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In this paper, we study an off-lattice protein AB model with two species of- 
monomers, hydrophobic and hydrophilic, and present a heuristic quasi-physical 
algorithm. First, by elaborately simulating the movement of the smooth solids in 
the physical world, we find low-energy conformations for a given monomer chain. 
A subsequent off-trap strategy is then proposed to trigger a jump for a stuck situ- 
ation in order to get out of the local minima. The algorithm has been tested in the 
three-dimensional AB model for all sequences with lengths of 13-55 monomers. In 
several cases, we renew the putative ground state energy values. The numerical 
results show that the proposed methods are very promising for finding the ground 
states of proteins. 
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Introduction 
Predicting the native structure of a protein from its 
amino acid sequence is one of the most challeng- 
ing problems in biophysics and bioinformatics. The 
difficulty of the problem comes from two aspects. 
One is the determination of the potential energy func- 
tion. The effective energy function can generally dis- 
tinguish the native states from non-native states of 
protein molecules. The other is that the potential en- 
ergy landscape of the system can be characterized by 
a multitude of local minima separated by high-energy 
barriers. 

In order to simplify and clarify these two aspects 
of protein folding phenomena, in resent years the the- 
oretical community has introduced and examined sev- 
eral highly simplified, but still nontrivial models, in- 
cluding a large family of hydrophobic-polar (HP) lat- 
tice (1-5) and off-lattice models (6, 7) .  Even though 
these models are highly simplified, to solve the corre- 
sponding folding problem remains to be NP-hard. In 
recent years, a wide variety of approximate algorithms 
have been employed to analyze these models, includ- 
ing the sequential importance sampling with pilot- 
exploration (SISPER; ref. 8) based on the important 
sampling, the multi-self-overlap ensemble (MSOE) 
approach (9) based on the Monte Carlo scheme, and 
the pruned-enriched Rosenbluth method (PERM; ref. 
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10-13). All these approaches have been applied to the 
simplified protein folding problems. However, their 
efficiency still needs to be improved. 

The present paper attempts to find a highly 
efficient heuristic algorithm that can obtain the low- 
energy states for a given monomer chain. We use a 
so-called quasi-physical method (14-1 6), whose work- 
ing path is to find a natural phenomenon equivalent 
to the protein folding problem in the physical world. 
Then we observe the evolution of the motion of mat- 
ter in it so as to be inspired to obtain a formalistic 
algorithm for solving the problem. 

To see whether the quasi-physical method can be 
efficient for energy minimization in the protein fold- 
ing problem, in this paper we introduce a so-called 
AB model by Stillinger et a1 (17,18),  where the hy- 
drophobic monomers are labeled by A and the hy- 
drophilic or polar ones are labeled by B. This model 
has been studied in several papers (17-26). The meth- 
ods used to find low-energy states of the AB model 
include neural networks (1 7 ) ,  conventional Metropo- 
lis type Monte Carlo procedures ( I t ? ) ,  the anneal- 
ing contour Monte Carlo method (19), the simu- 
lated tempering (20), biologically motivated meth- 
ods (21,22), multicanonial methods (23,24,26), and 
the new PERM with importance sampling (nPER- 
Mis; ref. 25). For its two-dimensional (2D) version, 
the putative ground states for various AB sequences 
with various chain lengths have been given in previous 
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studies (17-19, 21,25), and for its three-dimensional 
(3D) version, the putative ground states for four Fi- 
bonacci sequences with lengths of 13-55 monomers 
have also been obtained (25,26). The present paper 
studies the 3D version of this model. The numeri- 
cal results show that the proposed methods are very 
promising for finding the ground states of proteins. 

Algorithm 

The AB model 

For an n-monomer chain, the distances between the 
consecutive monomers along the chain are fixed to 
the unit length, while the non-consecutive monomers 
interact through a modified Lennard-Jones poten- 
tial. In addition, there is an energy contribution 
from each angle Oi(-.ir 5 Oi < T )  between consecu- 
tive bonds. More precisely, the total energy function 
(17-19, 21,25,26) for an n-monomer chain can be 
written as 

n - 1  ., n - 2  n 

i = l  j = i + 2  

(1) 
Here r i j  is the distance between monomers i and j 
(i < j ) .  Each ci is either A or B. The first term is the 
bending energy, favoring the alignment of the three 
successive monomers i - 1, i, and i + 1. The second 
term is the Lennard-Jones potential with a species- 
dependent coefficient C([i,  [ j ) ,  which is taken to be 
1 for an AA pair, 1/2 for a BB pair, and -1/2 for an 
AB pair, giving strong attraction, weak attraction, 
and weak repulsion, respectively. 

The protein folding problem for the AB model can 
be formally defined as follows: given a monomer chain 
s = [ 1 [ 2  c3 . . . cn, we try to find an energy-minimizing 
conformation of s, that is, to find X *  E C(s) so that 
E ( X * )  = min { E ( X ) ( X  E C(s)}, where C(s) is the 
set of all the valid conformations of s. 

The quasi-physical method 

Imagine that all n monomers involved in the model 
are smooth solids with the radius of each being 1/2, 
which are marked by 1, 2, . . . , n and are cast ran- 
domly in the 3D Euclidean space, then the potential 
energy E is a known function of the coordinates of all 
n monomers with the constraint: 
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To remove Constraint (2) and convert the con- 
strained optimization problem into the unconstrained 
optimization problem, we conceive that there exists a 
spring with the original length 1 between the centers 
of the ith and (i + l)th monomers (i = 1 , 2 , .  . . , n - 1). 
According to the Hooks’ law, the spring’s elastic po- 
tential energy between two adjacent monomers is pro- 
portional to the square of the 1engt:h of the spring 
transformation. So we can give the elastic potential 
energy as follows: 

where Icl is a physical coefficient characterizing the 
rigidities of all the springs. 

The sum of the potential energy of the whole sys- 
tem is U = E + E’. Obviously, the potential energy 
U is a known function of the coordinates X of all 
the monomers, and E’ is the “penalty” term in the 
potential energy U .  When the physical coefficient 
Icl is great enough, the optimal solution of the un- 
constrained optimization problem of the known func- 
tion U ( X )  is also the optimal solution of the con- 
strained optimization problems (1)-(2). Thus, the 
protein folding problem is converted into an uncon- 
strained optimization problem of U ( X ) .  

For this optimization problem, we can employ a 
ready-made algorithm, the gradient method, or the 
steepest descent method. By integrating the quasi- 
physical idea into the gradient method, we gain a 
quasi-physical algorithm. Assume that X(O) is the ini- 
tial conformation for iterations. If the conformation 
~ ( t )  (t 20) is not a local minimum, a new confor- 
mation X(t+l) = X ( t )  - XtVU(t) is obtained in the 
anti-gradient direction of the energy function U ( X )  
at X ( t ) ,  where At is the iterative step length and 
-VU(t )  is the iterative search direction. From the 
undated conformation X(tS1), we repeat this course 
of iterations until a global energy minimum confor- 
mation X *  is found, or a trap of local minimum X *  
( IVU( t ) )  < lom6) occurs. In the latter case, a com- 
pletely new round of quasi-physical calculation should 
be initiated from a new initial conformation. In our 
simulations of computation, we let )la = 0.5 x lop6, 

In order to speed up the ground state search, when 
calculating the gradient V U  in iterations, we modify 
the Lennard-Jones potential through multiplying it by 

Icl E [1,000,2,000]. 
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a physical coefficient k2= 10,000, meaning the Van 
Del Waals interaction coefficient. Another trick is to  
modify the physical coefficient kl by multiplying the 
factor 1.3 and k2 by 0.7 until k2 < 1 per 50,000 iter- 
ative steps in the course of optimization. In the later 
stage of calculation, or when IVU(t) I < lop2, we mod- 
ify k1 by multiplying the factor 1.1 and decrease the 
step length At by multiplying a step shrinking factor 
0.9 per 50,000 iterative steps. Therefore, in the be- 
ginning of calculation, the physical coefficient of all 
the springs is small so that all monomers can move 
freely and attain easily low-energy states. Thereafter, 
along with the execution of calculation, the physical 
coefficient k l  increases gradually so as to increase the 
penalty and make Constraint (2) satisfied gradually, 
and at last the interactions of springs disappear. Ob- 
viously, when the physical coefficient kl rises to a big 
number, for example >lo1', that is, when the springs 
turn rigid, Constraint (2) is satisfied naturally, and a 
global energy minimum conformation is found, or a 
trap of local minimum occurs. 

The off-trap strategy 

The calculating experience tells us when all the A- 
monomers fold into a hydrophobic core, the potential 
energy of the whole system will turn low. For jumping 
out of local minima, we can pick out all B-monomers 
squeezed among A-monomers, and place them in cer- 
tain spots in 3D space to speed up the lowest-energy 
state search. The concrete description of the off-trap 
strategy is as follows: (1) Calculate the center of all A- 
monomers; (2) Compute the distance from the center 
to every A-monomer, signing the greatest distance as 
d; (3) Calculate respectively the distance from every 
B-monomer to the center. For every B-monomer, as 
long as the distance < d, it is our strategy to pick out 
the corresponding B-monomer and place it somewhere 
three times of the distance away from the center, in 
the vector direction from the center to the B-monomer 
picked. Keeping all A-monomers and the rest of B- 
monomers at their current positions, we can obtain a 
new conformation, where in addition to the changes 
of bending energy and elastic potential energy, long- 
range Lennard-Jones interactions of the monomers, 
with their relative position to each other changed, 
have to be computed anew after the update. 

By integrating the off-trap strategy into the quasi- 
physical algorithm, we gain a heuristic quasi-physical 
(HQP) algorithm. The calculation is executed by us- 
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ing the quasi-physical algorithm until a certain mini- 
mum conformation is reached. If now the energy E is 
lower than the target value and the system is satisfied 
with Constraint (2), the energy will be scored and the 
computation will terminate, otherwise the calculation 
point will jump to a new position through the off-trap 
strategy and the computation will proceed with tEe 
quasi-physical algorithm. If the off-trap strategy is 
repeated up to ten times and the simulation does not 
find states with lower energy E than the target value, 
it is our practice to randomly choose another initial 
conformation for a new round of HQP calculation. 

Results and Discussion 

We implemented the HQP algorithm ?n the C++ lan- 
guage on a Pentium IV, 2.0 GHz computer. For the 
sake of examining the calculation, in this paper we re- 
stricted ourselves to the AB model with the Fibonacci 
sequences in previously studies (17-19, 21,25,26). 
The Fibonacci sequences are defined recursively by 
So=A, S1=B, S,+1=S2-1 * S,. Here "*" is the con- 
catenation operator, for example, the first few se- 
quences are S2=AB, Ss=BAB, S4=ABBAB, and so 
on. They have the lengths given by n,+1 = n,-1+ n,, 
that is, given by the Fibonacci numbers. Following 
the previous studies (25,  26), in this paper we con- 
sidered the sequences with lengths n=13, 21, 34, and 
55, which are listed in Table 1. 

In our simulations, the initial conformations were 
chosen according to the following strategy. Given two 
concentric spheres with the origin as their centers and 
r1=2n, r2=5n as their radii respectively, where n is 
the length of the chain considered. Cast randomly all 
A-monomers in small sphere and B-monomers in the 
region between small and big spheres. 

After producing the initial conformation, we can 
execute the HQP algorithm to compute the position 
of every ball hereafter at every time. The calculating 
results showed that along with the increment in the 
calculation steps, at last all monomers would tend to 
be stable. In the four conformations that were the 
solution of the problem, Constraint (2) was satisfied 
approximately. The error margin was smaller than 

that is: Irz,2+1 - 11 < lop6 (i = 1 ,2 , .  . . , n-  1). 
We employed the HQP algorithm to compute 

these sequences and produced the final results that 
are shown in Table 2 in comparison with those of 
other studies (25,26). The conformations of puta- 
tive ground states are shown in Figure 1. 
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Table 1 The Four Fibonacci Sequences in the AB Model 
- 

n Sequence ( “Bz” for BB) 
13 ABz ABz ABABz AB 
21 
34 ABzABzABAB2ABzABABzABABzABzABABzAB 
55 BABABzABABzABzABABzABAB~ABzABAB~AB~ABAB~ABA~~AB~ABAB~~~B 

BABABz ABABz ABz ABABz AB 

Table 2 Comparison of HQP and Other Algarithms on the Estimation of the Global Energy Minima 
for the Four Fibonacci Sequences in the AB Model* 

n PERM PERM+ MUCA ELP HQPfCPUt ime#)  
13 -3.9730 -4.9616 -4.967 -4.967 -4.9729 (5,674 S) 

21 -7.6857 -11.5238 -12.296 -12.316 -12.2554 (8,924 s )  
34. -12.8601 -21.5678 -25.321 -25.476 -24,8083 (24,265 S) 

55 -20.1070 -32.8843 -41.502 -42.428 -42.5199 (39,124 S) 

*The values are compared with the results quoted in Hsu et al (25 )  employing the PERM and the subsequent con- 
jugate gradient (PERM+) minimization, and with the lowest energies listed in Bachmann et a1 (26) obtained with 
the multicanonical (MUCA) Monte Carlo method and the energy landscape paving (ELP) minimization. #CPU time 
means the time needed in a certain running to  get the listed energies on the Pentium IV, 2.0 GHz computer. 

n=13 

.- 

n=21 

n=34 n=55 

Fig. 1 Stereographic views of putative ground states of the four Fibonacci sequences listed in Table 1. Full dots and 
empty circles indicate hydrophobic and hydrophilic monomers, respectively. 
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The experiments showed that the HQP algorithm 
considerably outperformed the PERM algorithm and 
the subsequent conjugate gradient (PERM+) algo- 
rithm in Hsu et a1 (25 )  for the Fibonacci sequences 
of Table 1 in the AB model. This was particularly 
pronounced for the longest chain considered. In ad- 
dition, for the monomer chains with n = 21, 34, and 
55, we found putative ground states different from 
those given in Hsu et al ( 2 5 ) ,  which stated that the 
chains with n= 21 and 34 folded into conformations 
with single hydrophobic cores (except for a single A- 
monomer that kept out in both cases), and the chain 
with n= 55 formed two clearly disjointed main hy- 
drophobic groups. From the conformations (Figure 
1) produced by the HQP simulation, we easily see 
that each of the four Fibonacci sequences has a sin- 
gle hydrophobic core. Indeed, with this fact we are 
able to  refute the claims for putative ground states in 
Hsu et a2 ( 2 5 ) ,  and agree well with what comes out 
in Bachmann et a1 (26). 

We also compared our results with the minimum 
energies listed in Bachmann et a1 (26 ) ,  where the so- 
called multicanonical (MUCA) Monte Carlo method 
and the energy landscape paving (ELP) minimiza- 
tion were applied to  these Fibonacci sequences. Ta- 
ble 2 shows that HQP runs lower energies for the se- 
quences with 13 and 55 monomers, while the results 
for those with 21 and 34 monomers are also compa- 
rable. Moreover, the CPU time used by the HQP 
algorithm should be less than or comparable to  those 
used by the PERM+ and MUCA methods. Hsu et al 
( 2 5 )  did not give the exact CPU time of their runs. 
They just mentioned that their results were obtained 
on their Linux or Unix workstation with up to  2 days 
of CPU time, while Bachmann et a1 (26) even did not 
mention the CPU time of their runs. 

Furthermore, we will apply the methods proposed 
in this paper to  all-atom models with realistic po- 
tential by combining it with the simulated annealing 
or the genetic methods, and design various kinds of 
higher performance algorithms for the protein folding 
problem. 
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