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Abstract Mammalian topoisomerase 1 (TOP1) is an essential enzyme for normal development.

TOP1 relaxes supercoiled DNA to remove helical constraints that can otherwise hinder DNA repli-

cation and transcription and thus block cell growth. Unfortunately, this exact activity can covalently

trap TOP1 on the DNA that could lead to cell death or mutagenesis, a precursor for tumorigenesis.

It is therefore important for cells to find a proper balance between the utilization of the TOP1 cat-

alytic activity to maintain DNA topology and the risk of accumulating the toxic DNA damages due

to TOP1 trapping that prevents normal cell growth. In an apparent contradiction to the negative

attribute of the TOP1 activity to genome stability, the detrimental effect of the TOP1-induced

DNA lesions on cell survival has made this enzyme a prime target for cancer therapies to kill

fast-growing cancer cells. In addition, cumulative evidence supports a direct role of TOP1 in pro-

moting transcriptional progression independent of its topoisomerase activity. The involvement of

TOP1 in transcriptional regulation has recently become a focus in developing potential new treat-

ments for a subtype of autism spectrum disorders. Clearly, the impact of TOP1 on human health is

multifold. In this review, we will summarize our current understandings on how TOP1 contributes

to human diseases and how its activity is targeted for disease treatments.
Introduction

Topoisomerase 1 (TOP1) is a highly conserved enzyme that

can be found in both prokaryotes and eukaryotes. In the
mammalian system, TOP1 is an essential enzyme for normal
development [1]. A major function of TOP1 is to relax super-
coiled DNA and alleviate the DNA helical constraints [2,3].
This is achieved by the binding of TOP1 to the supercoiled

DNA, followed by the cleavage of one strand of the duplex
DNA to create a nick, allowing the duplex DNA to untwist
and relax (Figure 1) [4]. DNA supercoiling is a naturally-

occurring biological process when a DNA replisome or an
RNA polymerase (RNAP) unwinds and translocates on the
DNA to synthesize DNA or RNA. If not removed, these

supercoiled DNA can hinder the progression of the replication
fork or RNAP. In addition, negatively supercoiled DNA can
nces and
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Figure 1 Illustration of TOP1 DNA cleavage reaction

The TOP1 DNA cleavage reaction is initiated by the binding and DNA nicking (purple line) of TOP1 to form a TOP1cc complex that

covalently links TOP1 to the DNA. The intact DNA strand (blue line) passes through the DNA nick before the nick is religated, followed

by the release of TOP1 from the DNA. TOP1 DNA cleavage next to a misincorporated ribonucleotide U or an aborted TOP1cc reaction

can lead to mutations and cell death. TOP1 is shown in yellow and the two DNA strands are shown in purple and blue, respectively.

TOP1, topoisomerase 1; TOP1cc, TOP1–DNA cleavage complex; U, uridine.
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facilitate the formation of RNA:DNA hybrids, or R-loops,
between DNA template and the newly-synthesized RNA. If
not resolved, R-loops can stall further transcription and

DNA replication forks, leading to DNA double-strand break
(DSB) formation [5]. TOP1 is known to interact directly with
the active form of RNAPII and localize to transcriptionally-
active regions (TARs) of the genome [2,3]. It has been sug-

gested that TOP1 may aid to suppress R-loop formation by
removing supercoiled DNA during RNAPII-dependent
transcription [4,5].

In addition to its function in relaxing supercoiled DNA,
cumulative evidence supports a direct role of TOP1 in tran-
scriptional regulation. For example, during transcription,

RNAPII pauses at initiation and splice sites [6], while TOP1
has been proposed to hold RNAPII at the promoter-
proximal pause site [7]. Nonetheless, the exact molecular mech-

anism by which TOP1 pauses RNAPII at the initiation site
remains to be defined. Furthermore, TOP1 has been shown
to promote the recruitment and assembly of spliceosome at
TARs [8–10], and this function may be contributed by a poten-

tial TOP1-associated kinase activity to phosphorylate splicing
factors [9]. Efficient recruitment and coupling of RNA process-
ing factors to the TARs are critical for ensuring uninterrupted

production of full-length mature mRNA. In addition, spliceo-
some assembly onto nascent RNA transcript has important
implications for genome stability as well, because the binding

of RNA processing factors to the newly-transcribed RNAs
can also prevent these RNA strands from invading the DNA
template to generate R-loops [5,9,11]. The involvement of
TOP1 in spliceosome assembly may explain why TOP1 is

important for transcriptional progression and R-loop suppres-
sion. Nonetheless, whether TOP1 functions as a protein kinase
for the spliceosome assembly remains in great debate, as

evidence also suggests that TOP1 is unlikely the only or the
primary kinase that phosphorylates splicing factors [12,13].

The dynamic functions of TOP1 in DNA replication and

transcription provide important clues to why TOP1 is essential
for development in the mammalian system. However, because
TOP1 forms a covalent link intermediate, known as TOP1–
DNA cleavage complex (TOP1cc), with the 50 phosphate

group of the DNA during the topoisomerase reaction, the
TOP1 activity can generate toxic DNA lesions due to a
naturally-aborted topoisomerase reaction, leaving the TOP1
covalently trapped on the DNA (Figure 1) [14]. Alternatively,

single-strand breaks (SSBs) accumulate due to irreversible
DNA cleavage by TOP1 adjacent to a misincorporated ribonu-
cleotide [15]. The presence of these TOP1cc and DNA lesions

may lead to cell death or mutagenesis, a precursor for tumori-
genesis. Therefore, the topoisomerase activity of TOP1 is a
double-edged sword and can have both positive and negative

consequences on genome integrity and normal cell growth.
In addition, the potential direct involvement of TOP1 in

transcriptional regulation [7–10] suggests that TOP1 dysfunc-

tion may alter transcriptional landscape, leading to abnormal
cellular functions. It is therefore not surprising that several
human diseases have been linked to TOP1 regulation and
activity. In this review, we will discuss the human diseases

that may be linked to TOP1 and the mechanism by which
the TOP1 activity may contribute to the etiologies of these
diseases (Figure 2). In addition, we will also overview how

the poisonous effect of TOP1cc on cell growth has benefited
cancer treatments and how the ability in changing the
transcriptional landscape by TOP1 has become a focus for

developing possible novel strategy to treat genetic diseases.
TOP1 in tumorigenesis

In yeast, TARs are prone to mutations that arise as erroneous
repair of TOP1cc created by TOP1-mediated removal of super-
coiled DNA or irreversible DNA nick generated by the TOP1

cleavage next to a misincorporated ribonucleotide [14,15]. The
mutagenic potential of the TOP1 activity demonstrated in
yeast suggests that if the same activity was to exist in humans,
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Figure 2 The positive and negative attributes of TOP1 action to human health

Summary diagram showing the functions of human TOP1, the regulation of these functions by SUMOylation and its potential link to

human diseases (indicated in red) and therapies using TOP1 poisons (indicated in green). TOP1, topoisomerase 1; RNAPII, RNA

polymerase II; AS, Angelman syndrome.
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TOP1 activity may be a significant contributor to tumorigene-

sis. However, to date, very little research has been done to
evaluate the connection between TOP1 activity and cancer
risk. It is possible that in human cells, TOP1 activity is regu-
lated differently at TARs, such that TOP1 in human cells does

not produce a high mutation rate during transcription. Indeed,
recently, new studies from our laboratory have shown that
human cells actively suppress the topoisomerase activity of

TOP1 at TARs via novel SUMO modifications at the lysine
residues K391 and K436, thereby reducing TOP1-induced
DNA damage (Figure 2) [10]. These SUMOylation sites are

located within the catalytic core of the enzyme and are only
found in mammals but not in yeast. Therefore, our studies sug-
gest that humans have evolved a mechanism to minimize this

type of transcription-associated genome instability caused by
the TOP1 activity. Nonetheless, the protective effect of
TOP1 K391 and K436 SUMOylations against TOP1-induced
DNA damage during transcription also strongly points toward

the possibility that a SUMOylation defect on these residues
could lead to genome instability, mutagenesis, and cancer. This
defect could be a consequence of a mutation within the

SUMOylation motif sequence for either K391 or K436.
Alternatively, mutations that lead to a defect in the interaction
between TOP1 and its SUMO conjugation enzymes may also

contribute to elevated TOP1 activity at TARs and increase
in transcription-induced mutagenesis. Clearly, more studies
on the TOP1 mutations that affect these inhibitory SUMOyla-
tions are needed to establish a connection between tumor

pathogenesis and a dysfunction in the regulation of TOP1
activity in human cells.
TOP1 in cancer therapy

While the accumulation of TOP1cc on DNA can lead to cell

death, paradoxically, it is this toxic effect that makes the
TOP1 activity a prime target for cancer therapy since ancient
times. Camptothecin (CPT) is a natural herbal compound
derived from Camptotheca tree native to China and has been

used in traditional Chinese medicine for thousands of years
due to its anti-tumor activity [16]. It was not until in the
1980 s, TOP1 was identified as the target for CPT [17]. Since

then, the synthetic analogs of CPT, such as irinotecan and
topotecan, have been developed as chemotherapeutic drugs,
which have been approved both in the United States and in
Europe for treating several aggressive and metastasized can-

cers [18]. CPT and its analogs are TOP1 poisons that have high
affinity to the DNA-bound TOP1 molecules that are actively
catalyzing the removal of supercoiled DNA [16]. The binding

of TOP1 poisons to the active TOP1–DNA complex prevents
the completion of the topoisomerase reaction and traps
TOP1 covalently onto DNA to create DNA damage and

induce cell death [18]. In addition, TOP1 poisons were found
to sensitize cells to radiation therapy [19,20], increasing their
potential usefulness in cancer therapies.

Nonetheless, while fast-growing cells, such as cancer cells,
are more vulnerable to DNA damage-induced cell death, the
current dosages of CPT and its analogs used in chemotherapies
can induce life-threatening side effects, including hematologi-

cal toxicities, neutropenia, and diarrhea [21,22]. Therefore,
the development of new strategies to improve the efficacy of
TOP1 poisons by increasing the sensitivity of fast-growing can-

cer cells to these drugs is an active research area. One way to
sensitize cells to TOP1 poisons is to prevent the repair and
removal of the TOP1 covalent adducts on the DNA. However,

this approach may be complicated by the fact that there are
several redundant DNA repair pathways that are potentially
involved in repairing TOP1-induced DNA damages [23]. Alter-
natively, since TOP1 poisons are thought to target only those

TOP1 molecules that are actively catalyzing the topoisomerase
reaction on the DNA, increasing TOP1 activity in cancer cells
may enhance their sensitivity to killing by TOP1 poisons.

Indeed, it has been observed that patients with higher TOP1
activity level responded to irinotecan- or topotecan-based
chemotherapy better than those individuals with lower TOP1

activity level [24,25]. However, the question is, is it possible
to transiently increase TOP1 activity in a cell? Our studies have
shown that a defect in TOP1 K391 and K436 SUMOylations

increases TOP1 activity [10], thereby causing more TOP1cc
on the DNA and sensitizing human cells to the effects of
TOP1 poisons. We thus suggest that developing a mechanism
to block TOP1 K391 and K436 SUMOylations may be a
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useful therapeutic strategy to hypersensitize cells to TOP1 poi-
sons during chemotherapy.

TOP1 in neurodegenerative diseases

The removal of TOP1cc and the repair of TOP1cc-induced

DNA SSB lesions require the activation of ATM-dependent
DNA damage response, which phosphorylates and activates
tyrosyl-DNA phosphodiesterase-1 (TDP1) to remove the

covalently-trapped TOP1 from DNA [26]. Mutations in
ATM and TDP1 have been linked to neurodegenerative dis-
eases known as ataxia telangiectasia (A-T) and spinocerebellar
ataxia with axonal neuropathy (SCAN-1), respectively [27,28].

Brain functions are significantly impaired in both diseases, and
one of the symptoms in these diseases is difficulty in speech, or
dysarthria. Because both ATM and TDP1 are important for

repairing DNA damages induced by TOP1 poisons [26], a
recent study used mouse model to demonstrate that the accu-
mulation of TOP1cc-associated DNA lesions due to defective

ATM or TDP1 contributes to the pathogenicity of the neu-
ronal degeneration phenotypes in neural tissue [29]. Interest-
ingly, transient development of dysarthria has been reported
in rare cases during TOP1 poison-based chemotherapies due

to their neurotoxicity [30]. More studies should be done to
understand the genetic backgrounds of those patients, who
suffered dysarthria or other neurotoxic side effect during

chemotherapeutic treatments using TOP1 poisons, to see if
ATM or TDP1 are potential biomarkers for their susceptibility
to these symptoms.

TOP1 in autoimmune diseases

High titer TOP1 autoimmune antibodies are among the most

common features of scleroderma [31,32] and are associated
with a poor prognosis and a high mortality rate as well
[32,33]. Scleroderma describes a group of diseases characteris-

tic of hardening of the skin and connective tissues caused by
production of autoimmune antibodies. The majority of sclero-
derma patients produce autoimmune antibodies against their

own nuclear constituents, which are not normally accessible
to the immune system in healthy individuals [33]. An autoim-
mune response can be triggered by an abnormally high level of

apoptosis or a defect in the clearing of apoptotic cells, both of
which can lead to an increase in the presentation of the apop-
totic nuclear contents to the immune system [34]. In addition,
unusual post-translational modifications may cause the

immune system to no longer recognize and tolerate the
polypeptide as a self-protein [34,35]. Indeed, the degree of
SUMOylation, such as in the case of TOP1, is significantly

elevated in scleroderma tissues [36,37].
Epitope mapping indicates that a-TOP1 autoantibodies are

highly reactive to its catalytic domain [31,38]. However, the

reason for which an individual develops a chronic autoimmune
response against TOP1 and the consequence of the binding
of these autoimmune antibodies to TOP1 remain unclear.

Interestingly, patients with autoimmune antibodies against
RNAPII are often positive for a-TOP1 autoantibodies as well
[39], but the reason for the high frequency of RNAPII-TOP1
co-autoimmune response is not known either. The contribu-

tion of TOP1 to scleroderma is not limited to the production
of a-TOP1 autoantibodies. In many scleroderma tissues, there
are also a decrease in TOP1 catalytic activity and an increase in
TOP1 SUMOylation [37], but the nature of this SUMOylation

and the significance of these phenomena to scleroderma patho-
genesis are yet to be defined. Since studies from our laboratory
revealed that transcription-associated TOP1 K391 and K436

SUMOylation suppresses TOP1 activity while facilitating the
TOP1–RNAPII interaction, it would be interesting to deter-
mine if TOP1 K391/K436 SUMO modification is deregulated

in scleroderma. While a defect in transcription-associated
TOP1 K391/K436 SUMOylation could lead to DNA damage
and genome instability, hyper K391/K436 SUMOylation
would be predicted to enhance the level of TOP1–RNAPII

complexes in cells and alter transcriptional landscape, leading
to transcriptional stress and increased programed cell death.
The elevated level of cells undergoing apoptosis is expected

to lead to increased presentation of the TOP1–RNAPII com-
plex to the immune system, resulting in autoimmunity. The
increased cell deaths could also contribute to organ failure

and fibrosis observed in scleroderma patients.
TOP1 in autism

Interestingly, in addition to being widely used in cancer ther-
apy, TOP1 poisons were recently shown to alleviate Angelman
syndrome, a subtype of autism spectrum disorders (ASD) by

suppressing the exceptionally long, antisense RNA transcript
UBE3A-ATS [40,41]. UBE3A-ATS blocks the expression of
its sense gene UBE3A that is important for preventing the

disease [40,41]. Nonetheless, how TOP1 poisons affect
UBE3A-ATS expression remains unclear. Treatment with
TOP1 poisons, such as CPT or topotecan, can lead to the

reduced expression of many genes in both yeast and human
cells [42]. This transcriptional blockade was originally attribu-
ted to either the presence of unresolved supercoiled DNA or
the accumulation of covalently-trapped TOP1 on the genomic

DNA [43]. However, recent observations demonstrated that
TOP1 poisons only reduce the expression of exceptionally-
long and highly-transcribed genes with median gene length

of 66 kb, while up-regulating the expression of shorter genes
that are normally expressed at low levels [44]. In addition, sim-
ilar transcriptional interference can also be achieved by TOP1

depletion [40], suggesting that the effect of TOP1 poisons on
transcriptional progression is not due to DNA damage caused
by the formation of TOP1cc, which requires the presence of

catalytically-active TOP1. In addition, the level of transcrip-
tional suppression by TOP1 poisons not only depends on the
gene length but also positively correlates with the number of
introns in the gene [44].

Since TOP1 has been implicated in the recruitment and the
assembly of spliceosome at TARs to promote efficient tran-
scriptional progression [8–10], it is possible that TOP1 poisons

may influence the spliceosome assembly to exert inhibitory
effects on gene expression in an intron-dependent manner
[44]. Since spliceosome assembly on the newly-synthesized

mRNA also contributes to suppressing R-loops [5,9,11], the
possible effect of TOP1 poisons on spliceosome assembly is
consistent with the observation that topotecan stabilizes
R-loop formation, which correlates with the inhibition of the

expression of UBE3A-ATS [45].
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In summary, TOP1 poisons could be useful for the treat-
ment of Angelman syndrome or other genetic disorders that
may be suppressed by blocking expression of long genes.

However, these compounds are toxic chemotherapeutic drugs
and are not safe for long-term use. Therefore, a better under-
standing of the mechanism by which TOP1 poisons block long

gene expression is necessary in aiding researchers to identify
novel alternative strategies to target TOP1 in gene expression
regulation.
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