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Abstract Human gut microbiota play an essential role in both healthy and diseased states of

humans. In the past decade, the interactions between microorganisms and tumors have attracted

much attention in the efforts to understand various features of the complex microbial communities,

as well as the possible mechanisms through which the microbiota are involved in cancer prevention,

carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial

dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested

that the microbiota and their associated metabolites are not only closely related to carcinogenesis by

inducing inflammation and immune dysregulation, which lead to genetic instability, but also inter-

fere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influ-

ence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric,

colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, pro-

biotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new

strategies in the prevention and treatment of GI cancers that could be explored in the future. We

hope that this review could provide a comprehensive overview of the studies on the interactions

between the gut microbiota and GI cancers, which are likely to yield translational opportunities

to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.
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Introduction

Cancer has remained a serious concern in human society

worldwide. Carcinogenesis is a well-known multi-factorial

process, involving genetic and environmental perturbations.

15.4%–17.8% of cancers since 1990 were estimated to be

related to infections, which accounted for 21.0%–26.3%

and 5.0–9.0% of the cases in developing and developed

countries, respectively [1–4]. Nonetheless, among the

3.7 � 1030 microorganisms on the earth, only a few have

been defined as carcinogenic agents by the International

Agency for Research on Cancer (IARC). These include

Helicobacter pylori, hepatitis B virus, hepatitis C virus,

HIV type 1, human papillomavirus, Epstein-Barr virus,

human herpesvirus type 8, human T-cell lymphotropic virus

type 1, Opisthorchis viverrini, Clonorchis sinensis, and

Schistosoma haematobium [4]. Although humans are

colonized by trillions of microbes in general, only some

individuals suffer from cancers. Therefore, the host,

microbiota, and many other risk-driving factors are

believed to be collectively responsible for the process of

carcinogenesis [5].

The human gut is perhaps one of the most complex
networks in the body and is colonized by trillions of
microorganisms including bacteria, archaea, fungi, protists,

and viruses, among which bacteria are the major inhabi-
tants [6]. For decades, researchers have been trying to
understand the complex relationships between the human

microbiota and diseases. Mounting evidence has suggested
that the gut microbiota are related to a variety of can-
cers, which may enlighten potential development of cancer
therapies targeted at the gut microbiome [5,7]. This

review provides a comprehensive survey of the studies
on the human gut microbiota and GI cancers, specifically
esophageal, gastric, colorectal, liver, and pancreatic

cancers.
During the last 30 years, gene-based and culture-

independent methods for microbial profiling, e.g., 16S

rRNA sequencing, have made remarkable progress [8,9]
and have been used to differentiate and quantitatively
evaluate various bacterial species as the method of choice
[10]. High-throughput sequencing technologies, such as

next-generation sequencing and random shotgun sequenc-
ing, as well as omics-based approaches, have enabled a
more comprehensive examination of microbial communities

without cultivation [11]. Specially, TruSeq, a synthetic
long-read sequencing technology, allows researchers to
assemble whole microbial genomes more completely [12].

Big data generated with these new sequencing technologies
have been accurately analyzed using advanced computa-
tional strategies, such as genome assembly and gene-

finding software, statistical modeling and simulations, and
gene annotation tools. The flourishing advancements in
computation and sequencing technologies have significantly
promoted the development of the entire field of human

microbiology.
It is now known that Actinobacteria, Firmicutes, Bac-

teroidetes, and Proteobacteria phyla are predominant in

the human stomach, whereas Proteobacteria, Firmicutes,

and Bacteroidetes phyla are frequently found in the colon
tract [13]. Symbiotic gut microbiota have been characterized
by high diversity, stability, resistance, and resilience, whereas

dysbiotic gut microbiota exhibit low relative abundance as
well as loss of commensalism and diversity.

Various studies have demonstrated that the carcino-

genicity is mainly attributed to microbial dysbiosis
(Table 1). (1) Chronic inflammation: Chronic inflammation
has been verified as a driving cause of cancer. Inflamma-

tion promotes tumor progression and accelerates the inva-
sion and metastasis. Inflammatory cytokines directly lead
to DNA damage in the epithelium. Aberrant DNA
methylation triggers inflammation-associated cancers [14].

Increased interleukin-1, 6, 10, and tumor necrosis factor-
a (TNF-a) levels will initiate the process of cancer devel-
opment, followed by three steps. These include (I) the

activation of nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-jB), Wnt signaling and mitogen-
activated protein kinases (MAPK) pathway, (II) the inhi-

bition of apoptosis, and (III) a boost in oxidative stress
[15]. IL-6 and IL-11 can sensitize signal transducer and
activator of transcription 3 (STAT3), which exerts a sig-

nificant impact on transforming epithelial cells [16]. b-
catenin, forming complexes with adenomatous polyposis
coli (APC), glycogen synthase kinase (GSK) 3b, and axin,
can cause aberrations in the Wnt pathway in epithelial

cells, thus activating proto-oncogenes encoding c-myc
and cyclin D1 [17,18]. The generation of inflammation-
associated factors can also inactivate tumor-suppressor

genes (e.g., P53 mutation), and activate oncogenes (e.g.,
KRAS mutation) [19,20]. (2) Immune regulation: Dysbiosis
of the gut microbiota triggers a number of innate and

adaptive immune responses involved in the tumor forma-
tion process [21–23]. The innate immune system can rec-
ognize the structural components of bacteria, such as

flagellin, lipopolysaccharide (LPS), and peptidoglycan
[23,24]. Toll-like receptors (TLRs) play a critical role in
the innate immune system given their ability in distin-
guishing microbial molecules from host molecules. Nod-

like receptors (NLRs) also regulate the innate immune
response, correspondingly modulating microbial composi-
tion and activating inflammasome-mediated dysbiosis.

Additionally, T helper (Th) cells, T regulatory (Treg) cells,
and B cells, which collectively secrete immunoglobulin A
(IgA), participate in tumorigenesis through the adaptive

immune system [22]. (3) Microbial metabolites: Lipotei-
choic acid (LTA), secondary bile acids, and short chain
fatty acids (SCFAs) have dual roles in carcinogenesis
[25]. LTA specifically binds to cluster of differentiation

14 (CD14) or TLR2, causing excessive secretion of proin-
flammatory factors [26,27]. Secondary bile acids activate
G protein-coupled bile acid receptor 1 (GPBAR1), which

increases intestinal cell proliferation [28], promotes DNA
damage [29], and induces cellular senescence, leading to
a senescence-associated secretory phenotype [30]. These

aforementioned microbial metabolites advance malignant
transformation. On the contrary, SCFAs are able to
mediate immunoregulation through Tregs, therefore

exhibiting anti-inflammatory and anti-carcinogenic effects
[31–33].
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Gut microbiota and gastric cancer

H. pylori

Gastric cancer is considered as an inflammation-associated
cancer. Known as a Class I risk factor, infection by H. pylori

can stimulate immune responses and inflammation, regulate
many signaling pathways, and induce achlorhydria, epithelial
atrophy, and dysplasia. Therefore, effective eradication of
H. pylori could prevent gastric cancer [34].

Oncoproteins cytotoxin-associated gene A (CagA) and
vacuolating toxin A (VacA) are critical virulence factors of
H. pylori [35]. Cag+ strain infections present a highly increased

risk of gastric cancers [36,37]. Elevated accumulation of
inflammatory cytokines is found in the stomach of
H. pylori-infected individuals, which include interferon-c,
TNF-a, IL-1, IL1b, IL-6, IL-7, IL-8, IL-10, and IL-18. Conse-
quently, diverse types of immune cells are stimulated, encom-
passing lymphocytes, peripheral mononuclear cells,

eosinophils, macrophages, neutrophils, mast cells, and den-
dritic cells. The activity of oncogenic pathways containing
ERK/MAPK, PI3K/Akt, NF-jB, Wnt/b-catenin, Ras, sonic
hedgehog, as well as STAT3 is upregulated with the infection

of Cag+ H. pylori strains. Conversely, tumor suppressor path-
ways are inactivated with induced P53 mutations [38–40].

VacA can cause cell vacuolation [41–43] and induce autop-

hagy within human-derived gastric epithelial cells [44,45], by
acting directly on mitochondria [46–48], upregulating MAP
kinase and ERK1/2 expression [49], activating vascular

endothelial growth factor [50,51], upregulating Wnt/b-catenin
signaling pathway which is essential for cell growth and differ-
entiation [52], and inhibiting GSK3 via the PI3K/Akt signaling

pathway [53].
Furthermore, H. pylori infection can cause methylations on

CpG islands of E-cadherin [54] and tumor-suppressor genes,
including those encoding the trefoil factor 2 (TFF2) and a fork-

head box transcriptional regulator (FOXD3), resulting in the
significantly increased risk of adenocarcinoma in the stomach
[55].

Non-H. pylori microbiota

Current sequencing technologies allow researchers to dive dee-

ply into the complexity of gut microbiota, which may be influ-
enced by multiple factors [56]. Microbial community in H.
pylori-positive individuals is characterized by an increase in
the counts of Proteobacteria, Spirochaetes, and Acidobacteria,

as well as a decrease in the counts of Actinobacteria, Bac-
teroidetes, and Firmicutes [57]. Conversely, H. pylori-
negative individuals carry more abundant phyla of Firmicutes,

Bacteroidetes, and Actinobacteria [58]. Microbial dysbiosis is
also associated with gastric carcinogenesis [59]. Using quanti-
tative PCR, it has been shown that gastric cancer patients bear

a much diversified composition of microbiota, exemplified by
the reduction of Porphyromonas, Neisseria, the TM7 group,
Prevotella pallens, Streptococcus sinensis, and simultaneous

enrichment of Lactobacillus coleohominis, Klebsiella pneumo-
niae, Acinetobacter baumannii, and Lachnospiraceae [60–62].
Pathogenic components derived from Helicobacter species
other than H. pylori, such as the outer membrane proteins

phospholipase C-gamma 2, BAK protein, and nickel-binding
proteins, assist microbes with colonization in the mucosal layer
of the gastric tract and then promote the process of gastritis,

ultimately enhancing the possibility of tumorigenesis in the
stomach [56]. To precisely elucidate the correlations between
the microbial dynamics and pathogenesis of gastric cancer, fur-

ther functional and mechanistic studies are needed.

Gut microbiota and esophageal cancer

Esophageal cancer (EC) is subdivided histologically into two
major groups: esophageal squamous cell carcinoma (ESCC)
and esophageal adenocarcinoma (EAC). It has been reported

that the upper aerodigestive tract carcinomas are closely
associated with common potential risk factors, such as infec-
tions from the human papilloma [61,63,64] and Epstein-Barr

viruses, although the pathogenic mechanism(s) remain con-
troversial [65]. In addition to viruses, bacterial infections
also contribute to the formation of esophageal malignant

neoplasms.

H. pylori constitutes a decreased risk of EC

In the last 20 years, the incidence rate of EAC has shown a ten-
dency of reduction in the general population infected with H.
pylori, especially in Eastern populations. In the meantime, the
incidence of ESCC has also diminished [66]. Gastroesophageal

reflux disease (GERD) is a leading cause of Barrett’s esopha-
gus, a premalignant condition of EAC [67]. By inhibiting pari-
etal cell function and/or inducing the development of atrophic

gastritis, chronic H. pylori infections can restrain parietal cells
from secreting hydrochloric acid, thus increasing the pH in the
gastric tract and eventually leading to a reduction of EAC.

There is a higher relative abundance of Enterobacteriaceae in
the stomach of patients with oesophagitis and Barrett’s esoph-
agus compared to normal populations. It has been suggested
that antibiotics may alter the microbiome in the esophagus

of patients with GERD [68]. Gut microbiota colonized in the
esophagus and stomach are notably altered by treatment with
proton pump inhibitors (PPIs). However, it is not conclusive

whether the changes caused by PPIs are beneficial or not
[69]. The latest systematic review and meta-analysis show that
PPIs do not decrease the development of dysplasia and

Barrett’s esophagus-related EAC [70].

Other gut microbiota and EC

The esophagus is traditionally considered as a microbe-free
site, with limited microbial passengers coming from swallow-
ing and gastroesophageal reflux. By applying 16S rRNA
sequencing technology, some specific microbes were found to

populate the esophageal mucosa, including Firmicutes, Bac-
teroidetes, Proteobacteria, Actinobacteria, and Fusobacteria
phyla. Moreover, distinct microbial communities were found

in esophagus of individuals with ESCC (stage I–II) and eso-
phageal squamous dysplasia (ESD), compared to normal
esophagus [71]. Consistent with the normal gastric mucosa

microbiota, the most common phyla in the samples of early
ESCC and ESD are Proteobacteria, Firmicutes, and Bac-
teroidetes [71], which are involved in the tumorigenic process
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in the esophagus when esophageal microbiota are dysbiotic
[65,72]. It has been found that the human distal esophagus
has its own characteristic microbiota. Gram-positive bacteria,

including Firmicutes and Streptococcus were dominant in the
normal esophagus, while gram-negative anaerobes/microaero-
philes, such as Bacteroidetes, Proteobacteria, Fusobacteria,

and Spirochaetes, were mainly associated with esophagitis
and Barrett’s esophagus [73]. LPS, an important component
of gram-negative bacterial cell wall, participates in the onco-

genic process through multiple mechanisms. These include
activating innate immune responses that lead to NF-jB activa-
tion [74], promoting the release of inflammation-associated
mediators including IL1b, IL6, IL8, and TNFa [75], raising

the levels of inducible nitric oxide synthase (iNOS) and nitric
oxide (NO), increasing the risk of reflux through relaxing
lower esophageal sphincter, and delaying gastric emptying [76].

Gut microbiota and colorectal cancer

The gut microbiome in the large intestinal tract is the most
complicated community in the human body. The bacterial
population primarily comprises gram-positive Firmicutes,
and gram-negative Bacteroidetes and Proteobacteria.

Diet, microbial metabolites, and colorectal cancer

Various factors contribute to colorectal cancer (CRC) and diet

is a well-known and important environmental factor associ-
ated with CRC. Many different gut microbiota metabolites
have either tumorigenic or anti-tumorigenic characteristics.

The subunits of the LPS receptor expressed on colonocytes
inhibit cell death, activate cellular immune response via TLR2,
and then stimulate downstream proinflammatory cytokine sig-

naling, leading to tumorigenesis [26,77,78]. LTA, an element
arising from the cell wall of gram-positive bacteria, is regarded
as the counterpart of LPS, the component of gram-negative
bacterial cell wall [79]. High-fat diets boost the relative abun-

dance of sulfate-reducing bacteria, such as Desulfovibrio vul-
garis, which transforms primary bile acids to secondary bile
acids such as lithocholic acid and deoxycholic acid, is poten-

tially tumorigenic [80]. Conversely, butyric acid (BA), an
important short-chain fatty acid (SCFA) that is generated
from fermentable fibers in diets by colonic bacteria, has been

shown to be anti-tumorigenic [81]. The most important
butyrate-producing microbial groups that are involved in the
process of fermentation are Faecalibacterium prausnitzii and

Eubacterium rectale [82]. BA is utilized by the mitochondria
in colonocytes, which helps to maintain a healthy energy bal-
ance and benefit colonic epithelial cell proliferation [83].
GPR109a, a receptor of SCFAs expressed on immune cells,

primarily activates the ligands of BA, then inhibits inflamma-
tory cytokines, thus suppressing the process of inflammation
[84]. The host immune response fights back DNA

methylation-mediated GPR109a silencing through IFNc,
therefore encouraging anti-carcinogenic effects accordingly
[85,86]. In addition, BA exerts various chemopreventive effects

by inducing P21 gene expression, inhibiting the activator
protein-1 (AP-1) signaling pathway, and increasing the phos-
phorylation of c-Fos and ERK1/2 [87,88]. Additionally, uro-
lithins such as urolithin A are intestinal microflora

metabolites of fruits and nuts with plenty of ellagic acid. They
have been reported to inhibit Wnt signaling and show benefits
against cancer [89,90].

Chronic inflammation and CRC

Chronic inflammation produces considerable inflammatory

mediators, such as TNFa, IL6, IL1b, and other cytokines,
which activate NF-jB, leading to colon carcinogenesis [91].
Inflammatory bowel diseases (IBDs) link to a higher risk of

CRC. For instance, patients with pancolitis have a more seri-
ous risk to develop cancer compared to patients with limited
colitis [92]. Gut microbiota of IBD patients have less diversity

and dysbiosis, characterized with lower abundance of Firmi-
cutes and Bacteroidetes, compared with healthy subjects [93].
Enterotoxigenic Bacteroides fragilis (ETBF) exhibits a signifi-
cant correlation with the presence of active IBD [94,95]. Both

IBD and CRC share a common process with an increase in the
levels of transforming growth factor-beta (TGF-b), TNFa,
NF-jB, ROS, and other signaling molecules, leading to micro-

bial dysbiosis in the intestinal tract [96]. It has been demon-
strated that patients with CRC accompanied by IBD have a
worse prognosis than those without IBD only [97].

Toxins secreted by B. fragilis can result in tumorigenesis in
the large intestine by stimulating E-cadherin, b-catenin, NF-
jB, and STAT3 [98,99]. For instance, fragilysin, an entero-
toxin secreted by B. fragilis, stimulates expression of IL-8,

TGFb, C5a, leukotriene 4 (LTB4), and growth related
oncogene-a (GRO-a), resulting in an inflammatory environ-
ment [100]. Moreover, fragilysin induces proliferation of colo-

nic epithelial cells and the expression of the oncogene c-myc
[101]. Adenomatous polyps or adenomas are considered pre-
malignant for CRC. The diversity, relative abundance, and dis-

tribution of the gut microbiota in adenoma populations are
significantly different from those in healthy populations
[102]. Patients with colorectal adenomas harbor significantly

more Proteobacteria as well as less Bacteroidetes compared
with healthy controls. The bacteria adherent to the colorectal
mucus layer form a particular biofilm and intervene in the for-
mation of adenomatous polyps in the colon [103]. Dysbiosis of

the gut microbiota can thus promote the process of tumor for-
mation in the large intestine tract [104–106].

Fusobacterium adhesin A (FadA), a cell surface virulence

factor expressed by Fusobacterium, is frequently detected in
patients with adenomatous polyp or CRC. FadA interacts
with E-cadherin on the endothelium and modulates the E-

cadherin/b-catenin pathway, resulting in an increased expres-
sion of transcription factors, oncogenes, and inflammatory
genes. It also promotes Fusobacterium to adhere to and invade
E-cadherin-expressing cells, thereby, directly influencing

epithelial cell proliferation and growth [107–109]. A recent
report has indicated that the overall abundance of Fusobac-
terium in CRC tissues is over 400 times higher than that in

the adjacent normal tissues [110]. Therefore, FadA may be a
potential biomarker for the diagnosis and therapy of CRC.

Immune regulation and CRC

Upon interacting with microorganisms and their gene prod-
ucts, dendritic cells become activated, switching on the gut
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immune response [111]. The host innate immune system can
recognize microbial molecules, including LPS, flagellin,
peptidoglycans, and other microbe-associated molecular pat-

terns (MAMPs). The activation of pattern recognition recep-
tors, for instance, NLRs and TLRs, regulates inflammatory
pathways and the proliferation of multiple cell types [112–

114]. NLR-mediated inflammasome activation and enhanced
TLR2 expression play a protective role in maintaining the
complete structure and function of colonic epithelium by sup-

pressing the inflammatory environment [115–117].
TLRs are confirmed to recognize diverse molecules from

microbes and promote tumorigenesis [118]. Protein levels of
TLR2, 4, 7, 8, and 9 are increased in CRC tumor tissues com-

pared to those in the healthy surrounding tissues [119]. Over-
expression of TLR4 results in the activation of b-catenin and
increased colitis-associated cancer development, whereas the

inhibition of TLR4 expression is shown to protect against
CRC [118].

In a meta-analysis of microarray studies, a significant dif-

ference in the NLR signaling pathways between tumor tissue
and non-tumor tissue of patients with CRC has been observed
[114,120]. The nucleotide-binding oligomerization domain-

containing protein 1 (Nod1), an innate immune receptor and
a NLR, recognizes microbial molecules, then initiates immune
responses, and inhibits the tumorigenic process. In contrast,
Nod1 deficiency increases intestinal permeability, leading to

colitis-associated cancers [121].

Gut microbiota dysbiosis and genetic instability

The diversity and abundance of beneficial commensals could
be minimized, if gut microbiota remain at the dysbiotic state.
Once the disturbed microbes overgrow, they give rise to accu-

mulating exotoxins and endotoxins, such as cytolethal dis-
tending toxin and colibactin from Escherichia coli,
cytolethal distending toxin from Shigella dysenteriae, B. frag-

ilis toxin from B. fragilis, extracellular superoxide, and
hydrogen peroxide from Enterococcus faecalis, etc. These bac-
terial toxins are able to directly or indirectly induce DNA
damage, genomic instability, tumorigenesis, and the invasion

of adenocarcinomas [122–130]. Additionally, dysbiosis results
in increased the exposure of colonic epithelial cells to carcino-
gens [131]. The accumulation of unrepaired DNA and base

excision repair (BER) intermediates leads to genomic instabil-
ity and ultimately carcinogenesis [132,133]. Furthermore,
microbial dysbiosis can dysregulate the immune response

and increase inflammation, resulting in PIK3CA mutations,
which may accelerate the initiation and/or growth of rectal
cancers [134].

Gut microbe and epithelial-to-mesenchymal transition

Microbes induce epithelial-to-mesenchymal transitions (EMT)
through various signaling pathways, such as TGFb, Wnt, and

Notch, which work together with the transcription factors
(TFs) Slug, SNAIL, Twist, ZEB1, and ZEB2 to suppress E-
cadherin, leading to tumor invasion, metastasis, and acquired

drug resistance [135–137]. It is worth noting that the cells
undergoing EMT are claimed to obtain stem cell-like proper-
ties and thus constitute a cancer stem cell (CSC) population

[138,139].

Gut microbiota and liver cancer

Although liver is generally considered sterile, the hepatic envi-
ronment is greatly influenced by the pathogens or metabolites

produced by the microbiota in the GI tract through the hepatic
portal venous system [140]. Liver exerts an essential effect on
the host microbial community by filtering the blood stream

as well as metabolizing and neutralizing toxins derived from
intestinal microbes. Gut microbial dysbiosis contributes to
hepatocarcinogenesis because the microbiota and microbial
metabolites are detected by liver resident immune cells and

are able to modify hepatic metabolism [140].
Hepatocellular carcinoma (HCC) and cholangiocarcinoma

(CCA) are the most common histological types of liver cancer.

Alcoholic liver disease (ALD), non-alcoholic fatty liver disease
(NAFLD), as well as infections with foodborne contaminant
aflatoxin B1 (AFB1), hepatitis B or C virus [141] are consid-

ered as the major risk factors for HCC [142,143]. Of note, dys-
biosis of the gut microbiota is one of the key inducers for non-
alcoholic fatty liver disease [144,145]. The abundance of E. coli

in feces from patients with HCC is much higher than that in
feces from healthy controls [146], while Dietziaceae, Pseu-
domonadaceae, and Oxalobacteraceae are more abundant in
the bile duct samples from patients with CCA than samples

from non-CCA individuals. It has been hypothesized that
excessive microbial growth in the gut may promote liver cancer
development [147], which needs to be further explored.

H. pylori and liver cancer

H. pylori generally inhabits the human stomach [148,149].

However, H. pylori from the gut can reach the liver tissue
[150] through the blood stream of the portal vein [151,152]
after surviving phagocytic elimination, or by reverse migration

via the duodenum. VacA and CagA produced by H. pylori
have been found in liver tissues with HCC [153,154]. It has
been shown that LPS from H. pylori directly promotes the
growth and migration of liver cancer by increasing the levels

of IL-8 and TGF-b1 [155].
As a member of the Helicobacteraceae family, H. hepaticus

causes the development of HCC by activating the NF-jB and

Wnt signaling pathways, hepatocyte turnover, and oxidative
stress [156]. Additionally, some Helicobacter species, such as
H. pylori, H. bilis, H. hepaticus, and H. ganmani, are specifi-

cally related to CCA, but not non-tumor diseases in the bile
duct [157].

Gut microbial metabolites and liver cancer

Microbial metabolites disturb the metabolic pathways and
immune response in the liver. TLR4 recognizes LPS coming
from bacteria and activates Kupffer cells through LPS-

induced TNF-b and IL-6 [158]. It can also stimulate stellate
cells through growth factors such as epiregulin [159], and initi-
ate various inflammatory and oncogenic pathways [160]. The

LPS-TLR4 pathway promotes HCC, whereas removal of
LPS or genetic inactivation of TLR4 could decrease HCC
development [159]. However, whether the intestinal microbiota

and TLR4 contribute to HCC initiation remains controversial
[159,161].
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Cholic acid and chenodeoxycholic acid are the major pri-
mary bile acids produced by the liver. They cause DNA dam-
age by increasing the production of reactive oxygen species

(ROS), thus inducing the development of liver cancers [162].
In addition, bile acids are also confirmed to regulate the gut
microbiome. Decreased quantities of bile acid result in the

overgrowth of gut microbiota and accelerate inflammation
[163]. The enterohepatic circulation of deoxycholic acid
(DCA) produced by Clostridium causes DNA damage and

provokes a senescence-associated secretory phenotype (SASP)
in hepatic stellate cells. This process involves numerous inflam-
matory cytokines and growth factors, thereby contributing to
inflammatory and obesity-associated HCC transitions [164–

166]. DCA and lithocholic acid are shown to directly promote
cancer through DNA damage [29].

Gut microbiota, obesity, and liver cancer

Obesity increases the likelihood of various cancers, such as
liver cancer [167,168], and causes microbial dysbiosis. Under

the obesity condition, tight junctions of gut epithelium get
degraded due to chronic inflammation. As a result, there is
an increase in intestinal permeability, as well as bacterial

counts and the levels of metabolites translocated from the
gut epithelium into circulation because of the chronic inflam-
mation [166]. IL-6 and plasminogen activator inhibitor-1
induced in obesity also lead to inflammatory responses and

tumorigenesis [169]. In addition, the number of gram-
positive bacteria as well as the serum level of DCA are
increased in mice put on a high-fat diet, indicating that the

DCA-SASP axis plays a critical role in the progression of
obesity-associated liver cancer [164].

Gut microbiota and pancreatic cancer

Pancreas is an extragastric digestive organ. Pancreatic ductal
adenocarcinoma (PDAC), one of the most deadly cancers

globally, is the most common type of pancreatic cancer. Accu-
mulating studies have demonstrated that gut microbiota might
influence pancreatic carcinogenesis [170,171] by promoting

inflammation, activating the immune response, and perpetuat-
ing cancer-associated inflammation [172].

H. pylori and pancreatic cancer

Risk factors for pancreatic adenocarcinoma include age, cigar-
ette smoking, obesity, chronic pancreatitis, and diabetes. A

review of hundreds of meta-analyses on pancreatic cancer
revealed that H. pylori infection is another considerable risk
factor for PDAC [173]. Besides PDAC [174–176], H. pylori is
also involved in the acute and chronic pancreatitis [177–179],

as well as autoimmune pancreatitis [180].
Many pathogenic components derived from H. pylori,

including ammonia and LPS, as well as large quantities of

resulting inflammatory cytokines, damage the pancreas [181].
H. pylori infections activate both NF-jB and AP-1, leading
to dysregulation of cellular processes. Increased IL-8 levels

accelerate inflammation, eventually resulting in pancreatic car-
cinogenesis [182]. KRAS performs an essential function in nor-
mal tissue signaling, while KRAS gene mutations are present in

over 90% of the cases of pancreatic adenocarcinoma [183].
LPS from H. pylori is confirmed to hyperstimulate mutations
of KRAS genes and initiate the process of pancreatic carcino-

genesis [184,185]. In addition, persistent STAT3 activation by
H. pylori infections can promote pancreatic cancer progression
by upregulating the expression of anti-apoptotic and

pro-proliferative proteins, including Bcl-xL, MCL-1, survivin,
c-myc, and cyclin D1 [173,186,187].

Inflammation and immune response in pancreatic cancer

Microbes incur mild and sustained immune responses and
inflammatory reactions, resulting in the formation of pancre-

atic cancer [188]. Many studies have been performed to explore
the possible mechanisms. TLRs expressed on various immune
cells enable the immune cells to recognize both numerous
microbe-associated molecular patterns (MAMPs) and non-

infectious inflammatory damage-associated molecular patterns
(DAMPs), then activate the NF-jB and MAPK signaling
pathways [185,189]. Consequently, these processes initiate

and perpetuate pancreatitis, and finally promote the progres-
sion of pancreatic cancer [190–192].

NLRs are cytoplasmic pattern recognition receptors

(PRRs) that are involved in the activation of NF-jB and the
formation of inflammasomes. P38 mitogen-activated protein
kinases (P38 MAPKs) are responsive to cytokines, and are
involved in cell differentiation, apoptosis, and autophagy,

thereby accelerating the process of PDCA. Thus, P38 inhibi-
tors are possible therapeutic agents for pancreatic cancer [193].

Taste receptor 2 member 38 (T2R38) is a bitter taste recep-

tor. Interestingly, T2R38 is expressed not only in oral cells but
also in pancreatic cancer cells. Pseudomonas aeruginosa is a
unique ligand for T2R38 that is stated to activate T2R38,

induce multi-drug resistance protein 1 (ABCB1), and get
involved in cancer invasion and metastasis [194]. Additionally,
Fusobacterium species exist in 8.8% of pancreatic cancer tis-

sues. It is of note that the status of Fusobacterium species is
an independent negative prognostic biomarker of pancreatic
cancer [195].

Future directions

Gut microbiota are closely related to GI cancers. Prebiotics,

probiotics, synbiotics, and some specific antibiotics are often
applied to build up a healthy gut. Quite a few recent studies
have shown that gut microbiota affect the efficacy of antitu-

mor treatments, including chemotherapy and immunotherapy.

Prebiotics

The World Health Organization (WHO) defines ‘‘prebiotics”

as ‘‘a non-viable food component that confers health benefit
(s) on the host associated with modulation of the microbiota”
[196]. A healthy diet, with increased consumption of plant

foods and limited intake of meat, will be helpful to set up a
healthy gut microbiota [197].

Dietary flaxseeds benefit the colonic microenvironment and

reduce the susceptibility to gut-related diseases [198]. Inulin
diets significantly decrease the pH of the cecal content, the con-
centration of phenol, p-cresol, and indole in the colon tract,
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inhibit the activity of microbial enzymes, including b-
glucuronidase, azoreductase, and nitroreductase, and decrease
the possibility of colonic precancerous lesions [199].

Avenanthramide-C (2c), an avenanthramide particularly
found in oats, is extensively metabolized by gut bacteria and
exerts an anti-inflammatory effect [200]. Urolithins are gut

microflora metabolites of ellagitannins and ellagic acid. Intake
of pomegranate extract significantly increases the quantities of
ellagic acid and urolithins in the CRC tissues [201]. The hops

plant, Humulus lupulus L., is a primary agent in beer contain-
ing prenyl flavonoids with weak estrogenic effect. Prenyl flavo-
noids are augmented by the gut microbiota, exerting
anticancer effects on CRC models [202]. Agaro-

oligosaccharides from seaweed show a positive effect on
high-fat diet-induced gut dysbiosis and CRC development by
altering the amount of SCFAs, bile acid, and phospholipids

[203]. Nutmeg exhibits antimicrobial activity by decreasing
IL-6 levels and normalizing dysregulated lipid metabolism
[204]. Fermentation of nuts results in higher concentrations

of SCFA, and the formation of vaccenic acid, a conjugated
linoleic acid, which could be a potential chemopreventive
metabolite [205]. Polyphenols subjected to microbial metabo-

lism have both anti-carcinogenic and anti-mutagenic effect to
prevent colon cancer [206]. Eicosapentaenoic acid-free fatty
acid, an omega-3 fatty acid, effectively inhibits the process of
inflammation as well as the formation of polyps and colitis-

associated cancers [207]. Both the COLON study [208] and a
RCT study [209] revealed the beneficial effects of polydextrose
on gut microbiota and in the prevention of CRC. Another

recent study has shown that although the intake of palm dates
did not significantly change the relative abundance of gut
microbiota or SCFAs, it can significantly increase bowel move-

ments and stool frequency, while significantly reducing the
stool ammonia concentration and the genotoxicity in human
fecal water [210].

Probiotics

Probiotics are defined by the Food and Drug Administration
(FDA) and WHO as ‘‘live microorganisms, which when

administered in adequate amounts, confer a health benefit on
the host.” A number of studies have claimed the benefits of
probiotics on the suppression of CRC, notably through partic-

ipating in the innate immune system and apoptosis, decreasing
oxidative stress, and improving the community of gut micro-
biota [211–213].

Lactobacillus species are the most commonly used probi-
otics in clinical trials because of a reduction in the abundance
of Enterobacter and the regulation of immune response in gut
of patients with CRC, whereas Bifidobacterium longum admin-

istration has no such effect [214]. Lactobacillus salivarius REN
administration can effectively suppress the development of
CRC in 1,2-dimethylhydrazine-induced experimental animals.

It has been shown that the injection with this potent carcino-
gen remarkably altered the microbial community by increasing
the number of Ruminococcus species (sp.) and Clostridiales

bacteria, while decreasing the number of Prevotella sp. Fur-
thermore, Ren intake promotes the rehabilitation of gut micro-
biota, suggesting that Ren may potentially be beneficial for the

prevention of colon cancer [215]. A probiotic cocktail, com-
prising Lactobacillus acidophilus, Bifidobacteria bifidum, and

Bifidobacteria infantum (LBB), enriched with oligofructose
and maltodextrin, decreases the counts of the species of Pseu-
domonas, Congregibacter, Clostridium, Escherichia, Helicobac-

ter, while increasing the counts of Lactobacillus in CRC [216].
Probiotic Prohep (a mixture of Lactobacillus rhamnosus GG
[LGG], E. coli Nissle 1917 [EcN], and heat inactivated

VSL#3 (probiotic medical food [1:1:1]) decreases the growth
of HCC significantly by inhibiting angiogenesis and inflamma-
tion. It has been shown that the population of gut microbiota

shifts to specific bacteria, such as Prevotella and Oscillibacter,
creating favorable anti-inflammatory products. Th17 cells are
pro-inflammatory Th cells, which are able to produce inter-
leukin 17 (IL-17) as an angiogenic factor. Prohep administra-

tion helps downregulate the Th17 frequency and the
production of IL-1, inhibits the angiogenesis, and promotes
the differentiation of anti-inflammatory Treg cells in the GI

tract [217].
Furthermore, the conventional treatment of H. pylori infec-

tion with amoxicillin, clarithromycin, and PPIs can alter the

indigenous gut microbiota to cause a long-term impact [218].
In a randomized controlled trial comparing the conventional
treatment group to the combination treatment group with pro-

biotics, the gut microbial community in the conventional treat-
ment group is changed more significantly, with a greater
proportion of drug-resistant bacteria. It has been pointed out
that probiotic administration would help the gut microbiota

fight back the perturbation induced by the treatment of H.
pylori infection [219].

Synbiotics

Synbiotics are combinations of prebiotics and probiotics [196].
A previous study has demonstrated that synbiotic supplemen-

tation during neoadjuvant chemotherapy for EC improves the
gut microbial community and reduces the side effects caused
by chemotherapeutic agents [220]. Since alterations in the gas-

tric microbiome contribute to the increased incidence of eso-
phageal adenocarcinomas, particularly those that arise within
the gastroesophageal junction, the esophageal microbiome
may be manipulated with antibiotics, probiotics, or inhibitors

of specific host cell pathways to prevent disorders at this site
[221].

Antibiotics

The incidence and severity of colitis-associated cancer are
reduced by administering antibiotics [222,223]. Antibiotic

administration during the primary inflammation stage can
inhibit the initiation of carcinogenesis in an animal colonic
cancer model [224].

As mentioned earlier, ETBF promotes the development of
IBD as well as IL-17A-dependent CRC [225]. An ETBF-
clearance mouse model was established by cefoxitin adminis-
tration. It is found that expression of the mucosal IL-17A

was inhibited with cefoxitin treatment. The ETBF clearance
prohibits colon adenoma formation and IL-17A-dependent
tumorigenesis. However, the effects of antibiotics are two-

sided. Antibiotic exposure may induce cancers as well. A
nested case-control investigation has demonstrated is a link
between the exposure of penicillin and high risks of esopha-

geal, gastric, and pancreatic cancers [226]. Another recent
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nested case-control study on liver cancer has also shown a
trend of increased risk of liver cancer in cases having antibiotic
therapy, compared to the cases without antibiotic therapy.

However, it is uncertain whether the dose of antibiotics is cor-
related to the risk of liver cancer [227].

COX2-inhibitor

Celecoxib is a selective COX2 inhibitor that alters the gastroin-
testinal microbial community as well as downregulates the

polyp load in the gut. A recent study has found that celecoxib
treatment significantly reduces the burden of polyps in a
mouse model. In addition, the gut microbial community is

characterized by decreased populations of Lactobacillaceae
and Bifidobacteriaceae species, and an increased population
of Coriobacteriaceae species. A metabolomics analysis shows
that celecoxib treatment reduces the formation of pathogenic

microbial products and thus inhibits cell proliferation [228].

Pharmacodynamics of anticancer agents

Irinotecan

Irinotecan is one of the main chemotherapeutic agents for

CRC patients. Gut microbiota mediate the toxicity of irinote-
can (CPT-11) chemotherapy that can induce the loss of intesti-
nal barrier function [229]. The counts of cecal Clostridium
cluster XI, Enterobacteriaceae, pathogenic E. coli, and

Clostridium difficile increased after CPT-11 administration.
Glutamine treatment can induce temporary alternations of
the gut microbiota and reduce the intestinal toxicity of CPT-

11 [230].

5-Fluorouracil

5-fluorouracil (5-FU) is an important chemotherapeutic agent

for CRC treatment. However, usage of 5-FU is limited by
chemoresistance. In 5-FU-resistant CRC cells, Lactobacillus
plantarum supernatant (LPSN) inhibits the expression of par-

ticular biomarkers of cancer stem cells, promotes cell death
and apoptosis, and selectively inactivates the Wnt/b-catenin
signaling pathway, thus enhancing 5-FU efficacy, and revers-

ing the development of resistance to anticancer drugs. This
implies that probiotic substances could be useful therapeutic
alternatives as biotherapeutics for chemoresistant CRCs

[117]. Urolithin A, a gut microbial metabolite from diets con-
taining ellagic acid, targets the colonic mucosa of patients with
CRC, showing the capacity to counteract inflammation and
prevent cancers. When co-treated with supplementary uro-

lithin A, the IC50 values of 5-FU and 50DFUR also decreased,
indicating lower drug doses would be needed, thus reducing
the side effects of hemotherapy [231].

Anticancer immunotherapy

Microbes can enhance the therapeutic effect of cancer
immunotherapy [232]. A previous study has shown that the

anti-cancer efficacy and immunostimulatory effect of cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4) blockade, an
immune checkpoint blockade, rely upon different Bacteroides

species, such as the Bacteroides thetaiotaomicron and B. fragilis
[233]. The efficacy of programmed cell death protein 1 ligand 1
(PD-L1) inhibitors, another important immune-oncology

therapy, is significantly augmented by Bifidobacterium admin-
istration. Moreover, tumor progression is almost prohibited
after the treatment [234].

Traditional Chinese Medicine

Baicalin and baicalein

Baicalin, a flavone glycoside isolated from the root of Scutel-
laria baicalensis, which is one of the commonly used herbs in

the Traditional Chinese Medicine, slightly inhibits cell prolifer-
ation and induces apoptosis. Baicalein, a flavonoid isolated
from S. baicalensis, has anti-inflammatory effects and strongly

inhibits cell proliferation in vitro, particularly on CRC cells
lines. It functions by arresting the cell cycle at the S phase, acti-
vating caspase 3 and caspase 9, thereby inducing apoptosis
[235].

Curcumin

Curcumin, which is produced by the roots of the Curcuma
longa plant, has potential anti-carcinogenesis properties by

maintaining the diversity of gut microbiota. It has also been
demonstrated to be an anti-inflammatory, anti-oxidative, and
anti-proliferative agent [236]. However, numerous clinical

studies assessing the efficacy of curcumin in cancer treatment
has been inconclusive [237].

PHY906

PHY906 (a Chinese herbal medicine) can restore the gut
epithelium through stimulating the regeneration of intestinal
stem or progenitor cells upon transformation by bacterial b-
glucuronidase, which is highly expressed by the gut micro-
biota. It was reported that PHY906 administration in
advanced CRC patients reduces the GI toxicity of irinotecan

and exerts an anti-tumor effect [238–243].

Prognostic biomarkers

Fusobacterium nucleatum may accelerate cancer progression
and inhibit T cell-mediated immune responses in CRC. In a
cohort consisting of 1069 CRC cases, the abundance of F.
nucleatum was found to be related to high microsatellite insta-

bility and thus was independent of the BRAF mutation status.
The higher quantity of F. nucleatum DNA in the tumor tissue
was proportional to worse prognosis. Therefore, this may serve

as a potential prognostic biomarker for colorectal cancers
[244].

Concluding remarks

Mechanistic studies trying to understand how gut microbes
regulate body health and cancers are still at the early stage,

revealing primarily a correlation rather than a causal relation-
ship. However, people have realized that gut microbiota are
closely and functionally related to the humans and play an

important and unique role in human health and disease. Peo-
ple have begun to take bold efforts, trying to regulate gut
microbes. The aims are multifaceted, ranging from regulating

human metabolism, immune and inflammatory response, to
preventing carcinogenesis, inhibiting the progression of can-
cers, and improving the efficacy of personal cancer treatment.
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Gut microbiota are able to play a synergistic effect with
chemotherapeutic and immunotherapeutic agents. Based on
the studies of gut microbiota, people are also exploring new

therapeutic targets, as well as diagnostic, predictive, and prog-
nostic cancer biomarkers using human gut microbiota. The
challenging tasks are awaiting. These may include exploring

a deeper mechanistic understanding of microbiome in the basic
research, accelerating the translation of gut microbiota studies
in precision medicine, and finding the way out to human gut

microbial biological engineering. Clinical trials using micro-
biota in combination with chemotherapy or immunotherapy
are eagerly expected.

Competing interests

The authors declare no competing interests.

Acknowledgments

This work was supported by the National Institutes of Health

(NIH; Grant No. CA190122) and Department of Defense
(DoD; Award No. W81XWH-16-1-0151) of the United States
awarded to QT. Opinions, interpretations, conclusions and

recommendations are those of the authors and are not neces-
sarily endorsed by the NIH or DoD. This work was also
supported by Chinese Academy of Medical Sciences

Innovation Fund for Medical Sciences (CIFMS; Grant No.
2016-12M-1-001) awarded to CB. Opinions, interpretations,
conclusions and recommendations are those of the authors
and are not necessarily endorsed by the CIFMS.

References
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[36] Odenbreit S, Püls J, Sedlmaier B, Gerland E, Fischer W, Haas R.

Translocation of Helicobacter pylori CagA into gastric epithelial

cells by type IV secretion. Science 2000;287:1497–500.

[37] Kwok T, Zabler D, Urman S, Rohde M, Hartig R, Wessler S,

et al. Helicobacter exploits integrin for type IV secretion and

kinase activation. Nature 2007;449:862–6.

[38] Moyat M, Velin D. Immune responses to Helicobacter pylori

infection. World J Gastroenterol 2014;20:5583–93.

[39] Udhayakumar G, Jayanthi V, Devaraj N, Devaraj H. Interaction

of MUC1 with beta-catenin modulates the Wnt target gene

cyclinD1 in H. pylori-induced gastric cancer. Mol Carcinog

2007;46:807–17.

[40] Yong X, Tang B, Li BS, Xie R, Hu CJ, Luo G, et al.Helicobacter

pylori virulence factor CagA promotes tumorigenesis of gastric

cancer via multiple signaling pathways. Cell Commun Signal

2015;13:30.

[41] Hotchin NA, Cover TL, Akhtar N. Cell vacuolation induced by

the VacA cytotoxin of Helicobacter pylori is regulated by the

Rac1 GTPase. J Biol Chem 2000;275:14009–12.

[42] Suzuki J, Ohnsihi H, Shibata H, Wada A, Hirayama T, Iiri T,

et al. Dynamin is involved in human epithelial cell vacuolation

caused by the Helicobacter pylori-produced cytotoxin VacA. J

Clin Invest 2001;107:363–70.

[43] Mashima H, Suzuki J, Hirayama T, Yoshikumi Y, Ohno H,

Ohnishi H, et al. Involvement of vesicle-associated membrane

protein 7 in human gastric epithelial cell vacuolation induced by

Helicobacter pylori-produced VacA. Infect Immun

2008;76:2296–303.

[44] Yahiro K, Akazawa Y, Nakano M, Suzuki H, Hisatune J,

Isomoto H, et al. Helicobacter pylori VacA induces apoptosis by

accumulation of connexin 43 in autophagic vesicles via a Rac1/

ERK-dependent pathway. Cell Death Discov 2015;1:15035.

[45] Ricci V. Relationship between VacA toxin and host cell

autophagy in Helicobacter pylori infection of the human stom-

ach: a few answers, many questions. Toxins (Basel) 2016;8:E203.

[46] Galmiche A, Rassow J. Targeting of Helicobacter pylori VacA to

mitochondria. Gut Microbes 2010;1:392–5.

[47] Willhite DC, Blanke SR. Helicobacter pylori vacuolating cyto-

toxin enters cells, localizes to the mitochondria, and induces

mitochondrial membrane permeability changes correlated to

toxin channel activity. Cell Microbiol 2004;6:143–54.

[48] Jain P, Luo ZQ, Blanke SR. Helicobacter pylori vacuolating

cytotoxin A (VacA) engages the mitochondrial fission machinery

to induce host cell death. Proc Natl Acad Sci U S A

2011;108:16032–7.

[49] Ki MR, Lee HR, Goo MJ, Hong IH, Do SH, Jeong DH, et al.

Differential regulation of ERK1/2 and p38 MAP kinases in

VacA-induced apoptosis of gastric epithelial cells. Am J Physiol

Gastrointest Liver Physiol 2008;294:G635–47.

[50] Caputo R, Tuccillo C, Manzo BA, Zarrilli R, Tortora G, CeV

Blanco, et al. Helicobacter pylori VacA toxin up-regulates

vascular endothelial growth factor expression in MKN 28 gastric

cells through an epidermal growth factor receptor-, cyclooxyge-

nase-2-dependent mechanism. Clin Cancer Res 2003;9:2015–21.

[51] Liu N, Zhou N, Chai N, Liu X, Jiang H, Wu Q, et al.

Helicobacter pylori promotes angiogenesis depending on

Wnt/beta-catenin-mediated vascular endothelial growth factor

via the cyclooxygenase-2 pathway in gastric cancer. BMC Cancer

2016;16:321.

[52] Song X, Xin N, Wang W, Zhao C. Wnt/b-catenin, an oncogenic

pathway targeted by H. pylori in gastric carcinogenesis. Onco-

target 2015;6:35579–88.

[53] Nakayama M, Hisatsune J, Yamasaki E, Isomoto H, Kurazono

H, Hatakeyama M, et al. Helicobacter pylori VacA-induced

inhibition of GSK3 through the PI3K/Akt signaling pathway. J

Biol Chem 2009;284:1612–9.

[54] Sato F, Meltzer SJ. CpG island hypermethylation in progression

of esophageal and gastric cancer. Cancer 2006;106:483–93.

[55] Sitaraman R. Helicobacter pylori DNA methyltransferases and

the epigenetic field effect in cancerization. Front Microbiol

2014;5:115.

[56] De Witte C, Schulz C, Smet A, Malfertheiner P, Haesebrouck F.

Other Helicobacters and gastric microbiota. Helicobacter

2016;21:62–8.

[57] Maldonado-Contreras A, Goldfarb KC, Godoy-Vitorino F,

Karaoz U, Contreras M, Blaser MJ, et al. Structure of the

human gastric bacterial community in relation to Helicobacter

pylori status. ISME J 2011;5:574–9.

[58] Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA,

Francois F, et al. Molecular analysis of the bacterial microbiota

in the human stomach. Proc Natl Acad Sci U S A

2006;103:732–7.

[59] Iizasa H, Ishihara S, Richardo T, Kanehiro Y, Yoshiyama H.

Dysbiotic infection in the stomach. World J Gastroenterol

2015;21:11450–7.

[60] Aviles-Jimenez F, Vazquez-Jimenez F, Medrano-Guzman R,

Mantilla A, Torres J. Stomach microbiota composition varies

between patients with non-atrophic gastritis and patients with

intestinal type of gastric cancer. Sci Rep 2014;4:4202.

[61] Wang J, Zhao L, Yan H, Che J, Huihui L, Jun W, et al. A meta-

analysis and systematic review on the association between human

papillomavirus (types 16 and 18) infection and esophageal cancer

worldwide. PLoS One 2016;11:e0159140.
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[212] Tojo R, Suárez A, Clemente MG, de los Reyes-Gavilán CG,

Margolles A, Gueimonde M, et al. Intestinal microbiota in

health and disease: role of bifidobacteria in gut homeostasis.

World J Gastroenterol 2014;20:15163–76.

[213] Ambalam P, Raman M, Purama RK, Doble M. Probiotics,

prebiotics and colorectal cancer prevention. Best Pract Res Clin

Gastroenterol 2016;30:119–31.

[214] Gianotti L, Morelli L, Galbiati F, Rocchetti S, Coppola S,

Beneduce A, et al. A randomized double-blind trial on periop-

erative administration of probiotics in colorectal cancer patients.

World J Gastroenterol 2010;16:167–75.

[215] Zhang M, Fan X, Fang B, Zhu C, Zhu J, Ren F. Effects of

Lactobacillus salivarius Ren on cancer prevention and intestinal

microbiota in 1, 2-dimethylhydrazine-induced rat model. J

Microbiol 2015;53:398–405.

[216] Kuugbee ED, Shang X, Gamallat Y, Bamba D, Awadasseid A,

Suliman MA, et al. Structural change in microbiota by a

probiotic cocktail enhances the gut barrier and reduces cancer

via TLR2 signaling in a rat model of colon cancer. Dig Dis Sci

2016;61:2908–20.

[217] Li J, Sung CY, Lee N, Ni Y, Pihlajamäki J, Panagiotou G, et al.
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