 X74470 RKFWQAGLQCATVNGT ETISSEVSSEG- 
HPv4 9 X74480  RKFWQAGIQRASRVS _KSSA?&SBGI= 
HPV25 X74471  RKFLE’QAGJLQTTVNGT -WSS&ISBGI=  
HPV14 P 3 6 7 3 4  RKFLFQAGJLQSTVNGT W S B G S I K G I K R K R K N  
HPV14d X74467  RKFLFQAGICQSTVNGT ETVSBGSIEGIKRKRKN 
HPv4 7 M32305 RKFLFQAGmTTVNGT ETTPyRGSIRG- 
HPV20 U31778  RKFLFQAGLQATVNGT I$WSSDSB-m 

HPv5 PO6917 RKFLFQAGLCQTTVNGT 3 V S E G S E G S  
HPV5b D90252  RKFLFQAGIQHTTVNGT E V S E G S R G -  
HPV5R M l 7 4 6 3  RKFLFQAGXQTTVNGT BVSyKGSEG- 

*The NLSs of HPV L1 proteins predicted by the PredictNLS software; #The NLSs obtained from rekrences. The NLS 
sites are in bold and underlined. Format for NLS motifs: [KIP]: read K or R; [R(K)KR]: read RKR or KKR; x{3,5}: 
read between 3 and 5 x, where “x” stands for any amino acid. 

quite different from classical NLSs, such as the NLSs 
discovered in hnRNP proteins, ribosomal proteins, 
and UsnRNPs (34-37). 

Recent studies have identified several proteins 
that contain more than one NLS, including the nu- 
clear factor l-A (38),  the cell division control protein 
mcmlO (39) ,  the herpes simplex virus gene product 
ICP22 (40),  the HIV preintegration complex ( 4 1 ) ,  the 
Epstein-Barr virus DNase (42),  the papillomavirus 
oncoprotein E6 (43),  BRCA2 ( 4 4 ) ,  and Rep68/78 
proteins (45).  The enzyme 5-lipoxygenase (5-LO) has 
three NLSs that contain dispersed basic residues, un- 
like the tight cluster of basic residues of the classical 
SV40 T NLS (46 ) .  It is not clear why some proteins 
contain multiple NLSs. One explanation is that mul- 
tiple NLSs may cooperate with one another and allow 
more efficient nuclear import or share an alternative 
entry mechanism in the nuclear import, affording re- 
dundancy in proteins that require successful nuclear 
import, as in cell cycle proteins or viral integration 
proteins (42,47). 

Traditionally, in order to identify an NLS experi- 
mentally, both of the facts should be considered rou- 
tinely. Firstly, the candidate should be deleted to dis- 
rupt the nuclear import of the NLS; secondly, a non- 
nuclear protein will be imported into the nucleus if 
fused to  the NLS ( 4 8 ) .  It is very difficult and unprac- 
tical to identify the NLS motifs of more than 120 types 
of HPVs by experiments. Only few NLSs of HPV L1 
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proteins have been experimentally determined up to  
date. 

Bioinformatic techniques perhaps could be applied 
to  analyze and predict new NLSs, which would rem- 
edy this situation. Cokol et al ( 4 9 )  have found some 
upper boundaries. The method comprises two steps: 
(1) data collection: collect experimental NLS mo- 
tifs from literature, and extend the motifs through 
close homologues; (2) generalization: refine the motifs 
found by shortening (for those too specific) or length- 
ening (for those not specific enough), and test the 
new motifs conceptually similar to the known motifs 
found in nuclear protein families. The crucial compo- 
nent of both steps is to  accept motifs if NOT found 
in non-nuclear proteins. Therefore, it is feasible to 
discover new NLSs in HPV L1 proteins by comparing 
the homologues of different types. 

According to Cokol’s method, we analyzed the 
HPV L1 protein sequences for the confirmation of 
NLSs using PredictNLS software. Out of the 107 
types of HPV L1 proteins, the NLSs of 39 types 
were predicted by PredictNLS. Applying PSORTII 
and PredictNLS could not reveal any typical NLS in 
the remaining 68 types. 

In general, two naturally evolved proteins with 
more than 30% identical residues could share simi- 
lar 3D structures (50). The sequence similarity re- 
quired to  infer function is much higher (51). It is 
possible to infer NLSs by comparing the homologues 
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of more than one protein. Due to the high homol- 
ogy of the NLSs among the L1 proteins of all HPV 
types, we subsequently found similar sequences in the 
C-terminal of all the remaining 68 types of HPV L1 
proteins, which were similar to the NLSs already pre- 
dicted by PredictNLS and collected in experimental 
data. According to the consensus rule of NLSs and 
the high homologues, the NLSs of 107 types of HPV 
L1 proteins were classified into 15 categories (Table 
1). Among them, the categories I to XI11 contain clas- 
sical bipartite NLSs, while the categories XIV and XV 
contain classical monopartite NLSs. 

However, the NLSs predicted in this paper have 
been proved with few experimental data. This clas- 
sification cannot always consist with experimental re- 
sults. The cluster of basic residues RRR in the up- 
stream of the bipartite NLS (RRRptigpRKRpaast- 
StastasRpaKRvRiRsKK) of HPV45 has been proved 
certainly to have the nuclear localization ability (13). 
The discontinuous basic amino acids K and R in the 
upstream of the NLSs of 107 types of HPV L1 proteins 
perhaps also possess the ability of nuclear localiza- 
tion. At the same time, the NLS of HPV33 was pro- 
posed to be bipartite, while the experimental result 
proved that HPV33 possibly contains a monopartite 
NLS ( 5 2 ) .  On the other hand, while the experimental 
results proved that many types of HPV L1 proteins 
(for example, HPVl, 6, 31, 33, and 35) contain NLSs, 
they cannot be found by PredictNLS. Whereas, it is 
not all the clusters of basic residues of predicted NLSs 
that have the nuclear localization ability, such as the 
NLS of the IL1 ,L? ( 5 3 , 5 4 ) .  This instance perhaps oc- 
curs in HPV L1 proteins. Therefore, it is surely worth 
amending and supplementing the classification. 

In conclusion, this classification would play an im- 
portant role in the study of the NLSs of HPV L1 pro- 
teins. The results of this paper suggested that the 
different HPV types classified in the same category 
could share the similar or the same nucleocytoplasmic 
transport pathway. The NLSs in the same category 
would be used as a common realistic and feasible tar- 
get for preventing and treating different types of HPV 
infection. The results also showed that bioinformatic 
technology could be used to analyze and predict the 
NLSs of proteins. 

Materials and Methods 

The HPV L1 protein sequences were searched from 
the following databases: 

http://cubic.bioc.columbia.edu/db/ 
http://www.ncbi.nlm.nih.gov/ 
http://www.stdgen.lanl.gov/stdgen/virus/ 
http://ca.expasy.org/ 

Firstly, the initial sets from the literature for ex- 
perimentally determined NLSs were collected. Sec- 
ondly, ENTREZ, BLAST, and DNAClub software 
tools were used to analyze the homology of all 
types of HPV L1 protein sequences obtained. The 
useful web server (PredictNLS) for identifying po- 
tential NLSs in protein sequences is available at 
http://cubic.bioc.columbia.edu/predictNLS/ and was 
used to analyze and predict the NLSs of HPV L1 pro- 
teins. According to the characteristics and the homol- 
ogy of the NLSs predicted by PredictNLS, as well as 
the general rule of NLSs, the HPV L1 proteins were 
classified into 15 categories. The program also allows 
experimentalists to test the accuracy and coverage for 
new NLS motifs that they may find or suspect. This 
feature has already helped to  experimentally unravel 
a novel NLS in the hairless protein ( 5 5 ) .  
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