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Abstract Deciphering important genes and pathways from incomplete gene expression data could

facilitate a better understanding of cancer. Different imputation methods can be applied to estimate

the missing values. In our study, we evaluated various imputation methods for their performance in

preserving significant genes and pathways. In the first step, 5% genes are considered in random for

two types of ignorable and non-ignorable missingness mechanisms with various missing rates. Next,

10 well-known imputation methods were applied to the complete datasets. The significance analysis

of microarrays (SAM) method was applied to detect the significant genes in rectal and lung cancers

to showcase the utility of imputation approaches in preserving significant genes. To determine the

impact of different imputation methods on the identification of important genes, the chi-squared

test was used to compare the proportions of overlaps between significant genes detected from orig-

inal data and those detected from the imputed datasets. Additionally, the significant genes are tested

for their enrichment in important pathways, using the ConsensusPathDB. Our results showed that

almost all the significant genes and pathways of the original dataset can be detected in all imputed

datasets, indicating that there is no significant difference in the performance of various imputation
nces and
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methods tested. The source code and selected datasets are available on http://profiles.bs.ipm.ir/soft-

wares/imputation_methods/.
Introduction

Cancer has manifested as one of the major health problems in
many countries worldwide. It is also expected to be the main
cause of death in the next few years [1]. Cancer has been char-

acterized as a heterogeneous disease, comprising various sub-
types. Early diagnosis of the cancer type and stage has
become essential to assist with the subsequent treatment of
cancer patients [2]. With the technical advances in sequencing,

it is now possible to measure the expression of all genes in a
sample and stratify cancer patients into high-risk and low-
risk cohorts by analyzing gene expression data using bioinfor-

matics approaches [3].
Recognizing the genes involved in cancer is an intimidating

challenge due to its importance in the molecular characteriza-

tion of widely defined biological classes, which has a potential
role in cancer diagnosis and treatment. The growing applica-
tion of bioinformatics approaches in cancer encourages

researchers to develop newer techniques involving the whole
genome-based microarray. The gene expression datasets, as
well as many other real-world datasets, often contain missing
values, thereby affecting the inference of significant genes

and the associated pathways or networks. There are many rea-
sons for the occurrence of missing values in microarray gene
expression data, e.g., hybridization failures, low resolution,

artifacts on the microarray, image noise, corruption, and spot-
ting problems [4–7].

Mechanically, missing values can be classified as missing

completely at random (MCAR), missing at random (MAR),
and not missing at random (NMAR) [8]. MCAR and MAR
are considered ignorable, whereas NMAR is considered non-
ignorable or informative missingness. Identifying the appropri-

ate missing mechanism and missingness rate is important for
imputation algorithms [9].

For microarray gene expression datasets, there are global,

local, and hybrid imputation approaches, categorized accord-
ing to the information used in each case [5]. The global missing
imputation methods exploit the global information of the

whole dataset, whereas the local missing imputation methods
use the local similarity structure of a dataset. Hybrid methods
combine the two to impute missing values.

Previous studies have shown that a missingness of �1% in
expression data is negligible and a missingness of 1%–5% is
manageable. To achieve good results in imputation for an
incomplete dataset with 5%–15% missingness, it is important

to use appropriate approaches. When datasets have >15%
missing data, choosing imputation methods may strongly
influence the results [5].

Therefore, we set out to investigate the impact of missing-
ness factors on the imputation algorithms and evaluated the
performance of 10 popular imputation methods by applying

five well-known methods to acquire the significant genes from
the original and imputed datasets for lung and rectal cancers.
Our results indicate that similar important genes are detected

in all imputed datasets, suggesting no significant difference in
the performance of the imputation methods tested in terms
of preserving the essential genes and pathways.
Methods

Data sources

Whole genome-based microarray data were downloaded from
the Gene Expression Omnibus (GEO) database [10] with acces-
sion number GSE10072 [11] and GSE15781 [12] for lung and
rectal cancer, respectively. The lung cancer dataset contains

107 samples from 58 patients with lung cancer and 49 healthy
individuals, whereas the rectal cancer dataset contains 42 sam-
ples from 22 patients with rectal cancer and 20 healthy individ-

uals. The linear model for microarray analysis (Limma)
package in R [13] was used for preprocessing and analysis of
the microarray data. Quantile normalization [14] is then per-

formed to achieve the same sample distribution at each state.

Data processing for generation of missing values

The gene expression datasets often contain a small proportion
of genes with missing values [5]. To generate missing values in
a dataset, 5% of all genes from the original datasets were
selected randomly in the first step of our study. Then, ignor-

able and non-ignorable types of missingness were considered
at a missingness rate of 10%, 20%, and 30%, respectively.
To generate ignorable missing values, the samples were ran-

domly selected based on the three rates of missingness, and
then were removed. Furthermore, to generate non-ignorable
missing values, the upper or lower tails (10%, 20%, and

30%) of the data were selected, and their values were removed
to ensure that the missingness depends on the actual gene
expression.

Imputation methods

Ten imputation methods are considered in this study. Among
them, the singular value decomposition (SVD), the Bayesian

principal component analysis (BPCA), fast imputation (Fast-
Imp), column-mean, column-median, gene-mean, and gene-
median are global methods, whereas local least squares

(LLS) and K-nearest neighbor (KNN) are local methods. Mul-
tiple imputation by chained equations and classification and
regression trees (MICE-CART) is a hybrid method.

The SVD imputes missing values using the singular value
decomposition and regression models [15]. The k genes similar
to a target gene, which contains missing values, are detected by

KNN method using a similarity metric calculated with the
non-missing data. Then, the weighted average of these neigh-
bors is calculated to impute the missing values in target gene
[15]. The MICE-CART imputation method encloses MICE

and CART approaches [16]. Principle component regression,
an expectation–maximization (EM) algorithm, and the Baye-
sian estimation approach are applied in the BPCA imputation

method [17]. In order to impute the missing values, a multiple
regression model is applied in LLS method [18]. The EM algo-
rithm under the multivariate normal distributional assumption

is used in a Fast-Imp method to complete datasets [19]. Other
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simple approaches tested, such as column-mean, column-
median, gene-mean, and gene-median, handle missing values
using the corresponding row/column mean or median [20].

Performance evaluation of imputation algorithms

Comparison of different imputation methods is performed

using the normalized root mean square error (NRMSE) index,
which is calculated using the following formula:

NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meanðyoriginal � yimputedÞ2

varianceðyoriginalÞ

s
; ð1Þ

where yoriginal and yimputed denote the original and imputed data-

set, respectively. The NRMSE values range between zero and
one, with smaller values indicative of better performance for
evaluation [17].

Efficiency of the imputation methods

To assess the efficiency of various approaches, all imputation

methods were investigated for their ability to detect the crucial
genes involved in cancers. Five well-known methods were
applied to acquire the significant genes from the original and
imputed datasets. These include the differential expression

via distance summary (DEDS) [21], empirical Bayes analyses
of microarrays (EBAM) [22], Limma [13], multiple testing
(MULTTEST) [23,24], and significance analysis of microar-

rays (SAM) [25], which are available as part of the Bioconduc-
tor project.

The chi-squared test for comparing the proportions of sig-

nificant genes obtained is used to assess the strength of different
imputation methods in recognizing important genes [26]. In our
test, p1, p2, and p3 refer to the proportion of overlaps between

significant genes detected from original data and those detected
from the imputed data by LLS, MICE-CART, and column-
mean, respectively. The null and alternative hypotheses are:

H0 : p1 ¼ p2 ¼ p3

H1 : pi – pj for at least one pairði; jÞ
for i; j 2 f1; 2; 3g:

8><
>: ð2Þ

To test significant difference among k methods, a 2 � k

contingency table is considered. In the table, the first row
shows the overlaps between significant genes detected from
original dataset and those detected from the imputed datasets,

whereas the non-overlap between detected significant genes
from original data and imputed datasets are determined in
the second row. The chi-square test statistics is

v2 ¼ P
all cells

ðfo�feÞ2
fe

, where fo is the observed frequency in each

cell of the contingency table, and fe is the expected frequency in
the mentioned cell under the null hypothesis. The critical value

is obtained from the quantile of v2 distribution with
ðk� 1Þð2� 1Þ ¼ k� 1 degrees of freedom at a level of signifi-

cance, which is set as 0.05 in our test. If P < a (P denotes the P
value), H0is rejected. This hypothesis test can be easily per-
formed by the prop.test function in R [26–28].

Pathway enrichment

Investigating differentially expressed genes is a common prac-
tice in detecting signatures or crucial genes involved in complex
diseases such as cancer. However, we are more intrigued by dis-
covering the prevalent roles of all genes rather than simply
knowing what genes are involved in a complex disease [29].

Based on the assumption that genes do not act in isolation,
and that complex diseases such as cancer are caused by pertur-
bation of various pathways [30,31], secondary data sources can

be used to identify deregulated pathways during cancer progres-
sion. Gene pathway enrichment analysis is a powerful approach
to address this problem by evaluating whether defined sets of

genes are associated with particular biological processes.
Significant genes are detected by the SAM method, which

derives the lists of differentially expressed genes with common,
collective functions. Then, the set of significant genes from the

original and two imputed datasets (MAR 10% and NMAR
30%), are enriched into pathways using ConsensusPathDB
(P < 0.05). The enriched pathways are selected from KEGG,

Wikipathways, Reactome, and SMPDB. Each pathway con-
tains at least four significant genes. The role of these pathways
in lung and rectal cancers is assessed through an extensive lit-

erature search.
Results

In this study, to evaluate the sensitivity of the implemented
imputation methods to the missingness mechanisms and rates,
we randomly removed 10%, 20%, and 30% of genes via the

MCAR, MAR or NMAR mechanisms. Then, we used differ-
ent imputation approaches to impute the missing values. The
imputation procedures were repeated a hundred times, and

the mean and standard deviation of the NRMSE values were
computed. Significant genes in the original and imputed data-
sets were detected using the SAM method and enriched into

pathways. Finally, the ability of different imputation methods
to preserve the significant genes and pathways was evaluated.
A workflow of the analysis process is shown in Figure 1.

Generating missing values for the RFC2 gene in lung cancer

dataset

We used RFC2 to exemplify the method for generating missing

values. RFC2 encodes the 40 kDa subunit of the replication
factor C complex (also known as activator 1), which has been
shown to be responsible for binding ATP and may help pro-

mote cell survival [32]. Also, previous studies have shown that
RFC2 is involved in three of the most significant pathways
related to cell cycle regulation and DNA damage repair

through 15 pan-cancer pathways relevant to drug response
[33]. Missing values were generated for the lung cancer dataset
using MCAR and NMAR mechanisms. As shown in Figure 2,
after removing 20% of expression data via the MCAR mech-

anism, the expression profile for RFC2 in lung cancer cells
was similar to that of the original dataset (Figure 2A and B).
In contrast, the histograms of gene expression data were

altered after deleting 20% of the upper or lower tail of the val-
ues through the NMAR mechanism (Figure 2 C and D).

Evaluating performance of imputation methods

To evaluate the sensitivity of the implemented imputation
methods to the missingness mechanisms and rates, we
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Figure 1 Workflow for data analysis

5% of the N genes are selected randomly from the original dataset

to generate missing values. MCAR, MAR, and NMAR missingness

mechanisms with the missingness rates 10%, 20%, and 30%,

respectively, are considered. Then, ten imputation algorithms are

applied to complete the datasets. For performance enhancement,

the imputation procedures are repeated 100 times. The differences

between the imputed and the original values are evaluated using the

NRMSE index. Significant genes in the original and imputed

datasets are detected using the SAM method and enriched into

pathways. Finally, the ability of different imputation methods to

preserve the significant genes and pathways is evaluated. MCAR,

missing completely at random; MAR, missing at random (MAR);

NMAR, not missing at random; NRMSE, normalized root mean

square error.
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randomly removed 10%, 20%, and 30% of genes via the
MCAR, MAR or NMAR mechanisms. Then, 10 different

approaches were used to impute the missing values and the
performance of the imputation methods tested was evaluated
using NRMSE. As shown in Figure 3 for the lung cancer data-
set, for all imputation methods, the mean NRMSE values
tended to increase with higher missingness rates under the
same missingness mechanism, whereas lower NRMSE values
were obtained for MCAR and MAR mechanisms compared

to NMAR. When comparing the NRMSE values obtained
using different methods, LLS imputation approach performed
the best with the lowest NRMSE values for each condition

examined. Largely the similar trend was also observed for
the rectal cancer dataset (Figure 4).

These imputation methods are classified into three groups

based on the NRMSE values. The lowest NRMSE values were
obtained when using LLS, SVD, and BPCA methods, whereas
the highest NRMSE values were obtained for column-mean,
column-median, and Fast-Imp methods. The remaining

MICE-CART, gene-mean, gene-median, and KNN methods
showed moderate NRMSE values. We thus chose one imputa-
tion method from each group for further analysis, which

include LLS, MICE-CART, and column-mean.
Detecting significant genes in imputed and original datasets

Two datasets were generated using the MAR missingness
mechanism with 10% missingness rate and the NMAR miss-
ingness mechanism with 30% missingness rate, which were

classified as group 1 and group 2, respectively. To compare
the performance of different methods in detecting significant
genes, we examined the overlaps between the significant genes
from the aforementioned groups and those from the original

dataset using methods SAM, DEDS, Limma, MULTTEST,
and EBAM. It is expected that compared to group 2, the sig-
nificant genes computed from group 1 would have more

matches with the significant genes detected from the original
dataset. Table 1 shows the overlaps between the detected sig-
nificant genes according to the five aforementioned methods

from the two generated groups of datasets and original data-
sets for lung and rectal cancers, respectively.

Among five aforementioned methods, the SAM method

satisfied this expectation the most and there were substantial
similarities between the gene list of group 1 generated dataset
and the original dataset for both cancer types imputed using
different methods. Our findings are consistent with earlier find-

ings about the detection of differential gene expression [34] and
candidate loci [35] using the SAM method. Since SAM showed
the best performance in detecting significant genes among the

five methods for the two cancer types, SAM was selected for
subsequent analysis in our study.

In total 490 and 1000 genes that putatively contribute to the

lung and rectal cancer, respectively, were detected by applying
SAM to the original datasets. We then applied SAM to the
datasets generated with different missing mechanisms at the
missingness rates of 0.1, 0.2, and 0.3, respectively, and imputed

using different methods. The overlaps in significant genes
detected between the imputed and original datasets for lung
and rectal cancer were calculated. As shown in Table 2, the

numbers of significant genes detected in the imputed and orig-
inal datasets are nearly similar.

We then tested the null hypothesis H0, no significant differ-

ence among different imputation methods, against the alterna-
tive hypothesis H1, a significant difference among different
imputation methods, to detect the significant genes using

the chi-squared test with equal proportions of mutual
significant genes deciphered from original data and those



Gene expression

Fr
eq

ue
nc

y 
of

 g
en

er
at

ed
 d

at
a

Fr
eq

ue
nc

y 
of

 g
en

er
at

ed
 d

at
a

C  Generated gene expression under NMAR (upper tail removed) D Generated gene expression under NMAR (lower tail removed)

Gene expression

Gene expression

Fr
eq

ue
nc

y 
of

 g
en

er
at

ed
 d

at
a

A  Original gene expression

Fr
eq

ue
nc

y 
of

 g
en

er
at

ed
 d

at
a

B  Generated gene expression under MCAR

Gene expression

Figure 2 Generating missing values in lung cancer dataset as exemplified for RFC2 gene

A. The histogram of the gene expression for RFC2 gene in the original lung cancer dataset. B. The histogram of the gene expression for

RFC2 gene in the generated lung cancer dataset after removing values under MCAR. Histograms of the values of gene expression after

removing the upper and lower tails under NMAR, respectively, are shown in panels C and D, respectively. RFC2, replication factor C

subunit 2; MCAR, missing completely at random; NMAR, not missing at random.

400 Genomics Proteomics Bioinformatics 15 (2017) 396–404
detected from the imputed data by LLS, MICE-CART, and

column-mean [26].
As shown in Table 2, P > 0.05 was found for all missing-

ness mechanisms with different missingness rate, indicating

that the three imputation methods examined, including LLS,
MICE-CART, and column-mean, had a similar performance
for the lung cancer dataset. Similarly, no significant differences
in the performance of different imputation methods were

detected for rectal cancer dataset either. Therefore, there is
no significant difference among various imputation methods
to preserve significant genes in lung and rectal cancer datasets.
Identifying pathways enriched with significant genes

The progression of cancers can be attributed to the disturbance

of various pathways [36]. To identify these pathways, the
detected significant genes were enriched into pathways using
ConsensusPathDB (P < 0.05) with each pathway containing

at least 4 significant genes. For lung and rectal cancer datasets,
35 and 37 critical pathways were identified, respectively. The
importance of pathways in lung and rectal cancers is illustrated
through an extensive literature search (Table S1). Further-

more, significant genes from the aforementioned groups 1
and 2 were enriched in pathways as well. There is only one
pathway different between these groups and the original data-

set. For rectal cancer, only apoptosis modulation and signaling
pathway [37] was detected to be significant in the groups 1 and
2. For lung cancer, the integrin-linked kinase signaling path-

way [38] was selected as significant in the two groups.
Discussions

Over the last few decades, a large amount of data have been
collected via high-throughput technologies to decipher the dif-
ferences between tumor and normal cells. These datasets have
been successfully developed and used to identify target genes

[30] causally involved in human cancer [39,40]. Nevertheless,
these datasets often suffer from missing values. Hence, imputa-
tion approaches have been developed to address this challenge

[41]. Although various methods can be used to manage the
missing values, outcomes could be quite different according
to the datasets considered for each imputation method. Thus,

selecting the appropriate imputation approach may affect the
accuracy of the results obtained, as there is no imputation
approach with perfect performance.

In the present study, we used a non-ignorable missingness

mechanism (NMAR) and an ignorable mechanism (MCAR
and MAR) to generate missing values within datasets and
assessed the performance of each method for estimation of

the missing values. The tested imputation methods are more
effective at handling MCAR and MAR, than at handling
NMAR missingness. Although many studies proposing how

to deal with the non-ignorable mechanism have been pub-
lished, the application of these methods in this interesting field
of research could be improved. Our study shows that the LLS

method is more appropriate for completing missing values in
lung and rectal cancer datasets, based on the NRMSE values.

We also show that SAM can work effectively to detect
important genes in lung and rectal cancers. All the five
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Table 1 Overlaps between significant genes detected from the original datasets and those detected from the two generated dataset groups

Cancer type Imputation method Group SAM DEDS Limma MULTEST EBAM

Lung LLS 1 484 483 453 473 481

2 471 463 449 469 477

MICE-CART 1 477 475 439 471 477

2 468 476 446 469 465

column-mean 1 473 469 438 463 473

2 466 468 441 464 474

Rectal LLS 1 996 993 985 993 988

2 981 974 973 983 972

MICE-CART 1 991 989 984 986 987

2 978 972 966 987 962

column-mean 1 989 986 981 973 974

2 973 972 983 975 960

Note: Group 1 represents the datasets generated under the missing at random mechanism with 10% missingness rate and Group 2 represents the

datasets generated under the not missing at random mechanism with 30% missingness rate. LLS, local least squares; MICE-CART, multiple

imputations by chained equations and classification and regression trees; SAM, significance analysis of microarrays; DEDS, differential expression

via distance summary; Limma, linear model for microarray analysis; MULTEST, multiple testing; EBAM, empirical Bayes analyses of

microarrays.

Table 2 Common significant genes deciphered from the original datasets and those detected from the imputed datasets

Cancer type Missingness mechanism Missingness rate
Imputation method

P value
LLS MICE-CART column-mean

Lung MCAR 0.1 485 479 477 0.161

0.2 480 477 476 0.697

0.3 478 476 475 0.839

MAR 0.1 484 477 473 0.230

0.2 479 476 469 0.170

0.3 475 474 473 0.539

NMAR 0.1 478 474 471 0.443

0.2 475 472 469 0.595

0.3 471 468 466 0.737

Rectal MCAR 0.1 998 996 991 0.073

0.2 996 995 990 0.194

0.3 994 991 989 0.479

MAR 0.1 996 991 989 0.194

0.2 995 990 988 0.233

0.3 993 986 984 0.160

NMAR 0.1 988 987 983 0.602

0.2 984 981 979 0.708

0.3 981 978 973 0.478

Note: MCAR, missing completely at random; MAR, missing at random; NMAR, not missing at random; MICE-CART, multiple imputations by

chained equations and classification and regression trees; LLS, local least squares.
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methods examined assume independent subject measurements
(even within a single gene) to test the differential expression.
Nevertheless, imputed data are not independent of the non-

missing values, since the imputed value for a gene in a given
subject is related to the non-missing values of the gene in other
subjects. Currently, available tests may not be directly applica-

ble for use, because the independence criteria need to be
assumed. Building a statistical model to test the significance
of a gene list accounting for the dependence between genes

can be a challenging issue [42].
The resulting significant genes can be used to detect impor-
tant pathways, with evidence available to support the role of
candidate pathways in various cancer types [43–46]. Further-

more, by selecting a 5% missingness rate in the original data-
set, the results show that the imputation methods can detect
significant genes and pathways similar to the original dataset.

Finally, there is still uncertainty regarding the imputation
methods to detect significant genes and pathways at different
missingness rates, which needs to be addressed in further

studies.
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