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Abstract Orthology relations can be used to transfer annotations from one gene (or protein) to

another. Hence, detecting orthology relations has become an important task in the post-genomic

era. Various genomic events, such as duplication and horizontal gene transfer, can cause erroneous

assignment of orthology relations. In closely-related species, gene neighborhood information can be

used to resolve many ambiguities in orthology inference. Here we present OrthoGNC, a software

for accurately predicting pairwise orthology relations based on gene neighborhood conservation.

Analyses on simulated and real data reveal the high accuracy of OrthoGNC. In addition to orthol-

ogy detection, OrthoGNC can be employed to investigate the conservation of genomic context

among potential orthologs detected by other methods. OrthoGNC is freely available online at

http://bs.ipm.ir/softwares/orthognc and http://tinyurl.com/orthoGNC.
Introduction

Currently, sequencing facilities are able to produce large
amounts of gene and protein sequences in a short period of
time. Hence, many complete genomes of organisms are avail-

able today for more in-depth comparative studies. A first step
in comparative genomics is the identification of homologous
and more specifically orthologous genes. Homologous genes

(homologs) are originated from a gene in the last common
ancestor. In 1970, Fitch classified homologs into orthologous
and paralogous genes [1]. Orthologous genes (orthologs) are

homologs that have evolved by speciation event in their last
common ancestor. In contrast, paralogous genes (paralogs)
are homologs that have evolved by gene duplication in their

last common ancestor.
Identification of orthologs is more important and of great

interest, since orthologs typically tend to share a similar func-
tion [2]. Thus orthology relations can be used to transfer func-

tional annotations (including protein–protein interactions) to
newly-sequenced genomes [3,4]. Moreover, by definition, only
nces and
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phylogeny of orthologs can reflect the true evolutionary his-
tory of the corresponding species correctly [5]. Therefore, only
orthologs can be used to infer species phylogenies [6].

Despite the straightforward definition of orthology, the
problem of assigning orthology is not trivial. Evolutionary
events such as horizontal gene transfer (HGT) and gene loss

often complicate the evolutionary history of genes. Hence,
many methods and databases have been introduced to tackle
the problem of orthology assignment. More than 40 methods

and databases are listed in the ‘‘Quest for Orthologs” website
(http://questfororthologs.org/orthology_databases), which can
mostly be classified into two major classes according to the
approaches employed.

Methods such as OrthoStrapper [7], HOGENOM [8],
LOFT [9], PhylomeDB [10], and OrthoReD [11] are based
on phylogenetic analysis. Phylogeny-based methods seem to

be more precise, with high specificity reported [7,12,13]. How-
ever, ambiguities in the inferred gene trees and species trees, as
well as wrong placement of the root can lead to incorrect

assignment of orthologs. In addition, these methods require
large computational cost, making their usage impractical for
large datasets [14–16].

The second class of methods usually employs a clustering
algorithm on a weighted graph that is built from pairwise
sequence similarities. Examples in this class include OMA
[17], OrthoMCL [18], InParanoid [19], Proteinortho [20], and

OrthoDB [21]. These methods, because of their tractability,
have gained more popularity, particularly when used for large
datasets. However, these methods are based on the molecular

clock hypothesis by assuming that orthologous sequences are
more similar and would fail to detect orthologs when the
molecular clock hypothesis is violated [22]. Furthermore,

HGT and convergent evolution as well as linage-specific gene
loss (Figure 1) can introduce false positive relations. Note that
Figure 1 An example for lineage-specific gene loss

Suppose gene g has undergone a duplication event, resulting in

two genes, g1 and g2, which is followed by a speciation event.

Deletion of g1 in lineage A and deletion of g2 in lineage B can lead

to the wrong assignment of g2 from lineage A and g1 from lineage

B as orthologs. According to the duplication event in the last

common ancestor, g1 and g2 are paralogs. Since duplication event

occurs prior to speciation, g1 and g2 are out-paralogs.
duplications prior to a speciation event (in-paralogs) and
duplications after a speciation event (out-paralogs) [23] intro-
duce one-to-many or many-to-many orthology relation, fur-

ther complicating the process of orthology detection. Most
similarity-based methods that employ clustering, present the
orthology relations as ortholog groups instead of pairwise rela-

tions. As a result, these groups can contain in-paralogs and
out-paralogs, making their usage inappropriate for studies
such as phylogeny inference where one-to-one orthology rela-

tions are needed.
To increase the quality of inferred orthologs, some methods

attempt to take genomic context into account [24–29]. Due to
genome rearrangements, as well as gene gains/losses, genomic

context is less conserved beyond the genus level. Nonetheless,
it can be a strong evidence of orthology when found. Conser-
vation of gene neighborhood can assist in distinguishing ortho-

logs from out-paralogs [30,31]. Similarly, it can prevent
misinterpretation of HGTs and genes with convergent evolu-
tion as orthologs. Another interesting advantage of employing

genomic context is to reveal orthologous genes or proteins that
share low sequence similarities [32]. These orthologs can be
missed in clustering or homology inference steps due to

trade-off in favor of specificity. Moreover, with the advent of
next-generation sequencing, many closely related genomes
are available today. As a result, comparative studies are
extended to closely related species and even strains of a same

species where genomic context is highly conserved.
In this paper, we extend the method of Jun et al. [29] in

both homology detection and orthology detection to increase

the accuracy of predictions. We propose OrthoGNC, a
similarity-based method and a software that outputs high-
quality pairwise orthology relations based on gene neighbor-

hood conservation. Moreover, OrthoGNC can be employed
to investigate the conservation of genomic context among
potential orthologs detected by other methods.

Method

Jun et al. tested a simple method based on gene neighborhood

conservation to extract orthology relations in mammalian pro-
teomes [29]. According to their method, two genes are ortholo-
gous if they are homologous and share at least one homologous

neighbor in a neighborhood size of three upstream and three
downstream genes. Also, homology between two genes are
defined as Blastp E-value < 1e�5. We have extended this

method in both homology detection and orthology detection.
Similar to the aforementioned method, OrthoGNC performs
three main steps to infer orthology relations: (i) computing
pairwise sequence similarities, (ii) identifying homologous

sequences, and (iii) inferring orthologs according to gene neigh-
borhood conservation. However, in each step, parameters can
be set to various values to provide desired output. These

parameters can be easily adjusted by the user in a configuration
file or using a user-friendly GUI. Moreover, in OrthoGNC,
inference of orthology relation can be done in an iterative rou-

tine to produce more accurate and sensitive results.

OrthoGNC steps

OrthoGNC is implemented in Java and accepts both DNA and

protein sequences in FASTA format. In addition, the order of

http://questfororthologs.org/orthology_databases
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appearance of genes or proteins in the FASTA file must be the
same as the order of their appearance in the underlying genomes.

Step 1

Like other similarity-based methods, OrthoGNC requires pair-
wise sequence similarities at the very beginning step. The well-
known and widely-used heuristic software BLAST is used to

compute the similarity score [33]. OrthoGNC can run BLAST
in multiple threads in parallel, thus improving the running time
of the BLAST step significantly in multi-core CPUs. The num-

ber of simultaneous BLAST jobs can be set or auto detected
according to the number of available cores and the input
parameters of BLAST, such as E-value and substitution

matrix, can be adjusted by the user.

Step 2

In the second step, OrthoGNC infers homology relations using

pairwise similarity scores. Two sequences are assumed to be
homologous if they share a significant sequence similarity
(30%–35% for proteins as a rule of thumb according to Ref.

[14]). To infer homology relation, OrthoGNC looks into
BLAST hits to make sure that not only a certain amount of
identical residues is matched but also a certain length of both

sequences is covered. The minimum percentage of identical
residues (Ti) and minimum percentage of coverage (Tc) can
be adjusted by the user.

Step 3

In the third and last step, OrthoGNC extracts orthology rela-
tions from homologous sequences based on gene neighbor-
hood conservation. Similar to the adaptive RBAH [20],

OrthoGNC uses a ratio Tb, 0 < Tb < 1, to tolerate possible
variances of molecular clock rate. This allows every homolog
of a gene that has a score > Tb � score of the best homolog

to be an orthology candidate for that gene. Afterward, genes
and their candidate orthologs are investigated to determine
the number of common homologous neighbors, which can

be done via one of two predefined routines, namely One2One
mapping and unique intersection. In the first routine, each of
the 2n neighbors of a gene (n upstream and n downstream)

is checked against its corresponding gene in the neighborhood
of candidate orthologs to see whether they are homologs
(Figure S1A). If the number of homologous pairs exceeds a
predefined threshold, then the gene and its candidate ortholog

are bona fide orthologs. In the second routine, OrthoGNC
counts the unique homologous matches between neighbors
of a gene and neighbors of its candidate ortholog without

considering co-linearity (Figure S1B). Similar to the first rou-
tine, if the number of unique homologous matches exceeds a
predefined threshold then the gene and its candidate ortholog

are bona fide orthologs. Consideration of gene order in the first
routine makes it more stringent while, in contrast, the second
routine allows for local rearrangement and gene gains/losses.

We also observed that other orthology detection parameters
– maximum tolerance ratio (Tb), radius of neighborhood
(N), and minimum number of common neighbors (Tn) – can
also affect the number of inferred orthologs dramatically. By

relaxing these parameters, OrthoGNC is able to find more
orthologs; however, more false-positive relations would also
be introduced. To maintain the precision of inferred orthologs,

OrthoGNC identifies orthology relations iteratively, that is,
the user can define more than one parameter set for multiple
rounds of orthology inference. Accordingly, if in certain round
of orthology inference with certain set of parameters,

OrthoGNC finds an ortholog for a gene in a strain, it does
not look for another ortholog of this gene in the same strain
in the subsequent rounds. To clarify, suppose we find the

orthology relation (g, x) in some round; in the next iterations
with more relaxed parameters, new homology relations such
as (g, y) and (h, x) might be introduced where y and h are in

the same genomes as g and x, respectively. Inference of (g, x)
using more stringent parameters implies that (g, y) and (h, x)
are wrong unless (g, h) and (x, y) duplicated after the specia-
tion event.

The number of orthology-detection rounds and the param-
eters in each round – Tb, N, Tn, and the neighbor investigation
routine (NIR) to be used – can be easily configured by the user.

Finally, the pairwise orthology relations are reported for each
pair of input genomes.

Although the main objective of OrthoGNC is to deliver

highly accurate and precise orthology relations, it can be com-
bined with other methods to achieve higher recall. To this end,
user can choose to combine the output of OrthoGNC with an

arbitrary set of orthologs that is predicted by another method.
In this case, if OrthoGNC is unable to find any ortholog for
gene g from strain S, it outputs genes from S that are intro-
duced as orthologs of g by the other method.
Benchmarking

Evaluation of orthology inference methods is not an easy task,

because we do not know the true evolutionary history of genes.
Recently, in an effort to standardize orthology benchmark
[34], a public web service has been introduced to assess differ-

ent methods on 66 species. Unfortunately, all of these species
are evolutionary distant (beyond the genus level), making it
inappropriate for our study. We thus compared OrthoGNC

to other methods on both simulated and real data, notwith-
standing that high conservation of genomic context is a strong
and self-verifying criterion in orthology inference and has
already been evaluated [29,35]. Four similarity-based methods

that produce pairwise orthology relations are selected for com-
parison, including OMA [17], InParanoid [19], Proteinortho
[20], and EGM2 [36]. In addition, OrthoGNC is also compared

to Jun et al.’s method (Figure S2), which is now a special case
of OrthoGNC, where E-value = 1e�5, Ti = 0%, Tc = 0%,
N= 3, Tn = 1, Tb = 0.0, and NIR = ‘‘unique intersection”.

OMA, InParanoid, and Proteinortho all use clustering for
orthology inference, while EGM2 employs genomic context
to perform iterative graph matching. The latest version of each
software was acquired from their official website, and was run

with default parameters. For OrthoGNC, we used different
parameter configurations (Table 1) to evaluate the effect of
parameters chosen on ortholog inference in practice. We first

used each configuration (Conf) to infer the orthologs in single
rounds. Then, we used configurations 2–8 in sequence to infer
the orthologs iteratively, with homology detection parameters

fixed for all iterative rounds. We further show how OrthoGNC
could be employed to refine the orthology relations that are
predicted by other methods. Different parameter configura-

tions (Table S1) have also been done to assess the impact of
gene neighborhood conservation (Figure S3).
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For performance evaluation, we applied all methods on two
datasets; a simulated proteome dataset and a prokaryotic pro-
teome dataset. Prokaryotic genomes are known to be fluid [37],

and many genes are subject to lose their ancestral order, due to
significant amounts of rearrangements. We show that even in
the presence of many rearrangements, genomic context is still

highly informative in detecting accurate orthology relations
for closely-related species.

Simulated data

In the absence of a gold standard, we have used the Artificial
Life Framework (ALF) [38] to simulate a proteome set consist-
ing of 30 species. ALF was previously employed for simulating

bacteria-like and mammalia-like genomes to assess the impact
of different evolutionary forces on orthology inference [39].
We used the same set of parameters that was used to generate

bacteria-like genomes in an earlier work, by incorporating gen-
ome rearrangement event in addition to other predefined evo-
lutionary events.

Real data

The real dataset comprises eight proteomes from genus
Mycobacterium. The included species areMycobacterium ulcer-

ans Agy99 (4241 proteins), Mycobacterium leprae TN (1605
proteins), Mycobacterium avium subsp. paratuberculosis K-
10 (4350 proteins), Mycobacterium smegmatis str. MC2 155
(6716 proteins), Mycobacterium bovis AF2122/97 (3920 pro-

teins), Mycobacterium marinum M (5452 proteins), Mycobac-
terium tuberculosis H37Rv (3989 proteins), and
Mycobacterium abscessus (4941 proteins). All proteomes were

acquired in FASTA format from PATRIC [40].

Evaluation

For the simulated dataset, we first count the number of

correctly-predicted orthology relations (true positive; TP),
the number of incorrectly-predicted orthologs (false positive;
FP), and the number of missed orthology relations (false neg-

ative; FN). We then calculate the precision and recall for each
method according to Eq. (1).

Precision ¼ TP

TPþ FP
; Recall ¼ TP

TPþ FN
ð1Þ

For real data, we cannot calculate precision and recall due
to unknown orthology relations. Instead, we investigate how
many genes for which OrthoGNC predicted an ortholog while

each competing method was unable to find any orthologs or
suggested another ortholog. To this end, we calculate three sets
of orthology relations, namely, MMethod, M0

Method, and
M00

Method according to (2). For instance, to obtain MOMA,

we look for every orthology relation (g, o) predicted by
OrthoGNC, where OrthoGNC predicted ortholog o in species
S for gene g, and OMA failed to predict any ortholog for g in

S. For M0
OMA, we look for every orthology relation (g, o) pre-

dicted by OrthoGNC, where OrthoGNC predicted ortholog o
in species S for gene g and OMA predicted some other ortho-

log for g in S. For M00
OMA, we look for every orthology rela-

tion (g, o0) predicted by OMA, where OMA predicted

ortholog o0 in species S for gene g and OrthoGNC predicted
some other ortholog for g in S. To put it simple, for a total
number of |M0

OMA| genes OrthoGNC predicted orthologs
while for the same genes OMA predicted a total number of |
M00
OMA| other orthologs. Furthermore, we calculate the set

UOrthoGNC of orthologous genes that were only predicted by
OrthoGNC. We computed MMethod, M

0
Method, M

00
Method, and

UOrthoGNC for both the simulated data and real data

MMethod ¼
[

S2Speciesfðg:oÞjo2S^ðg:oÞ
2OrthoGNC^ 9=o0 2S : ðg:o0Þ 2Methodg

M0
Method ¼

[
S2Speciesfðg:oÞjo2S^ðg:oÞ

2 ðOrthoGNC�MethodÞ^ð9o0 2S : o–o0 ^ ðg:o0Þ
2 ðMethod�OrthoGNCÞÞg

M00
Method ¼

[
S2Speciesfðg:o

0Þjo0 2S^ðg:o0Þ
2 ðMethod�OrthoGNCÞ^ð9o2S : o–o0 ^ ðg:oÞ
2 ðOrthoGNC�MethodÞÞg

UOrthoGNC ¼OrthoGNC�ðOMA[ProteinOrtho[ InparanoidÞ
ð2Þ

For real data, in addition to calculating MMethod, M
0
Method,

M00
Method, and UOrthoGNC, we built Venn diagrams using the

online tool InteractiVenn [41] to provide an overall picture
of the predicted orthologs for all methods. Pairwise orthology
relations are introduced to InteractiVenn as a string value, in

which two protein ids are separated with a delimiter character.
For all predicted x–y orthology relations, we also add the y–x
relations manually.
Results and discussion

In order to evaluate OrthoGNC and the effect of parameters

chosen on predicting orthologs, we ran OrthoGNC using dif-
ferent configurations of parameters both in single rounds
and iteratively (Table 1). In single rounds, we only used one

parameter configuration for orthology inference, whereas in
iterative mode, rounds of orthology inference were performed
with parameters of Conf 2–8 sequentially. For example, in

order to iteratively infer orthologs with Conf 4, three rounds
of orthology inference with Conf 2–4 is done. If in a round
of orthology inference, OrthoGNC finds an ortholog for gene
g in a strain, it does not look for another ortholog of gene g in

the same strain in the subsequent rounds.

Ortholog inferring performance of OrthoGNC on simulated data

The ortholog inferring performance on the simulated data
using various methods is shown in Figure 2. Precision of
OrthoGNC converges to one by choosing strict parameters

as in Conf 1. However, the amount of predicted orthology
relations decreases when parameters are set strictly to output
stringent results. It is of note that, even in this case,

OrthoGNC is able to find orthology relations that may not
be found by any other method. As seen in Table 2 (MMethod),
with the stringent parameter set of Conf 1, 2670 (and 99.96%
of these are correct), 3750 (99.89%), 1648 (100%), and 37,893

(99.97%) orthology relations predicted by OrthoGNC were
missed by Proteinortho, OMA, InParanoid, and EGM2,
respectively. Moreover, with Conf 1, 332 (100% of these are

correct) orthology relations (= |UOrthoGNC|) found by
OrthoGNC are missed by all other methods. By relaxing
homology inference parameters in Conf 2, OrthoGNC detects



Figure 2 Precision–recall plot of OrthoGNC and other methods

on simulated data

Precision and recall rates for OrthoGNC in single rounds and

iteratively are compared with those using Proteinortho, OMA,

InParanoid, EGM2, as well as combination of OrthoGNC and

InParanoid. Parameter configurations for Conf 1–8 are listed in

Table 1. Conf, configuration.

Table 1 Parameter configurations used for performance evaluation of OrthoGNC

Parameter Conf 1 Conf 2 Conf 3 Conf 4 Conf 5 Conf 6 Conf 7 Conf 8

Homology E-value 10�5 10�5 10�5 10�5 10�5 10�5 10�5 10�5

Ti 30% 0% 0% 0% 0% 0% 0% 0%

Tc 50% 0% 0% 0% 0% 0% 0% 0%

Orthology N 7 7 7 7 7 7 7 0

Tn 9 9 9 7 5 3 1 0

Tb 0.80 0.80 0.80 0.80 0.80 0.80 0.80 1.0

NIR O O I I I I I I

Note: Ti, minimum percentage of identical matches in a BLAST hit; Tc, minimum percentage of coverage of query and subject sequences in BLAST

hit; N, radius of neighborhood to be investigated; Tn, minimum number of common neighbors (0 � Tn � 2 * N); Tb, maximum tolerance ratio from

score of best hit (0 � Tb � 1); NIR, neighborhood investigation routine. I stands for unique intersection and O stands for One2One mapping.
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many more new orthology relations that are missed by other
methods, although a small amount of false positives is

included. This is because other methods use higher similarity
cutoffs to maintain the precision, while in OrthoGNC, in pres-
ence of its gene neighborhood conservation criteria, the

sequence similarity parameters can be relaxed to include more
distant orthologs.

Another advantage of OrthoGNC is to distinguish the main

ortholog [35] in the presence of multiple candidates. Accord-
ingly, we were curious about the number of genes for which
an ortholog with conserved neighborhood exist and are found
by OrthoGNC while other methods predicted other orthologs.

To this end, we calculated the sets M0
Method and M00

Method.
As depicted in Table 2, with Conf 1, there are 936 orthology

relations (g, g0) in set M0
InParanoid, such that OrthoGNC cor-

rectly predicted gene g0 from species S as an ortholog for g,
while InParanoid predicted some other ortholog(s) like o from
S as an ortholog for g, resulting in 989 (co-)orthology relations
like (g, o) in M00

InParanoid. Within these 989 (co-)orthology rela-

tions inM00
InParanoid that are not identified by OrthoGNC, only

45.29% are true positives. |M0
Method| and |M00

Method| are
slightly better for Proteinortho, OMA, and EGM2 (Table 2).

Again, note the increase in |M0
Method| and |M00

Method| when
parameters of OrthoGNC are relaxed.

Also, it is shown that iterative inference of orthology rela-

tions can slightly improve the precision (green square in
Figure 2). By relaxing parameters in subsequent rounds,
OrthoGNC achieves higher recall while preserving the preci-
sion. This is more interesting for Conf 8, where the neighbor-

hood conservation criteria were completely relaxed. In fact, it
only detects orthologous genes that are reciprocally best hit
(RBH). In single-round inference, RBH algorithm misses some

of the orthologous genes that deviated from the molecular
clock assumption. Moreover, not all RBHs are necessarily
orthologous [22]. With iterative inference, these relations are

dismissed if a relation satisfying the neighborhood conserva-
tion criterion exists in previous rounds. Corresponding values
of |MMethod|, |M

0
Method|, and |M00

Method| for iterative orthology
inference with Conf 2–8 are shown in Table 2.

Another interesting observation is that MMethod and
M0

Method have consistently higher true-positive rate than
M00

Method (Table 2). This suggests that when OrthoGNC dis-

agrees with another method on the orthologs of a gene, ortho-
logs reported by OrthoGNC are generally more accurate than
those reported, if any, by the other method.

The main objective of OrthoGNC is to deliver highly sensi-
tive and precise orthology relations. However, as shown in
Figure 2, OrthoGNC (Conf 7 single round) is superior to both

OMA and Proteinortho in recall at almost the same level of
precision. However, one might argue that the lower recall of
OrthoGNC than InParanoid may result in a smaller F-
measure. To achieve a higher recall, the user can choose to

combine the output of OrthoGNC with any set of orthologs
that is inferred by other methods as described in Methods.
For instance, combination of OrthoGNC (Conf 7 iterative)

with InParanoid improved recall, thus resulting in a higher
F-measure (0.8570) than both OrthoGNC (0.7961) and
InParanoid (0.8385) alone (Figure 2).

Ortholog inferring performance of OrthoGNC on real data

For real data, we compare the inference output of various

methods using Venn diagrams. Corresponding Venn diagrams
for Conf 1, 2, 3 (iterative), and 8 (iterative) are depicted in
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Figure 3. We also computed MMethod, M
0
Method, M

00
Method, and

UOrthoGNC for this dataset (Table 3). Our results show that
although prokaryotic genomes are known to be fluid, gene

neighborhood is still highly informative in detecting orthologs
at genus level. In particular, some orthology relations are only
detected by OrthoGNC. Moreover, orthology inference

parameters as stringent as Conf 1 or 2 appear not necessary.
Specifically, by changing NIR to ‘‘unique intersection” in Conf
3, 39,148 more orthology relations are detected in comparison

to Conf 2; out of which, 38,068 (97.24%) relations are also
detected by at least three other methods (Figure 3B and C).
This observation confirms the high degree of local rearrange-
ments in prokaryotic genomes [37]. Therefore, one can relax

the gene neighborhood investigation method according to
the genomes studied to allow more local rearrangements. Even
with iterative inference by Conf 8 (Figure 3D), 132,448 out of

146,412 (90.46%) orthology relations detected by OrthoGNC
are also predicted by at least three other methods, indicating
the predictions by OrthoGNC agree well with the intersection

of three other methods. Therefore, in addition to inferring
accurate relations based on high conservation of genomic con-
text, OrthoGNC is also able to infer much more relations that

are consistent with other state-of-art methods.

Orthology refinement

In addition to orthology inference, OrthoGNC has a separate

interface for refining a given set of orthology relations by
investigating gene neighborhood conservation among them.
For the input genomes (or proteomes) and a set of input ortho-

logs provided by the user, OrthoGNC investigates the given
relations to see whether they follow a user-defined degree of
gene neighborhood conservation. As a result, the input rela-

tions get processed and saved into two separate files: one for
relations that are supported by gene neighborhood conserva-
tion and one for the relations without the support. We tested

this feature on orthologs predicted by the other four methods
on both simulated and real data, by setting easy parameters to
investigate a minimal gene neighborhood conservation (E-
value = 1e�02, Ti = 0, Tc = 0, N = 7, Tn = 1, and NIR =

‘‘unique intersection”). Percentage of correct orthologs for
both supported and unsupported relations was calculated for
the simulated data. As shown in Figure 4, the percentage of

correctly-predicted relations are significantly higher for sup-
ported relations than unsupported ones.

Running time comparison

We also compared the running time of OrthoGNC with other
methods. To do this, we ran all methods on two proteomes (M.

ulcerans Agy99 and M. tuberculosis H37Rv) using a personal
computer with an Intel Core i7-4702MQ 2.20 GHz processor
and 6 Giga bytes of RAM. As Proteinortho automatically sets
the number of concurrent threads to available cores, we man-

ually set the number of threads to 8 for OMA and OrthoGNC
to facilitate comparison; however, InParanoid and EGM2
accept no parameter on the number of concurrent threads.

As shown in Table 4, only EGM2 is faster than OrthoGNC,
probably because EGM2 uses its own heuristics instead of
BLAST to compute the similarities.



Table 3 Orthology relations obtained on real data

Method Parameter Conf 1 Conf 2 Conf 3 Conf 4 Conf 5 Conf 6 Conf 7 Conf 8

Proteinortho |M| 101 283 1173 1872 2548 3407 7470 9160

|M0| 11 15 95 167 313 488 1170 1268

|M00| 11 16 103 173 329 554 1091 1190

OMA |M| 174 292 1164 1804 2418 3217 6743 9262

|M0| 8 12 108 193 318 492 1278 1474

|M00| 8 13 136 294 488 791 2329 2589

InParanoid |M| 57 153 673 1098 1574 2251 5506 6424

|M0| 23 25 114 207 338 517 1139 1271

|M00| 27 30 123 217 379 596 1328 1480

EGM2 |M| 985 1125 5553 8986 12,695 16,654 26,311 34,140

|M0| 9 13 56 112 179 259 597 635

|M00| 15 22 84 151 227 359 791 838

|UOrthoGNC| 6 58 374 650 992 1488 4434 5256

Note: Different homology inference parameters are used for Conf 1 (single round), while Conf 2 (single round) is the starting configuration for

iterative rounds. For Conf 3–8, only results for iterative rounds are shown here due to the high accuracy obtained by iterative orthology inference.

Conf, configuration; TP, true positive.

Figure 3 Performance of OrthoGNC and other methods on eight Mycobacterium species

Orthologs predicted by OrthoGNC using Conf 1 (A), Conf 2 (B), Conf 3 (iterative; C) and Conf 8 (iterative; D) were compared with those

by Proteinortho, OMA, InParanoid, and EGM2 using Venn diagrams. Parameter configurations for Conf 1, 2, 3, and 8 are listed in

Table 1.
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Figure 4 Gene neighborhood conservation of predicted orthology using four other methods

For each method, the stacked bar on the left side indicates the performance for the simulated data and the right one for the real data. The

blue bars depict the number of orthology relations that follow the predefined parameters (E-value = 1e�02, Ti = 0, Tc = 0, N= 7,

Tn = 1, and NIR = ‘‘unique intersection”) and the gray bars indicate the number of orthology relations without gene neighborhood

conservation. Precision of predicted orthologs on simulated data is provided in percentage on the bars for both supported (blue) and

unsupported (gray) relations.

Table 4 Running times of different methods on proteomes of M.

ulcerans Agy99 and M. tuberculosis H37Rv

Method Running time (min0 s00)

Proteinortho 050 0300

InParanoid 190 4700

OMA 910 4800

EGM2 00 1800

OrthoGNC (Conf 2 single round) 020 5800

OrthoGNC (Conf 8 iterative) 030 1100

Note: All methods were run on a personal computer with an Intel Core

i7-4702MQ 2.20 GHz processor and 6 GB of RAM.
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It is worth mentioning that OrthoGNC can also be used to
find co-linear blocks within species. Simply, by adjusting

parameters to N= n, Tn = 2n, and NIR = ‘‘One2One Map-
ping”, the predicted orthologs will be centered in syntenic
blocks of size 2n + 1. Finding syntenic blocks is of a great

interest [42–44], because genes residing in a syntenic block have
been under evolutionary pressure and are more likely to inter-
act and be co-expressed [45].

Conclusion

We have presented here OrthoGNC, a similarity-based soft-

ware for detecting accurate orthology relations. To maintain
higher accuracy, OrthoGNC is capable of inferring orthology
relations in multiple rounds. OrthoGNC is very flexible and

user-friendly in accepting user-defined parameters. Also, mul-
tithreaded implementation of OrthoGNC makes it fast and
efficient for pipelines where high-quality orthology relations
are needed. To achieve high specificity, OrthoGNC investi-
gates genomic context of potential orthologs. Accuracy of
OrthoGNC is validated by comparison against four competi-

tive methods on both simulated and real data.
In addition to delivering accurate orthology relations,

OrthoGNC can be employed to investigate the gene neighbor-

hood conservation for refinement and assessment of other
orthology inference methods.
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