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and mTOR signaling. Ribosomal proteins (e.g., RPL7, RPL22, and RPL27A) and CRC-related
genes such as APC, AXINI, E2F4, MSH2, PMS2, and TP53 were highly enriched. In addition, dif-
ferential pathways were observed between the CRC and control samples. Furthermore, 103 DIR-
AGs were reported in the SEREX antigen database, demonstrating our ability to identify known
and new reactive antigens. We also found an overlap of 7 antigens with 48 “CRC genes.” These
data indicate that immunomics profiling on protein microarrays is able to reveal the complexity of
immune responses in cancerous diseases and faithfully reflects the underlying pathology.

Introduction

Colorectal cancer (CRC) is reported worldwide as the second
most common cancer in women and third in men, which makes
it a leading cause of cancer-associated mortality in developed
countries [1,2]. Various screening methods for CRC are avail-
able, such as fecal occult blood tests (FOBT), colonoscopy,
and flexible sigmoidoscopy [3]. Implementation of nationwide
screening programs, and minimal invasive and early diagnostic
methods could help to reduce the high mortality rate of CRC.
Early diagnostic methods would enable prompt detection of
cancer at early stages, which is essential for therapeutic success
and a higher patient survival rate. Therefore, discovery, and
identification of sensitive as well as specific markers that could
be exploited at the earliest possible stage is needed. Ideally, the
identification of biomarkers shall be established with easy sam-
ple access [4] from body fluids like serum, plasma or saliva in a
minimally invasive manner, which are generally preferred than
undergoing colonoscopy.

In cancer, altered protein expression during neoplastic
transformation and tumor progression can elicit immune
responses and induce the formation of tumor autoantibodies
[5]. Besides the involvement in inhibiting tumor growth,
immune responses could also promote tumor growth through
a process called immunoediting consisting of elimination, equi-
librium, and escape phases [6,7]. Inmunoediting may affect the
composition and quantity of circulating antibodies. The reac-
tivity of these antibodies toward recognized or unrecognized
tumor-associated antigens (TAAs) can be affected by multiple
factors related to cancer growth, such as aberrant expression
of differentiation genes, accumulation of mutations, inaccurate
post-translational modifications, alternative splicing, as well as
deregulated necrotic or apoptotic processes [8,9]. These TAAs
usually have key functions in tumorigenesis, for instance, reg-
ulation of cell proliferation and cycle, differentiation, and
apoptosis [10,11]. Antibodies are very stable and can be
detected months or even years before a clinical cancer diagno-
sis [12], which makes it possible to determine the differentially-
reactive antigens (DIRAGs) among patients as well as relative
to control samples by analyzing the immunome (antibody pro-
file) [13,14]. Therefore, autoantibodies could be used as a sero-
logic tool for early diagnosis of cancer.

Autoantibody signatures for several cancer types have been
reported, including colon cancer, prostate cancer, breast can-
cer, liver cancer, ovarian cancer, renal cancer, head and neck
cancer, esophageal cancer, lymphoma, and leukemia [15-22].
Autoantibodies in cancer can be identified using various meth-
ods, such as phage display [12,23], serological analysis of
recombinant cDNA expression libraries (SEREX) [15,24],
and serological proteomics analysis (SERPA, also known as
Proteomex) [25-27]. However, these techniques require
complex steps [28,29]. There exists significance and need for

identifying new protein biomarkers in CRC, as reviewed by
us [3] and lately by Coughlin and Murray [30].

Protein arrays, which comprise recombinant proteins, pro-
tein fractions, or purified proteins, offer a potent tool for both
definition and identification of immune profiles [31]. Proteins
included in the arrays are known, which are printed with a
comparable concentration in a highly-multiplex manner.
Therefore, there exists no bias in identification of biomarkers
with great sensitivity [32]. Additionally, high-density protein
arrays increase the chance of discovering novel autoantibodies
against low abundance proteins while also allowing testing of
thousands of proteins simultaneously [33]. Thus, detection of
diagnostic autoantibody signatures by testing patient samples
from, e.g., cancer patients versus control samples, can be con-
ducted in a cost-effective manner [3,34]. A review on protein-
based approaches for biomarker discovery was recently done
by Huang and Zhu [35].

In this study, we have produced and tested protein microar-
rays from 15,417 human cDNA expression clones presenting
6369 unique human proteins for the identification of DIRAGs
[36]. Our previous work has demonstrated that using purified
IgG does avoid artifacts caused by the matrix of serum or
plasma samples, and is thus an ideal way to analyze DIRAG
profiles [37]. Thus IgG derived from heparin-plasma of 32
CRC patients and 32 controls was used in the current study.
As a result, we show that biological profiles can be illustrated
via antibody profiling.

Results
IgG profiling on protein-microarrays

To identify DIRAGs from IgG profiling, we performed the
immunoprofiling of CRC and control samples using our in-
house protein microarray as previously described [36]. All
plasma samples used were collected in the ongoing molecular
epidemiology “Colorectal Cancer Study of Austria”
(CORSA), targeted to inhabitants of the Austrian province
Burgenland aged 40-80 years, as described in the Material
and Methods section. After the data were normalized using
distance weighted discrimination (DWD), we used z-test (P
= (.01 as cut-off) to evaluate the differences in antibody pro-
files between the CRC and control samples. Consequently, 671
unique antigenic proteins were identified as DIRAGs based on
the median fold-change between classes. Among them, 632
antigenic proteins were found to be higher reactive in CRC
samples, whereas 31 antigenic proteins were more reactive in
the control samples. However, we also found that 8 antigenic
proteins exhibited unclear immunoreactivity, i.e., two different
antigen clones expressing the same proteins were found to be
significantly different in immunoreactivity but in opposite
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directions (one clone with increased immunoreactivity and the
other with reduced immunoreactivity) between CRC and con-
trol samples. The list of significant antigenic proteins can be
found in Table S1. The technical performance and reliability
of the protein array analysis is provided as described in the
methods and shown in Figure S1.

These 671 DIRAGs were subjected to bioinformatics anal-
yses as outlined in Figure 1.

Functional analysis for associated pathways and networks

To identify the associated canonical pathways and network
functions, we then performed functional analysis using Ingenu-
ity Pathway Analysis (IPA, Ingenuity® Systems, www.ingenu-
ity.com) [38]. As shown in Table S2, DIRAGs were involved in
50 canonical pathways (P < 0.01; —log P value >2). The top
5 pathways include the eukaryotic initiation factor 2 (EIF2)
signaling pathway, mTOR signaling, growth hormone signal-
ing, virus entry via endocytic pathways, and 14-3-3-mediated
signaling (Table 1).

IPA analysis revealed that the EIF2 signaling pathway was
the most overrepresented canonical pathway between CRC
and control samples (P = 4 x 107°). A total of 24 proteins
were represented in the EIF2 signaling pathway, including
three proteins from the phosphoinositide 3-kinase (PI3K)

family, namely phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit & (PIK3CD), PIK3C type 2 B
(PIK3C2B), and PI3K regulatory subunit 2 B (PIK3R2).
PI3Ks are involved in signaling pathways such as cell motility,
cell migration, vesicle transport, and apoptosis [39].

To identify interactions at the molecular level between the
DIRAGS found (Table S1) and how they might work together,
we then analyzed mechanistic bionetworks using IPA. As
shown in Tables 2, 3 out of the 5 bionetworks found are related
to cell death and survival, with one related to cancer as well. In
addition, 3 bionetworks are involved in cellular growth and
proliferation (Table 2). The detailed list of related DIRAGs
can be found in Table S3.

Protein interaction enrichment analysis with WebGestalt

Comparison of the DIRAGs with the protein list from the anno-
tated genes presented in the UniPEx library in pre-defined func-
tional categories was performed for a hierarchical protein
interaction module enrichment analysis. The hierarchical rela-
tionship of the enriched phenotype terms can be observed in
the directed acyclic graph (DAG) found in Figure S2.

Among the 19 enriched network modules, three modules
are found to contain 14-36 proteins. These include Module 1
(36 proteins), Module 2 (26 proteins), and Module 3 (14 proteins).
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Figure 1  Procedure overview

Overlapping with known TAAs
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The described procedure exemplifies the methodology used in this study. An expression library consisting of 15,417 cDNA clones was used
to produce recombinant human proteins. The recombinant proteins were isolated and used for printing protein microarrays. IgG was
isolated from a total of 64 samples (32 CRC samples and 32 healthy control samples) and tested on the protein microarrays.
Bioinformatics analyses (¢-tests) were performed to identify the DIRAGs between the groups of arrays. Subsequently, the list of DIRAGs
were subjected to functional analysis with IPA, hierarchical protein interaction module enrichment analysis with WebGestalt, association
of overlapping proteins with the Cancer Immunome Database analysis, and analysis of overlap with known CRC and TAAs. CRC,
colorectal cancer; TAA, tumor-associated antigen; GO, Gene Ontology.
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Table 1 Top 5 pathways enriched with DIRAGs

Pathway -Log (P value) Ratio Proteins

EIF2 signaling 5.39 0.162 PABPCI, PIK3C2B, RPL22, RPL27A, RPL37A, RPS19, PDPKI,
PPPIRI15A, RPS17/RPS17L, EIF4G1, RPL7, RPS7, EIF3G,
EIF3F, RPS27, EIF4G2, RPL28, RPL36AL, RPL19, RPS25,
PIK3CD, PIK3R2, RPS10, RPLI18

mTOR signaling 4.63 0.150 PIK3C2B, ULK1, DDIT4, RPS19, PDPK1, RPS17/RPS17L,
EIF4G1, PRKCZ, EIF3G, RPS7, DGKZ, EIF3F, RPS27,
EIF4G2, PRKCD, TSC2, RPS6KB2, RPTOR, RPS25, PRKCH,
PIK3CD, PIK3R2, RPS10

Growth hormone signaling 4.41 0.226 PIK3C2B, PRKCD, RPS6KB2, PLCGI1, PDPK1, PRKCH,
PIK3CD, STAT3, PIK3R2, STATI, ELKI, PRKCZ

Virus entry via endocytic pathway 3.71 0.183 PIK3C2B, FLNB, AP1G2, HLA-C, HLA-A, PRKCD, CLTA,
HLA-B, PLCGI1, PIK3CD, PRKCH, PIK3R2, PRKCZ

14-3-3-mediated signaling 3.45 0.158 PIK3C2B, TUBB3, YWHAE, PDIA3, YWHAZ, PLCGI1, VIM,

PRKCZ, PRKCD, TSC2, PIK3CD, PRKCH, PIK3R2, ELKI,
PDCD6IP

Note: The ratio is the number of proteins in a given pathway that meet the cutoff criteria (P < 0.01), divided by the total number of proteins that
make up that pathway. The complete list of 50 pathways can be found in Table S2.

Table 2 Top 5 associated network functions obtained with IPA

Associated network functions Score No. of DIRAGs found
Cell death and survival, cell cycle, cellular growth and proliferation 40 35
Cellular movement, cellular growth and proliferation, cell cycle 11 16
Cell cycle, cellular development, cellular growth and proliferation 11 18
Cell death and survival, cell cycle, cellular development 10 17
Cell death and survival, cancer, reproductive system disease 8 15

Note: The score indicates the likelihood of the focus genes in a network being found together due to random chance and is used to rank networks
according to their degree of relevance to the network eligible molecules in a dataset, based on the connectivity of the molecules in a given network.
The score is calculated with the right-tailed Fisher’s Exact test. The maximum network size is set at 35 by default.

As shown in Figure S3, some higher antigenic reactive proteins
are overexpressed (up-regulated, in red) in Module 1. These
include proteins involved in translation factors, e.g., ISG15
ubiquitin-like modifier (ISG15), as well as transport and
cytoskeleton, e.g., dynein cytoplasmic 1 heavy chain 1
(DYNCIHI1) and filamin B (FLNB). Proteins in Module 2
are mostly transcription factors, or proteins associated with
double-strand break repair and DNA binding (Figure S4).

Figure 2 shows the node-link diagram for Module_3, which
contains 12 ribosomal proteins including 5 L ribosomal pro-
teins (RPLs), i.e., RPL7, RPL18, RPL19, RPL22, RPL27A,
RPL28, and RPL37A, and 5 ribosomal protein S, i.e., RPS7,
RPS10, RPS17, RPS19, and RPS25. In addition, signal recog-
nition particle receptor (SRPR) and signal sequence receptor
subunit 2 (SSR2) in the endoplasmic reticulum were found in
Module 3 as well.

Of note, we found that ribosomal proteins were also
enriched in the EIF2 signaling pathway obtained with IPA
(Table 1). Therefore, we compared the proteins from Mod-
ule_3 and the proteins from the EIF2 signaling pathway. We
thus found an overlap of 12 ribosomal proteins, including
RPL7, RPLI18, RPL19, RPL22, RPL27A, RPL36AL,
RPL37A, RPS7, RPS10, RPS17, RPS19, and RPS25. This
result indicates that complex cellular structures (especially
ribosomes) are a frequent target of autoantibodies.

To gain further understanding of the biological meaning of
the DIRAGs, we performed Gene Ontology (GO) slim classi-
fications [40]. Molecular function analysis indicated that DIR-
AGs are predominantly involved in binding functions (394 of
671), including protein, ion, nucleic acid and nucleotide acid
binding (Figure 3A). The biological process analysis showed
that 66% of DIRAGs were found in metabolic processes
(441 proteins), while 58% were involved in biological regula-
tion (387 proteins) (Figure 3B). Furthermore, cellular compo-
nent analysis revealed that the classified proteins were mainly
found in nuclear components (327 DIRAGs), macromolecular
complexes (237 DIRAGSs), membrane function (226 DIR-
AGs), membrane enclose lumen (219 DIRAGS), and cytosol
(189 DIRAGS) (Figure 3C).

Comparison with the cancer immunome database

To better understand the 671 unique DIRAGs identified in our
microarray study (Table S1) in alignment with known tumor
antigens, we compared our data with the Cancer Immunome
Database. Among the 1545 known antigens from the SEREX
database (http://ludwig-sunS.unil.ch/CancerlImmunomeDB)/),
568 antigens were included in the UniPEx library. Aligning
the 671 unique DIRAGs obtained in this study with these
568 SEREX antigens revealed that 103 antigens were found
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Figure 2 Node-link diagram visualization of DIRAG-enriched Module 3

Visualization of higher antigenic reactivity (up-regulated, colored from white to red) and low-antigenic reactivity (down-regulated, colored
from blue to white) DIRAGs in CRC samples in comparison with control samples (in the center) and their direct neighbors (at the edge)
was obtained using the protein interaction enrichment analysis in WebGestalt. Enrichment analysis was performed using the
hypergeometric test, and the Benjamini-Hochberg procedure for multiple test adjustment (P = 0.01). CRC, colorectal cancer; DIRAG,

differentially-reactive antigen.

to overlap between lists (Table S4). Furthermore, we found
that the overlap between these two lists of antigens is signifi-
cant (P = 8.5 x 10~%; two-tailed Fisher’s exact test).

Comparison of DIRAGs, published CRC-specific TAAs and
CRC genes

To examine whether the DIRAGs obtained (Table S1) are
possibly known TAAs, we collected information about the
acknowledged CRC TAAs from 8 significant articles pub-
lished between 2002 and 2012 [5,31,32,41-45], and compiled
a list of 131 CRC TAAs (Table S5). Comparing the resulting
list with the list of DIRAGs, we found an overlap of 7 anti-
gens between the published CRC TAAs and the DIRAGs

(Table 3). Among them, 6 antigens were found to have an
increased reactivity.

In addition, a comparison between the DIRAGs (Table S1)
with the CRC defined gene list (Table S6, 48 genes) showed
that 7 known CRC genes were part of the list, namely 4PC,
ARIDIA, AXINI, E2F4, MSH2, PMS2, and TP53. The
tumor-suppressor gene APC is also associated with AXIN]
in the WNT signaling pathway, which is a crucial colorectal
tumorigenesis signal transduction pathway [46]. Mutations
observed in ARIDIA have been found in many tumor types
including CRC [47]. Mutations at the germline DNA mis-
match repair (MMR) genes like MSH2 and PMS2 cause
hereditary non-polyposis CRC [46], whereas 7P53 somatic
mutations are found in more than half of CRC cases [48].
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Luna Coronell JA et al | Colon Cancer Immunome 79

Table 3 List of CRC DIRAGs overlapping with published TAAs

DIRAG Fold change Upregulation/downregulation Refs.
HDACI 1.36 T [32]

HIPIR 1.66 T [43]
HMGN2 1.71 T [44]

ITFG3 1.32 T [31]

LMNA 1.66 T [43]

SECI6A 0.54 | [31]

p33 1.75 T [31,41,43-46]

Note: CRC DIRAGS are found to overlap with the published TAAs. The upward and downward arrows indicate that expression of the DIRAG
was found up-regulated and down-regulated, respectively, in this study. TAA, tumor-associated antigen.

Discussion

Information obtained from the colon cancer immunome is of
great significance, as the immune system plays a crucial role
in cancer advancement [49]. Obtaining information on the
molecular mechanisms in which the TAAs are involved is of
great aid in understanding the biology and the mechanisms
underlying the development of cancer. Furthermore, the
changes in immunoreactivity or antibody-profiles provide
disease-specific molecular signatures, which could be used for
diagnostics and probably have additional significance to the
clinical parameters currently in use for disease management.
For autoantibody profiling, high-density protein arrays are a
good tool for discovery, enabling a high-throughput test of
many samples especially when using customized microarrays
presenting selected proteins. Moreover, we have previously
demonstrated (and recently Negm and colleagues used a very
similar approach [50]) that purified IgG optimally conserves
DIRAG profiles, thus circumventing matrix artifacts found
in serum or plasma samples [36,37].

Further bioinformatics analysis reveals that the EIF2 sig-
naling pathway was the most overrepresented canonical path-
way, which could be explained by the fact that this pathway is
required to initiate protein synthesis. In addition, the EIF2 sig-
naling pathway can also induce PI3K; in agreement, PI3K was
found to be overrepresented in our study as well (Table S2).

Amplification of PI3K plays a role in the transduction of
signals from extracellular stimuli, such as hormones, mitogens,
growth factors and cytokines, to cellular pathways controlling
cell growth, proliferation, and survival [S51]. PI3K is well
known to promote tumorigenesis in a variety of experimental
models of cancer [49] including CRC [52]. One of the pathways
activated by the amplification of PI3K is the mTOR pathway,
which was also found in the top 5 canonical pathways, with 23
molecules represented in the pathway (Table 1). It is known
that the mTOR pathway is activated during various cellular
processes such as tumor formation and is deregulated in cancer
[53]. Our results are in line with whole-exome sequencing and
integrative data from TCGA network. Through analyzing the
mRNA expression changes from 195 tumor samples, it was
demonstrated that the PI3K, p53, and WNT pathways are
deregulated in CRC [54].

One key finding of the colon cancer immunome is that fac-
tors involved in protein synthesis are enriched and overex-
pressed, which is confirmed by analyses performed using
both IPA and WebGestalt (Hierarchical Protein Interaction

Module Enrichment Analysis). Functional analyses also
showed overexpression of ribosomal proteins and translation
initiation factor proteins involved in the EIF2 signaling path-
way (Figure 2). Furthermore, CRC DIRAGS identified were
found to be enriched in proteins involved in binding functions,
such as protein, ion, nucleic acid and nucleotide acid binding
(Figure 3). These results are in accordance with results from
Yu and colleagues [55]. In their study using CRC and adjacent
normal tissues, they employed gene expression microarray
analysis and also found that metabolic processes are the most
common biological processes from the differential proteins
analyzed (Figure 3B) [55]. As mentioned before, our results
suggest that complex cellular structures are a frequent target
of autoantibodies. This is further supported by the finding of
enriched proteins that are known to be implicated in protein
binding [9,56], folding [57], and cell proliferation [58].

Differentially-reactive antibodies are reporters of the
immune system targeting cellular as well as secreted proteins
from tumors. Our results are corroborated by results obtained
from Emmink and collaborators [56], who found that both
extensive survival and anti-oxidant networks are represented
in the secretome of colon cancer stem cells. Consistent with
our findings (Figure 2), they found several ribosomal proteins
and translation initiation factors and, most significantly,
enriched proteins governing cell death. As a consequence, the
immune response as seen in changed antibody profiles might
also be driven by secreted proteins from tumors [5], as our
DIRAGS are in concordance with the proteins identified in
Emmink’s study [56].

In line with existing knowledge, we also found a highly sig-
nificant overlap between DIRAGs (671) and the SEREX-
derived antigens listed in the Cancer Immunome Database, of
which 568 antigens were also present in our protein array (Fish-
er’s exact test: P = 8.5 x 10~%). This result demonstrates the
reliability of antigenic proteins defined by our protein array.
The identified antigenic proteins are mainly associated with
the cell cycle, connective tissue development, transcription fac-
tors, and cell-to-cell signaling interaction networks (Table 2). It
is well known that tumors reside in a microenvironment that is
associated with aberrantly-altered cancer-associated cells,
inflammation, hypoxia, and loss of normal tissue architecture
[49,59], further supporting our findings. The results further
advocate that our approach toward identifying and character-
izing antibody profiles has the potential to identify biomarkers
displaying the complexity of such antigenic responses.

Screening plasma samples using our protein microarrays
leads to the identification of both known (Table 3) and new
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TAAs, which may serve as new biomarkers. For instance,
HDACI, which plays a role in cell proliferation, survival,
and inhibition of differentiation, shows higher antigenic reac-
tivity in our study, which has been corroborated in CRC
tumor studies [60,61]. Besides, 7 known CRC genes were found
by comparing the DIRAGs (Table S1) with the literature-
defined 48 CRC genes (Table S6). The tumor suppressor
APC, listed on top, interacts with AXINI, which, in addition,
interacts with other Wnt/B-catenin signaling pathway compo-
nents [62] and is essential for degradation of B-catenin in the
Wnt/B-catenin signaling cascade, an important signal trans-
duction pathway in CRC [63]. Moreover, E2F4 is an impor-
tant transcription factor in cell cycle control [64], while
MSH?2, an MMR gene like ARIDI and PMS?2 [46,65], is highly
associated with hereditary non-polyposis CRC. The MMR
system recognizes and repairs mismatches between base pairs
during DNA replication. PMS2 has been found to interact
with p53 [66], a transcription factor that activates apoptotic,
autophagial, cell cycle arresting and cellular metabolism genes,
which confers its tumor suppressor activity [46].

Taken together, our data provide a comprehensive view on
the colon cancer immunome as an additional pathological
layer worth considering in more detail when both bioinformat-
ics analyses such as IPA and WebGestalt have provided over-
lapping information as complementary evidence. Moreover,
analysis of tumor-associated antigenic proteins found in the
Cancer Immunome Database provides insights into associa-
tions with cancer antigens, as well as the differentially reactive
activity of antigens that are known in CRC. Further experi-
ments to address to what extent the mechanisms involved in
the antigenicity of autoantigens operate within malignancies
need to be performed to deepen our understanding of interac-
tions and networks in cancer formation. Although the anti-
genicity of autoantibodies to TAAs has been acknowledged
in various elements of cancer growth [8,9], additional under-
standing can be gathered with the aid of network and func-
tional analyses as exemplified herein.

Materials and methods

Clinical information and samples

All plasma samples were collected in the ongoing molecular
epidemiology “Colorectal Cancer Study of Austria”
(CORSA). Since May 2002, 11,657 individuals have partici-
pated in CORSA (01/2014). The screening program ‘‘Burgen-
land Prevention Trial of Colorectal Disease with
Immunological Testing” (B-PREDICT), which is a province-
wide program, invites the public to participate in fecal occult
blood testing (FOBT) annually. This invitation is open to all
inhabitants of the Austrian province Burgenland, as long as
they are between 40 and 80 years old. FOBT-positive individ-
uals are offered a complete colonoscopy and, at the time of
colonoscopy, are asked to take part in CORSA. A blood sam-
ple from the participants is collected as well as information in a
short questionnaire. The questionnaire includes information
regarding anthropometric and demographic factors, smoking
status, alcohol consumption, and basic dietary habits. After
sample acquisition, the heparinized plasma was centrifuged
at 2000g forl0 min, and the resulting supernatant was stored
as plasma samples at - 80 °C until further use.

Table 4 Demographics of the study population

Variable CRC (n = 32) Control (n = 32)
Age 65.9 (48-82) 63.7 (40-78)
Sex
Male 18 18
Female 14 14
Meat consumption
Very frequent
Frequent 11 17
Seldom 13 8
None 2 2
Smoking
Current 3 5
Former 10 8
Never 17 17
No information 2 2
Clinical tumor stage
0 1 NA
1 8 NA
II 8 NA
111 5 NA
1\Y% 3 NA
Missing 7 NA
Lymph node metastasis 6 NA

Note: Age (years) refers to the age of patients at the time of CRC
diagnosis or the age of controls at the time of being recruited to the
study, indicated as mean (range).

Clinical data of CORSA participants were processed in a
central database following regulated documentation guide-
lines. All subjects provided written informed consent. The
institutional local ethics review board “Ethikkommission
Burgenland” authorized the study. Further information of
the study cohort is described previously [67,68]. According to
histopathology, individuals were classified as CRC cases
(n = 32) and controls (n = 32). All individuals with serrated
adenomas have been excluded. Controls underwent a complete
colonoscopy and were found to be free of CRC and free of
polyps. Persons with severe medical conditions including any
other malignant condition at the initial study point were
disqualified from the study (Table 4).

IgG purification of blood samples

1gG purification was performed as previously described [36].
Briefly, the Melon™ Gel IgG Purification Spin Plate Kit
(Thermo Scientific, Waltham, MA) was used to purify all sam-
ples according to the manufacturer’s instructions using 30 pl of
plasma, followed by determination of IgG concentration as
previously described [37]. Sample integrity was determined
by running each purified sample on a NuPAGE® Novex
4%-12% Bis-Tris Precast Gel (Life Technologies, Carlsbad,
CA).

Protein microarray production and processing

Protein expression, purification, and microarray production
were performed as previously described [36]. Briefly, the
UniPEx — human in-frame cDNA protein expression library
consisting of 15,417 E. coli cDNA expression clones and
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presenting 6369 unique, distinct human proteins was pur-
chased from Imagenes (Berlin, Germany). E. coli culture as
well as induction of protein expression were conducted in 96-
well plates with minor modifications as previously described
[69]. Protein expression was induced by cultivation in autoin-
duction medium or by adding isopropyl B-D-1-
thiogalactopyranoside (IPTG). After cultivation, purification
and elution of the His-tagged recombinant proteins was per-
formed. Protein estimation was performed by running a gel
[70]. Clarified E. coli lysates and plain buffer were used as pos-
itive and negative controls, respectively. ARChip Epoxy glass
slides [71] were used to spot the protein arrays in duplicate
using an Omnigrid arrayer. An illustration of the protein
microarray design can be found in [70].

Protein microarray processing was done as previously
described [36]. Due to array processing handling capacity,
arrays were processed in 4 runs on different days with a bal-
anced design (Day 1: 17 CRC vs. 17 controls; Day 2: 15
CRC vs. 15 controls; Day 3: 9 CRC vs. 9 controls; and Day
4: 9 CRC vs. 8 controls). A total of 50 arrays (including repli-
cate analyses) were tested for the 32 CRC samples, and a total
of 49 arrays (including replicate analyses) were tested for the
32 control samples.

Technical performance of protein microarray analysis

We have conducted a technical study to confirm the reliability
of the findings on protein microarrays by cross-wise serial mix-
ing of 2 individuals’ IgG and then testing for significant DIR-
AGs of 4-fold replicates from the “pure samples at 100%”
(Figure S1A). The samples from the 2 individuals show 4638
significant DIRAGS (P < 0.05) as illustrated by the volcano
plot (Figure S1B). Correlation analysis of these 4638 signifi-
cant DIRAGS with the IgG-relative amount of both individu-
als using the mixing-series showed that 97% DIRAGs have
Pearson’s correlations >0.5 (corr = 0.5 to 1.0 or —0.5 to
—1.0) and that 72% are found with a corr = 0.812 to 1.00
or —0.812 to —1.00 (histogram in Figure S1C).

Data acquisition and statistical analysis

Array imaging, scanning, feature aligning, and gridding of
spotted proteins were performed as described earlier [36] using
the GenePix Pro 6.0 (Molecular Devices, Sunnyvale, CA).
Briefly, correction for the systematic bias that may have been
introduced using different batches of arrays was performed
prior to arrangement of the protein microarray data and statis-
tical analysis using ‘“‘Distance Weighted Discrimination/
DWD” as described [72]. Statistical analysis of the microarray
data was carried out using R 3.0.1 and BRB-ArrayTools 4.3.1
[73]. Sample size calculation was conducted using the BRB-
ArrayTools plug-in with a significance level of 0.001 (x), a
power of 0.75 (1 — f8), and a fold change of 2. An expected
sample size in each class of 32 was determined by applying
the 50th percentile of the variance distribution. DIRAGs
between the patients and controls were defined using the Class
Comparison tool in BRB-ArrayTools with P < 0.01. A file
was prepared for the resulting analysis data, which included
both a list of DIRAGs ID annotations and its ratio of the geo-
metric means between sample groups (Table S1).

Pathway analysis

IPA was used for the generation of “Core Analyses” to inter-
pret the data in relation to biological networks, biological pro-
cesses, and pathways using the Ingenuity Knowledge Base
reference set. The analyzed canonical pathways were ordered
by the ratio (features in a given pathway meeting the selection
criteria, divided by the total number of features included in
that pathway) and the Fisher’s Exact test P value.

Web-based gene set analysis toolkit

The Web-based GEne SeT AnaLysis Toolkit (WebGestalt;
http://bioinfo.vanderbilt.edu/webgestalt/) [74,75] was used for
hierarchical enrichment analyses of protein interaction net-
works and Gene Ontology (GO) slim classification for creating
bar charts with respect to biological processes, molecular func-
tions, and cellular components. The hypergeometric test was
used for enrichment analysis, and adjustment for multiple test-
ing was achieved using the Benjamini & Hochberg procedure.
The significance level was adjusted to the top 10 pathways (P
< 0.05), and a minimal base amount of two genes for a cate-
gory was set.

Cancer immunome database comparison

Comparisons with the entire 1545 SEREX antigens enlisted in
the Cancer Immunome Database were performed (http://lud-
wig-sunS.unil.ch/CancerImmunomeDB/).  The  complete
unique list of SEREX antigens was matched to the DIRAGs
table (Table S1), searching for already known antigens. Fish-
er’s exact test (two-tailed) was used to test for significant
enrichment of antigens found in our study and the SEREX
antigens present in the UniPEx library. Statistical tests were
done using RStudio software (version 0.97.551).

TAA literature review and comparison with CRC genes

To identify DIRAGs from this study that are possibly acknowl-
edged as TAAs, a table of the known CRC TAAs was compiled
from several publications [5,31,32,41-45]. This list (Table S5)
was intersected with the DIRAGs (Table S1). Additionally, a
compilation of the most recognized CRC genes listed in the
literature was generated from reviews [46,48,76]. To further
complement this list, we added information of the cancer
census gene mutation data from the Catalogue Of Somatic
Mutations In Cancer (COSMIC) website, http://www.sanger.
ac.uk/cosmic [77]. Only somatic gene mutations detected in
CRC were considered. With the found CRC genes, a table
was generated (Table S6) and the overlapping antigens with
those identified in our experiments were examined.
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