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Abstract The search for a parameter representing left ventricular relaxation from non-invasive and

invasive diagnostic tools has been extensive, since heart failure (HF) with preserved ejection fraction

(HF-pEF) is a global health problem. We explore here the feasibility using patient-specific cardiac

computer modeling to capture diastolic parameters in patients suffering from different degrees of

systolic HF. Fifty eight patients with idiopathic dilated cardiomyopathy have undergone thorough

clinical evaluation, including cardiac magnetic resonance imaging (MRI), heart catheterization,

echocardiography, and cardiac biomarker assessment. A previously-introduced framework for
nces and
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creating multi-scale patient-specific cardiac models has been applied on all these patients. Novel

parameters, such as global stiffness factor and maximum left ventricular active stress, representing

cardiac active and passive tissue properties have been computed for all patients. Invasive pressure

measurements from heart catheterization were then used to evaluate ventricular relaxation using the

time constant of isovolumic relaxation Tau (s). Parameters from heart catheterization and the

multi-scale model have been evaluated and compared to patient clinical presentation. The model

parameter global stiffness factor, representing diastolic passive tissue properties, is correlated signif-

icantly across the patient population with s. This study shows that multi-modal cardiac models can

successfully capture diastolic (dys) function, a prerequisite for future clinical trials on HF-pEF.
Introduction

The application of computational modeling to different organ
systems has been gathering increasing interest from the
research community. The possibility of performing in silico

experiments on computer models that mimic patient’s organs
has revved up the momentum of the evolution of virtual
patient-specific models. The surge of interest has been driven

by the prospect of being able to control all the variables to
open up new possibilities toward better health care in a
risk-free and ethically acceptable setting for the patient. The

exponential growth of computational imaging capacities has
also broadened the possibilities toward such models. From
simplistic models based on geometric shapes as early as the
1960s to multi-scale multi-physics models, the transformation

in this field has been tremendous [1–6].
Heart failure (HF) remains the leading cause of death in

developed countries [7–9]. The increasingly high incidence

rates, hospitalization, and health expenditures compel a con-
stant call for new strategies and progress in this field [10].
HF is a syndrome with diverse etiologies, characterized by

the decline of cardiac systolic or diastolic function, resulting
in insufficient blood supply to organs, organ dysfunction,
and finally, failure [11–13].

A chronological retrospective analysis of HF therapy in

patients with dilated cardiomyopathy (DCM) in the last cen-
tury sheds light on difficulties in treating this disease. Expert
guidelines currently outline HF therapy based on patients’

clinical presentation, cardiac systolic function, and specific
biomarkers, but oversee, to some extent, the pathophysiology
and etiology that lead to reduced cardiac function [13]. These

rigid therapy regimes focus on relieving cardiac symptoms
and tackle less the individual progression and the cause lead-
ing to this disease. Over the past three decades, drug therapy

has undergone rapid progression in lowering the mortality
and morbidity rates in HF patients [14]. The mortality rates
of patients that present with progressed HF symptoms and
receive optimal medical therapy remain high [14,15]. Even

the latest drug advancements present only a stepping stone
toward the treatment of HF. The diversity of this disease,
in its etiology and clinical presentation, suggests that the

key to a better and cost-effective therapy is the individualized
and personalized care. Personalized cardiac models have the
potential in facilitating the achievement of this goal [16,17].

The role of left ventricular (LV) systolic dysfunction has
attracted broad attention from both clinical and experimental
researchers [18–23]. On the other hand, LV diastolic dysfunc-

tion has been relatively slow in gathering interest due to its
complex role in the pathomechanism of HF [24,25]. General
consensus defines LV diastolic dysfunction as irregular cardiac

functional relaxation, distensibility, and LV filling, which

causes higher end diastolic left ventricular pressures [26]. To

completely understand the pathogenesis of diastolic dysfunc-

tion, a broad appreciation of cardiac physiology in the diastole

and its diverse compensation mechanisms is needed. Dyspnea,

as a symptom of HF, is often attributed to diastolic dysfunc-

tion after exclusion of other probable causes [27–30]. Its diag-

nosis remains a challenge in clinical settings because of the

difficulties present in linearly quantifying the progression of

this disease and assessing its significance to the patient [31].

The current non-invasive gold standard for the assessment of

diastolic dysfunction remains the echocardiographic evalua-

tion, especially Doppler measurements of transmitral flow

and tissue Doppler imaging (TDI) [26].

The progress in the field of cardiac simulation has been on a

rise in the last decade [32]. One of the first challenges in cardiac

modeling is capturing the anatomical geometry of the heart.

Simulating cardiac physical parameters relies heavily on ven-

tricular geometry. Many of the early-proposed cardiac

anatomical estimations were either based on geometrical mod-

els or post-mortem heart dissections. The first simplifications

of the complex LV geometry have been based on spherical

models [33]. Koushanpour and colleagues published one of

the early simulations of LV dynamics based on spheroids in

1960s [34]. In this study, they compared the LV time course

of tension using Laplace’s surface tension law in cats and tur-

tles. Their findings highlighted the importance of cardiac size

and shape in determining LV function. A gradual shift toward

anatomical models, based on ex vivo human and animal hearts,

could be observed, capturing a more accurate representation of

cardiac anatomy [35–37].

Progress in other fields of science, especially in physics and
mathematics, and advancements in computer technology

opened up new possibilities toward improving existing com-
puter simulations. The application of the finite element method
in diverse sectors of engineering represented one of the major

turning points in cardiac computational modeling and simula-
tion. The conception and refinement of this method enabled
the analysis of complex structural and mathematical problems
[38,39]. Janz et al. introduced one of the early cardiac mechan-

ical models using the finite element method [40]. The cardiac
model, in which the anatomical geometry is estimated from
the hearts of Sprague–Dawley albino male rats, seemed to pre-

dict the gross free wall deformation with the assumption of an
elastically linear and heterogeneous tissue [40]. Vinson et al.
later described a human cardiac model using ‘‘36 brick type

finite elements” representing the left ventricle [40]. As pointed
out by the authors, one of the limiting factors at that time was



Table 1 Clinical characteristics of the recruited patients

Patient characteristics Value

Age, mean ± SD, year 53.7 ± 12.6

Age at onset ± SD, year 52.8 ± 12.8

BMI, mean ± SD, kg/m2 27 ± 5.6

Heart rate, mean ± SD, beats/min 78 ± 20

Blood pressure, mean ± SD, mmHg

Systolic, mmHg 122 ± 17

Diastolic, mmHg 77 ± 11

Diabetes, number (%) 9 (19%)

Left bundle-branch block, number (%) 13 (22%)

Atrial fibrillation, number (%) 9 (16%)

6MWT, mean ± SD, m 511 ± 120

Dyspnoea, number (%)

NYHA I 11 (19%)

NYHA II 28 (48%)

NYHA III 17 (30%)

NYHA IV 2 (3%)

Family history of SCD or DCM, number (%) 11 (19%)
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‘‘the capacity of the computer and computing time available”
[41]. Today, current smart phones have more processing power
than the computers used at that time.

The radical advances in cardiac imaging modalities and the
implementation of non-invasive imaging sequences into the
diagnostic algorithms marked the shift toward image-based

models and allowed faster transition toward patient-specific
cardiac models [42]. Most computational models to date
selectively integrate elements (such as myocardial structure,

structural pathologies, biomechanics, or electrophysiology) in
various details and complexity, to suit the objective of the
model [43].

We have proposed previously a patient-specific cardiac

model that captures the biomechanical, hemodynamic, and
electrophysiological cardiac functions in patients with DCM
[2]. In this paper, we explore the feasibility of using such

models to capture cardiac diastolic function in a similar patient
population.
Laboratory tests

White blood cell count, mean ± SD, /nl 7.8 ± 2.4

Hemoglobin, mean ± SD, g/dl 14.4 ± 1.5

eGFR, mean ± SD, ml/min/1.73 m2 88.6 ± 16.3

Creatinine, mean ± SD, mg/dl 0.9 ± 0.2

NT-proBNP, median (1Q;3Q), ng/l 767 (104;2385)

hs-TNT, median (1Q;3Q), pg/ml 16(8;38)

Medications, number (%)

Aspirin 20 (36%)

ß-blocker 54 (93%)

ACE inhibitor or ARB 58 (100%)

Loop diuretic 30 (54%)

Aldosterone antagonist 35 (60%)

Statin 24 (44%)

Digoxin 7 (12%)

Echocardiography

LV ejection fraction, mean ± SD, % 32 ± 15

LV-EDD, mean ± SD, mm/m2 57 ± 9

LV-ESD, mean ± SD, mm/m2 43 ± 13

MRI

LV ejection fraction, mean ± SD,% 37 ± 15

LV stroke volume, mean ± SD, ml 84 ± 28

LV-ESV index, mean ± SD, ml/m2 85 ± 57

LV-EDV index, mean ± SD, ml/m2 130 ± 54

LV-ESD index, mean ± SD, mm/m2 26 ± 7

LV-EDD index, mean ± SD, mm/m2 31 ± 5

LV mass index, mean ± SD, g/m2 59 ± 21

Note: 6MWT, 6 Minute Walk Test; NYHA, New York Heart

Association functional classification; SCD, sudden cardiac death;

DCM, dilated cardiomyopathy; eGFR, estimated glomerular filtration

rate; NT-proBNP, N-terminal prohormone of brain natriuretic

peptide; hs-TNT, high sensitive troponin T; ACE, angiotensin-

converting-enzyme; ARB, angiotensin II receptor blocker; LV, left

ventricular; EDD, end diastolic diameter; ESD, end systolic diameter;

MRI, magnetic resonance imaging; ESV, end systolic volume; EDV,

end diastolic volume.
Results and discussion

Clinical characteristics of the patient population

A summary of the clinical parameters investigated in this study
is presented in Table 1. The patients in our cohort are 54 years

old on average. The majority of the recruited patients showed
signs of HF with assessment of the New York Heart Associa-
tion (NYHA) functional class II and III. The mean left ventric-

ular ejection fraction (LV-EF) was 37%, with 5% of the
recruited patients having an ejection fraction above 55%.
HF drug therapy was initiated for all patients. The descriptive

analysis of the invasive pressure measurements is presented in
Table 2. As can be seen, the mean left ventricular end diastolic
pressure (LV-EDP; mean 22 mmHg), the pulmonary capillary
wedge pressure (PCWP; mean 20 mmHg), and the systolic

pulmonary artery pressure (SAP; mean 40 mmHg) were all
elevated as expected from the largely-symptomatic patient
cohort. The calculated time constant Tau (s) across the study

population ranged 28–89 ms as shown in Figure 1A. Taking
together the elevated pressure measured from the right circula-
tion, approximately 40% of the patients proved to have a

lengthened s (duration >48 ms [44]), a sign of abnormal left
ventricular relaxation.

Simulation of cardiac parameters

The feasibility of using the presented cardiac model to capture
cardiac systolic function in a clinical setting, in its strengths
and limitations, has been previously reported [2]. In the present

study, we aimed to examine how systolic and diastolic biome-
chanical parameters derived from the model, after completion
of the fitting and personalization process, correspond to inva-

sive and non-invasive clinical parameters of diastolic function.
An example of a generated cardiac model of a patient in this
study, after concluding the workflow algorithm, is shown

in Figure 2. The systolic parameters, including computed
LV-EF (cLV-EF; mean 35%), simulated stroke volume
(sSV; mean 86 ml), maximum strength of active contraction

(s0; mean 120 kPa), and global stiffness factor (HO factor;
mean 1.1), are computed from the cardiac models for each
patient as shown in Table 3. The distribution of global stiffness
(HO factor) and LV maximum active stress (s0) across the
study population is shown in Figure 1B and C, respectively.

Assessment of the diastolic function

From early animal experiments investigating the maximal
rate of pressure fall (max negative dP/dt) [45] to current



Table 2 Summary of invasive pressure measurements and

calculations

Parameter Value

Left ventricular end-diastolic pressure, mean ± SD,

mmHg

22 ± 8.8

Pulmonary capillary wedge pressure, mean ± SD,

mmHg

20 ± 9.1

Mean pulmonary artery pressure, mean ± SD,

mmHg

28 ± 11.2

Systolic pulmonary artery pressure, mean ± SD,

mmHg

40 ± 13.4

(�)dP/dt(max), mean ± SD, mmHg/s 1381 ± 404

(+)dP/dt(max), mean ± SD, mmHg/s 1306 ± 488

Tau (s), mean ± SD, ms 49 ± 13.3
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echocardiographic TDI parameters in humans [46], the search
for a parameter representing left ventricular relaxation from
non-invasive and invasive diagnostic tools has been extensive

[44]. The diastolic function of the heart is largely dependent
on the passive myocardial properties, such as myocardial
stiffness, which represents the effective elasticity of cardiac

extra and intracellular composition. Preload, myocardial con-
tractility, and regional dyssynchrony modulate myocardial
relaxation [25]. The accurate characterization and assessment

of diastolic dysfunction requires the simultaneous measure-
ment of pressure and volume changes in the left ventricle dur-
ing the diastole, which increases the complexity and difficulty
of its precise clinical evaluation in living patients. Tau (s),
the time constant of isovolumic relaxation, is acknowledged
as the time period needed for the ventricular pressure to fall
to approximately 37% (or 1/e) of the pressure at the start of

the isovolumic relaxation phase [47]. We used s in this study,
as a measure for the cardiac diastolic function, because s
remains a widely-accepted, less load-dependent surrogate for

left ventricular relaxation and pressure decline [47,48].
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Figure 1 Distribution of the examined variables

Distribution of the calculated time constant Tau (s; A), global stiffne
population is plotted. The brown bars represent the frequency density

variable. LV, left ventricle.
To assess the ability of the personalized cardiac model in
capturing left ventricular relaxation, we correlated the model
parameter of left ventricular global stiffness with s. As

presented in Table 4 and Figure 3A, there is a significant corre-
lation (P = 4.1E�4) between the global stiffness factor and s,
whereas no significant correlation was found between left ven-

tricular maximum active stress and s. N-terminal pro-brain
natriuretic peptide (NT-proBNP) is accepted as a prognostic
biomarker in both systolic and diastolic HF [13,49,50]. We

extended the analysis by subdividing the study population into
patients with normal and elevated NT-proBNP plasma
concentration (cut-off value of 125 ng/l). Interestingly, the
correlation between global stiffness factor and s was not only

preserved but enhanced in the subpopulation with elevated
NT-proBNP (125 ng/l) as shown in Table 4 and Figure 3B.
The correlation between these two parameters was also

preserved (R= 0.58, P < 0.05), with a higher cut-off level of
325 ng/l for NT-proBNP. At the same time, the correlation
between LV maximum active stress, which represents the

active and systolic component of myocardial contraction in
the model, and s remained non-significant. This observation
underlines the potential benefit of combining molecular

biomarkers with computational models.
Doppler echocardiography remains the current reference

method for non-invasive assessment of diastolic LV function.
Kasner et al. performed a clinical study evaluating the correla-

tion between conventional or TDI echocardiographic diastolic
indexes and pressure volume measurements from heart
catheterization. E0 (early diastolic peak of the annular TDI

measurements), E/E0 (ratio of transmitral flow and annular
velocity), E0/A0 (ratio of early and late annular velocity)
showed very modest correlations with s of �0.33, 0.34, and

�0.24, respectively [51]. Although the presented correlation
between global stiffness factor and s appears modest, it
remains at least on the same level as those between s and the

echocardiographic parameters mentioned above.
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Figure 2 Map of the computed myocardium contraction strength in a patient-specific cardiac model

The contraction strength is shown in the front view (A) and upper view (B) using color gradient with low intensity in blue and high

intensity in red, non-contractile connective tissue is colored in gray.

Table 3 Summary of the simulated parameters from the person-

alized model

Parameter Value

Global stiffness factor, mean ± SD, no unit 1.1 ± 0.73

Left ventricular maximum active stress,

mean ± SD, kPa

120 ± 30.3

Simulated stroke volume, mean ± SD, ml 86 ± 27.2

Computed left ventricular ejection fraction,

mean ± SD,%

35 ± 13.6

<30, number (%) 23 (39.6)

30–44, number (%) 19 (32.7)

45–54, number (%) 13 (22.4)

P55, number (%) 3 (5.2)
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Conclusions

The clinical applicability of using in silico 3D computational
cardiac models is promising, which strengthens the predilec-
tion toward its utilization in search of novel perspectives in
risk stratification, therapy, and prognosis in other fields of
Table 4 Statistical analysis of the correlations between the simulated

Patient group
Correlation of Tau (s) with global stiffness

R value P value

All patients 0.47 4.1e�4

Patients with elevated

NT-proBNP (>125 ng/l)

0.59 2.4e�4

Note: NT-proBNP, N-terminal pro-brain natriuretic peptide.
cardiology [17]. The incentive toward the search for a better
strategy to diagnose and evaluate diastolic dysfunction
stems from the heterogeneity of results in clinical studies
investigating HF with preserved EF (HF-PEF), with respect

to mortality, quality of life, and cardiovascular risk [52]. The
commonly-accepted consensus, which has prevailed over the
years, remains that HF-PEF is associated with increased mor-

tality and hospitalization [52–54]. As a diagnosis of exclusion
for patients presenting with dyspnea and other HF symptoms,
HF-PEF presents a challenge to physicians especially in an

ambulatory setting. The differences in patient characteristics
and demographics between patients with HF-PEF and those
carrying HF with reduced EF (HF-REF) have raised further

questions about the disease pathomechanism, severity, and
clinical significance. In this study, we show that this personal-
ized cardiac model can capture patient-specific diastolic
parameters, which could hold the key toward solving difficult

challenges in patients with HF-PEF.
More and more accurate and detailed models of cardiac

function in both humans and animals have been abundantly

reported, including biomechanical models that specifically
investigate cardiac diastolic function [55–59]. However, few
systolic and diastolic parameters with Tau in patients

factor Correlation of Tau (s) with LV maximum active stress

R value P value

�0.23 9.8e�2

�0.17 3.4e�1
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models integrate data from conventional standard clinical pro-
cedures to create a patient-specific electro-mechanical heart

model. This study presents the feasibility of applying and inte-
grating various experimentally-validated biophysical models to
create a patient-specific multi-modal simulation of cardiac

function in the diseased heart.
Our goal is the constant progression of the implementation

of virtual cardiac models in a clinical setting to provide the

patients with the optimal individualized medical care. Further
advancement of computational modeling at different levels is
anticipated in the near future. One of the first steps forward
is validating the predictive prognostic power of such virtual

models in a clinical setting. Secondly, capturing patient-
specific cardiac fiber architecture remains one of the challenges
and a limiting factor of advanced in vivo virtual models nowa-

days. The importance of fiber orientation in simulating cardiac
electrophysiology and biomechanics has been abundantly
described in previous studies [60] and diffusion tension MRI

(DT-MRI) serves as a common approach to capture cardiac
fiber orientation [61]. Due to technical difficulties present, like
scan duration, myocardial respiratory displacement, and short
transversal relaxation time, high resolution DT-MRI imaging

was mainly utilized on explanted animal and human hearts.
Algorithms for rule-based assignment of fiber orientation cur-
rently provide alternative to in vivo virtual models [62]. How-

ever, recent advances in cardiac DT-MRI render this
approach feasible in the near future [63], opening up the pos-
sibility toward generating fully patient-specific myocardial

fiber orientation and architecture. On another level, integrat-
ing not only parameters of cardiac electrophysiology but also
histopathological myocardial structure and tissue specific pas-

sive physical parameters, like tensile strength, compaction and
density of fibers, and fibrosis grade, from myocardial biopsies
could be promising toward the complete in silico simulation of
the individual heart.
Materials and methods

Patient population

Patients with HF symptoms were enrolled in this study after

having given their written informed consent. Only patients
receiving heart catheterization due to clinical necessity were
included. To reflect broad representation of potential HF phe-
notypes, cases with slightly to severely reduced systolic func-

tion were included. Clinical evaluation, diagnostics, and
follow-up were performed in adherence to hospital guidelines.

The enrolled patients underwent comprehensive clinical

assessment constituting a detailed clinical history, physical
examination, 12 lead electrocardiogram, echocardiography, 6
Minute Walk Test, spiroergometry, and comprehensive labo-

ratory tests including NT-proBNP. For the clinical diagnostic
process, patients underwent also procedures to ensure exclu-
sion of secondary causes of DCM (left heart catheterization,
cardiac MRI, extensive blood panel, and clinical history).

Acute myocarditis, significant coronary artery disease
(CAD), history of chemotherapy with cardio-toxic agents or
chest radiation, valvular heart diseases, and probable sec-

ondary causes for DCM were exclusion criteria. A total num-
ber of n= 58 patients were investigated in this study.

Hemodynamic data acquisition

Hemodynamic assessment was performed using left and right
heart catheterization. All pressure curves were checked for cal-

ibration errors. The customary femoral access was used in all
patients receiving simultaneous left and right circulation eval-
uation. Pressure measurements of the left ventricle and aorta
were performed over repeated cardiac cycles prior to applica-

tion of the contrast agent. Hemodynamic pressure analysis
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was performed using the computer-assisted software Metek
(Roetgen, Germany). The intraventricular rate of change in
pressure ((�) (+) dP/dt) was calculated during the procedure.

Maximum values for (�) (+) dP/dt were identified and output
for each cardiac cycle. The calculation of s (time constant of
isovolumic relaxation) was based on the approach described

by Weiss and colleagues [64], which assumes an exponential
decline in left ventricular pressure during the isovolumic time
period. P(t) = P(t= 0) x e�t/s and s = �P/(dP/dt).

MR data acquisition

To further evaluate the clinical phenotype, all patients under-

went cardiac MRI analyses (1.5T cMRI, 32Ch RF platform,
Philips Achieva). Standard multi-slice 2D steady-state free pre-
cession sequences (SSFP), late gadolinium enhancement
(LGE) multi-slice inversion recovery sequence, and feature

tracking imaging were included in the procedure protocols.
Comprehensive 2D echocardiographic assessment of systolic
and diastolic function according to current guidelines and hos-

pital standards was also performed in all patients.

Personalized cardiac model in patients with dilated cardiomyo-

pathy

The computational workflow and process of simulating the
personalized multi-scale multi-physics model based on the
acquired clinical data has been thoroughly described previ-

ously [2]. We briefly recall here the model assumptions related
more specifically to the description of cardiac biomechanics.
We adopt the Hill–Maxwell framework to represent the inter-

play between active contraction and passive response of the
myocardium [65] (Figure 4).

The myocyte contraction is modeled following the

approach presented by Sermesant and colleagues, for which
the contraction is related to the action potential through a
bi-exponential law [66]. We parameterize this law by the

maximum strength of active contraction (s0), the rate of
contraction (the speed at which the tissue contracts during
depolarization), and the rate of relaxation (the speed at which
the tissue relaxes during repolarization). The passive response

of the myocardium to mechanical stress is described by the
non-linear, hyper-elastic and orthotropic tissue model pro-
posed by Holzapfel and colleagues [67]. We consider a global

scaling factor (HO factor) for the reference model parameters
Figure 4 Schematic representation of the classical Hill’s muscle

model

The model has two parallel components: an active (AE) and a

passive (PE) component. The total stress produced by the tissue is

indicated by T.
provided by Holzapfel and colleagues, offering a lumped rep-
resentation of the tissue stiffness [67]. The electromechanical
model provides computed cardiac dynamics, from which we

extract simulated ejection fraction as the clinical parameter
of interest. More details on the personalized cardiac model
can be found in the references cited in this section.

Statistical analysis

The statistical analysis was performed using the conventional

‘‘R” software (Version 3.2.2). The parameters s, global stiff-
ness factor, and LV active force are continuous and show an
approximate normal distribution. Therefore, a linear correla-

tion analysis using Pearson’s correlation coefficient through
the ‘‘cor” and the ‘‘cor.test” function was applied. The para-
metric P value, with a significance level of 0.05, was computed
for all performed correlations. To account for a possible non-

linear relationship between s and global stiffness factor, a log-
arithmic analysis of both parameters is also presented
(Table S1). A possible monotonic correlation was analyzed

using the Spearman rank correlation method. The results
obtained were similar but non-superior to those based on the
linear correlation analysis and were not presented in the cur-

rent study to avoid repetition. Histograms were calculated
using the ‘‘hist” function with standard parameters. In order
to visualize the output, scatter plots were generated for the sig-
nificant correlations. Smoothing of scatter plots was carried

out by the ‘‘smoothScatter” function.
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