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Abstract Single-cell RNA sequencing (scRNA-seq) is a powerful technique to analyze the tran-

scriptomic heterogeneities at the single cell level. It is an important step for studying cell sub-

populations and lineages, with an effective low-dimensional representation and visualization of

the original scRNA-Seq data. At the single cell level, the transcriptional fluctuations are much lar-

ger than the average of a cell population, and the low amount of RNA transcripts will increase the

rate of technical dropout events. Therefore, scRNA-seq data are much noisier than traditional bulk

RNA-seq data. In this study, we proposed the deep variational autoencoder for scRNA-seq data

(VASC), a deep multi-layer generative model, for the unsupervised dimension reduction and visual-

ization of scRNA-seq data. VASC can explicitly model the dropout events and find the nonlinear

hierarchical feature representations of the original data. Tested on over 20 datasets, VASC shows

superior performances in most cases and exhibits broader dataset compatibility compared to four

state-of-the-art dimension reduction and visualization methods. In addition, VASC provides better

representations for very rare cell populations in the 2D visualization. As a case study, VASC suc-

cessfully re-establishes the cell dynamics in pre-implantation embryos and identifies several candi-

date marker genes associated with early embryo development. Moreover, VASC also performs well

on a 10� Genomics dataset with more cells and higher dropout rate.
Introduction

Characterizing the cellular states at the single cell level is cru-

cial for understanding the cell–cell heterogeneities and the bio-
logical mechanisms that cannot be observed in the average
behaviors of a bulk of cells. Single-cell RNA sequencing

(scRNA-seq) is a promising high-throughput technique to
nces and
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simultaneously profile the transcriptomes of a large number of
individual cells [1]. Thousands of genes are simultaneously
expressed in a single cell. Expression levels of these genes are

usually tightly regulated in regard to a limited number of cel-
lular states. Finding an effective low-dimensional representa-
tion of the scRNA-seq data is the basic step for the data

visualization and the downstream analysis, such as the cell lin-
eage establishment and the cell sub-population identification
[2]. Currently, several traditional dimension reduction methods

used for the bulk RNA-seq data analysis, such as principal
components analysis (PCA) [3] and t-distributed stochastic
neighbor embedding (t-SNE) [4], are still widely used for the
scRNA-seq data analysis. However, the transcriptional burst

effects and low amounts of RNA transcripts in single cells
make the scRNA-seq data much noisier than the bulk RNA-
seq data. For example, the scRNA-seq data have many unex-

pected dropout events (many data points are zero or near-zero)
[5]. These noises make those traditional methods inefficient. To
improve the analysis, one useful strategy is to explicitly mimic

the data generation process by a probabilistic model. For
example, the zero-inflated factor analysis (ZIFA), which com-
bines the probabilistic factor analysis with conditional dropout

probability, was developed to find the latent low dimension
subspace [6]. However, ZIFA can only model linear patterns
by a single hidden layer, which limits its performance on the
datasets with complex cellular states in the original data space.

Another strategy is to embed the cells into another low-
dimensional space by preserving the cell–cell similarity (or dis-
tance) in the original data space. But, this kind of methods,

such as single-cell interpretation via multiple kernel learning
(SIMLR) [7], frequently change the basic topological informa-
tion in the embedded space.

In recent years, deep probabilistic hidden models have
shown superior performances in representing complex features
of high-dimensional data, especially for images and speeches

[8,9]. In this study, we developed a deep model, deep varia-
tional autoencoder for scRNA-seq data (VASC), to analyze
and visualize the scRNA-seq data. VASC can capture non-
linear variations and automatically learn a hierarchical repre-

sentation of the input data. In addition, it uses the Gumbel dis-
tribution to better model the zero and near-zero dropout
events. We systematically compared VASC with several

state-of-the-art dimension reduction methods on 20 datasets.
Results show that VASC has superior performance in most
cases and exhibits a broader dataset compatibility.

Methods

VASC: the method overview

VASC, a generative model based on the deep variational

autoencoder (VAE) [9–11], was designed to find an effective
low-dimensional representation and facilitate the visualization
of scRNA-seq datasets. It modeled the distribution of high-

dimensional original data P(X), by a set of latent variables z

(the dimension of z should be much lower than X, in particu-
lar, being two for visualization). The primary goal of VASC is
to find the optimal z capturing the intrinsic information of the

input data. In a probabilistic view, the posterior distribution P
(z|X) could be treated as the best distribution of z given the
observed data X. However, P(z|X) is usually intractable. Vari-
ational inference is thus proposed to solve this problem by
designing another common distribution family Q(z|X) (also

known as variational distribution) to approximate P(z|X).
The minimization of the Kullback–Leibler (KL) divergence
between the two distributions is usually adopted for the

approximation. The variational distribution Q(z|X) should be
sufficiently representative to model the complex information
of P(z|X) in the scRNA-seq datasets, and on the other hand,

should be tractable for efficient computation. In VASC, deep
neural networks were used to explicitly model the variational
distribution. Unlike the traditional variational inference meth-
ods, deep neural networks can approximate arbitrary functions

and can be optimized efficiently using the stochastic gradient
descent methods.

Generally, VASC has three major parts, namely, the enco-

der network, the decoder network, and the zero-inflated (ZI)
layer (Figure 1). The encoder network, designed as a three-
layer neural network, generates the parameters of the varia-

tional distribution. It should be noted that before the first
layer, we added a ‘‘dropout” noise layer [12], which randomly
set some data points in the original expression matrix as zero.

From a computational point of view, it introduced additional
random noises for the sample training, which can reduce the
overfitting risk during the learning process. We assumed a
multi-dimensional Gaussian distribution for Q(z|X) of latent

variables z given the expression values X, of which mean and
variance parameters could be generated by the encoder net-
work. Then, the learned Q(z|X) was used to re-generate pseudo

samples X’ by the decoder network, another three-layer neural
network. Finally, a ZI layer, based on a double-exponential
distribution, was designed to mimic the dropout events by ran-

domly setting some data points as zero [6,13]. The Gumbel dis-
tribution instead of the conditional binomial distribution was
used in the ZI layer for the back-propagation [14,15]. VASC

was optimized by a stochastic gradient descent-based
RMSprop methods [16], aimed to minimize an auxiliary loss
function of the KL divergence between Q(z|X) and P(z|X).
After the auto-encoding procedure, a 2D representation was

learned for visualization and other downstream analysis.

Datasets

To demonstrate the performance of VASC, we analyzed 22
scRNA-seq datasets (Table 1). The first 20 datasets were
obtained from the Hemberg group (https://hemberg-lab.

github.io/scRNA.seq.datasets/), with ‘scater’ toolkit [34] used
for quality control. The human pre-implantation embryo data-
set (Petropoulus) [32] with detailed annotations was obtained
via ArrayExpress (https://www.ebi.ac.uk/arrayexpress/;

accession No. E-MTAB-3929). The PBMC3k dataset was
downloaded from 10� Genomics (https://support.
10xgenomics.com/single-cell-gene-expression/datasets).

VAE

VASC is a deep VAE-based generative model and is designed

for the visualization and low-dimensional representation of the
scRNA-seq data. VAE aims to model the distribution P(X) of
data points in a high-dimensional space v, with the aid of

https://hemberg-lab.github.io/scRNA.seq.datasets/
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Figure 1 Overview of VASC workflow

VASC consists of three parts: the encoder network, the decoder

network, and the zero-inflated layer. Both the encoder and

decoder networks are designed as three-layer fully-connected

neural networks. VASC, variational autoencoder for scRNA-seq

data; X, input expression profile for one cell; l and R, mean and

covariance of the latent Gaussian distribution; z, samples from the

latent Gaussian distribution; Y
�
, recovered expression profile by

the decoder network; Y, recovered expression profile after zero

inflation; KL, Kullback–Leibler divergence; Q(z|X), variational

distribution; P(z), prior standard normal distribution. Loss(X,Y)

indicates the binary entropy between original profile and recov-

ered profile plus the KL divergence between variational distribu-

tion and prior distribution.
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low-dimensional latent variables z. The whole model is divided
into two procedures, that is, (1) generating the samples of z in

the latent low-dimensional subspace, and (2) mapping them to
the original space v. The critical point is to generate z having
the high probability to recover the observed data matrix X.

In this way, the generated z may be possible to capture the
intrinsic information of the original data. The best choice to
generate z, in theory, is the posterior P(z|X), which however,

is usually too complicated and intractable. VAE tries to use
a variational probability Q(z|X) to approximate the posterior,
by minimizing the Kullback–Leibler (KL) divergence (D)
between Q(z|X) and P(z|X):

D½QðzjXÞjjP zjXð Þ� ¼ Ez�Q logQ zjXð Þ � logPðzjXÞ½ � ð1Þ
By applying the Bayes rule and rearranging the order, it can

be re-written as:

logP Xð Þ �D½QðzjXÞjjP zjXð Þ�
¼ Ez�Q logP Xjzð Þ½ � �D½QðzjXÞjjP zð Þ� ð2Þ

where P(X) is a constant and Ez�Q represents expectation over

z that is sampled from Q. Therefore, minimizing the KL diver-
gence is equivalent to maximizing the right-hand part of Equa-

tion (2). The right-hand part has a natural autoencoder
structure, with the encoder Q(z|X) from X to z and the decoder
P(X|z) from z to X. Two deep fully-connected neural networks

can be used to model these two parts.

VASC method

The whole VASC structure is shown in Figure 1. The model

designs and the learning algorithms are described in detail as
below.

Input layer

VASC uses the expression matrix from scRNA-seq data as
inputs. The whole expression matrix of the transcriptome
was fed directly to the model with no gene filter applied. The

data were log-transformed to make the results more robust.
The most important transformation, however, was to re-scale
the expression of every gene in any single cell in the range

[0,1] by dividing the maximum expression value of an individ-
ual gene from the same cell.

Dropout layer

A dropout layer [12] was added immediately after the input
layer, with the dropout rate set as 0.5, which is larger than
the usual choice in deep models for input layers. This layer

set some features to zeros during the encoding phase, to
increase the performance in model learning [35]. This layer
should be a good choice for scRNA-seq data because it may

be regarded as artificial and additional ‘‘dropout” events,
and forces subsequent layers to learn to avoid dropout noises.

Encoder network

The encoder network was designed as a three-layer fully-
connected neural network with decreasing dimensions 512,
128, and 32. The first layer did not use non-linear activation,

which acted as an embedded PCA transformation. Many com-
plex algorithms, including t-SNE, benefit from the PCA trans-
formation. L1-norm regularization was added for the weights
in this layer, which penalized the sparsity of the model. The

next two layers were accompanied by ReLU activation, which
made the output sparse and stable for deep models [36].

Latent sampling layer

Latent variables z were modeled by a Gaussian distribution,
with the standard normal prior N(0,I). The encoder network
was used to estimate its posterior parameters. Usually, both

the parameters l and R needed to be estimated, with a linear



Table 1 The list of scRNA-seq datasets used in this study

Dataset No. Dataset name No. of cells No. of genes Protocol No. of reads No. of cell types Ref.

1 Baron Human-1 1937 20,125 inDrop Around 6000 14 [17]

2 Human-2 1724

3 Human-3 3605

4 Human-4 1303

5 Mouse-1 822 14,878 13

6 Mouse-2 1064

7 Biase 56 25,733 SMARTer 37.9 million 4 [18]

8 Camp 777 19,020 SMARTer 1–5 million 7 [19]

9 Darmanis 466 22,088 SMARTer 2,838,000 9 [20]

10 Deng 268 22,431 Smart-Seq

Smart-Seq2

1–70 million 6 [21]

11 Goolam 124 41,427 Smart-Seq2 1–10 million 5 [22]

12 Klein 2717 24,175 inDrop 208,000 4 [23]

13 Kolodziejczyk 704 38,615 SMARTer 9 million 9 [24]

14 Li 561 55,186 SMARTer - 9 [25]

15 Patel 430 5948 Smart-Seq - 5 [26]

16 Pollen 301 23,730 SMARTer �50,000 11 [27]

17 Usoskin 622 25,334 STRT-Seq 1.14 million 11 [28]

18 Xin 1600 39,851 SMARTer �0.95 million 8 [29]

19 Yan 90 20,214 Tang 35.3 million 6 [30]

20 Zeisel 3005 19,972 STRT-Seq 500,000 9 [31]

21 Petropoulos 1529 19,651 Smart-Seq2 - 7 [32]

22 PBMC3k 2700 32,738 10X �2000 UMIs 8 [33]

Note: All protocols and reads were extracted from the original publications. UMI, unique molecular identifier.
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activation used to estimate l. According to our experiments, it
is better to fix R and set logR ¼ I, if the dataset only has small

sample size. For the datasets with large sample size (more than
1000 cells), R can also be trained by the encoder network. A
‘softplus’ activation was used for the estimation of logR. Since
the neural network does not have a stochastic layer and thus
could not be tackled by back-propagation algorithm, a re-
parameterization trick was used to remove the randomness

in input data. It is easy to see, drawing a sample z from

N l;Rð Þ is equivalent to drawing a sample z
�
from N 0; Ið Þ and

then let z ¼ lþ R
1
2 z
�
(see Section 1 of File S1 for more details).

Decoder network

The decoder network used the generated z to recover the original
expression matrix, which was designed as a three-layer fully-
connected neural network with dimensions of hidden units 32,
128, and 512, respectively, and an output layer. The first three

layers used ‘ReLU’ activations and the final layer with sigmoid
to make the output within [0,1] (this is why the [0,1] re-scaling
transformation must be applied in the input layer).
ZI layer

An additional ZI layer was added after the decoder network.
Adapted from the model used by ZIFA [6], we modeled the

dropout events by the probability e�y
�2

, where y
�
is the recovered

expression value by the decoder network. Back-propagation,
as mentioned before, cannot deal with stochastic units; more-
over, it cannot deal with discrete units either. A Gumbel-

softmax distribution [15] was thus introduced to overcome
these difficulties. Suppose p is the probability for dropout
and q ¼ 1� p, the sample s from Gumbel-softmax distribution

was obtained by:

s ¼ exp logpþg0
s

� �
exp logpþg0

s

� �þ exp logqþg1
s

� � ð3Þ

where g0; g1 were sampled from a Gumbel (0,1) distribution.
The samples could then be obtained by first drawing an
auxiliary sample u � Uniform 0; 1ð Þ and then computing

g ¼ �log �loguð Þ. As the hyper-parameter s ! 0, the gener-
ated samples from the Gumbel-softmax distribution should
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be identical to the samples from the Bernoulli distribution. In

practice, too small values of s makes the gradient of the whole
network too small and the optimization algorithm cannot
work. Our experiments showed that it would be better by set-

ting s between 0.5–1 for the datasets of small sample size. For
the datasets with more cells, an annealing strategy may yield
better results (see Section 1 of File S1 for details).

Loss function

The loss function as shown in the Equation (2) is composed of
two components. The first part, because of the scale of our
data, [0,1], was computed by binary cross-entropy loss func-

tion. The second part, controlling the divergence between pos-
terior distribution and the prior N 0; Ið Þ, could be computed
analytically (see Section 1 of File S1 for more details).

Optimization

The whole structure, now, could be optimized end-to-end
using the stochastic gradient descent-based optimization algo-

rithm. We chose the RMSprop method [16] for VASC. In
addition, we set the learning rate as 0.0001, to ensure the con-
vergence on all the datasets tested. The training processes were

stopped if the training loss did not show obvious decrease
within 50 epochs.

Source codes implemented by keras (https://github.com/

fchollet/keras) can be found at https://github.com/wang-
research/VASC.

Benchmarking

For each dataset, we considered four state-of-the-art dimen-
sion reduction methods – PCA [3], t-SNE [4], ZIFA [6], and
SIMLR [7]. For all the methods, no gene filtering was used

and the same log-2 transformation was applied. For PCA
and t-SNE, we used the built-in python sklearn package func-
tions. For the datasets with more than 500 cells, we firstly

applied a PCA transformation with 500 dimensions before t-
SNE. Perplexity, the key parameter of t-SNE, was set as 0.2
times the number of cells as suggested previously [32]. For

ZIFA, we downloaded the package and used the block_ZIFA
module provided by Pierson and Yau [6], due to the large num-
ber of genes evaluated. For SIMLR, we used the R package
described by Wang and colleagues [7]. For benchmarking the

dimension reduction performance, k-means was used to obtain
the predicted cell types based on their 2D representations (see
Section 2 of File S1 for more details).

Performance assessment

To measure the quality of visualization and low-dimensional

representation, k-means clustering was applied to the 2D rep-
resentations of all the aforementioned methods. Then the
obtained clustering results were compared with the known cell

types provided in the original references. The number of clus-
ters, k, was set to number of known cell types. Four measures
were used to assess the performances, including normalized
mutual information (NMI) [37], adjusted rand index (ARI)

[38], homogeneity [39], and completeness [39].
NMI

Suppose P is the predicted clustering results, and T is the

known cell types (the same below), we denote the entropy of
P and T as H(P) and H(T), respectively, and the mutual infor-
mation between them as MI(P,T). NMI is computed as:

NMI P;Tð Þ ¼ MI P;Tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H Pð ÞH Tð Þp ð4Þ
ARI

Suppose n is the total number of samples, ai is the number of

samples appearing in the i-th cluster of P, bj is the number of

samples appearing in the j-th types of T, and nij is the number

of overlaps between the i-th cluster of P and the j-th type and

T. ARI is computed as:

ARI ¼

P
ij

nij

2
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�
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Homogeneity

The measure homogeneity expects that every cluster only con-
tains samples from one cell type. Suppose H(T|P) is the cross-

entropy of cell types given the cluster P, the homogeneity score
(h) is computed by:

h ¼ 1�HðTjPÞ
H Tð Þ ð6Þ
Completeness

The measure completeness (c) expects that samples from one

cell type are assigned to the same cluster, and is computed as:

c ¼ 1�HðPjTÞ
H Pð Þ ð7Þ

For all the measures including NMI, ARI, homogeneity,
and completeness, larger values (up to 1) mean better
performances.

Analysis of the PBMC3k dataset

We filtered cells with less than three detected genes

(UMIs > 3). Number of UMI counts was transformed to
transcript-per-million (TPM)-like values by normalizing each
cell through dividing total UMI counts and then multiplying

by 10,000. Log2 transformation was applied after adding a
pseudo-count 1 to obtain the gene expression matrix. Due to
the serious dropout events present in this dataset, gene selec-
tion is used to reduce noises. We adopted the same procedure

as previously reported [40], with 1158 genes that remained.
VASC was then tested on this pre-processed gene expression
matrix.

https://github.com/fchollet/keras
https://github.com/fchollet/keras
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https://github.com/wang-research/VASC


Figure 2 Visualization of scRNA-seq datasets using different methods

Each data point represents a cell. Different cell types are indicated in different colors and shapes. All datasets were run by PCA, t-SNE,

ZIFA, SIMLR, and VASC respectively. Cell type information was retrieved from original studies. Shown in the figures are clustering

output from the Goolam [22] (A), Biase [18] (B), Yan [30] (C), Pollen [27] (D), Kolodziejczyk [24] (E), and Baron_human-1 [17] (F)

datasets. Visualization of other datasets is provided in the Section 4 of File S1. PCA, principal components analysis; t-SNE, t-distributed

stochastic neighbor embedding; ZIFA, zero-inflated factor analysis; SIMLR, single-cell interpretation via multiple kernel learning.
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Results

Visualization and performance comparison

We tested the visualization performance of VASC together
with four state-of-the-art dimension reduction methods,
including PCA [3], t-SNE [4], ZIFA [6], and SIMLR [7], on
20 datasets with different number of cells included and
sequencing protocols used (the top 20 datasets in Table 1).

Firstly, we compared the 2D visualizations on six ‘‘golden”
datasets (these datasets provide highly-confident cell labels),
with the number of cells ranging from tens to thousands
(Figure 2). Datasets reported by Goolam et al. [22], Biase
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et al. [18], and Yan et al. [30], respectively, were generated from
studies on the embryonic development from zygote to blast
cells. PCA, ZIFA, and VASC roughly re-established the devel-

opmental stages of different cell types (cells are expected to be
arranged in the order of zygote, 2-cell, 4-cell, 8-cell, 16-cell,
and blast cells) (Figure 2A–C). However, t-SNE and SIMLR,

both of which use neighbor-preserving embedding, showed
poor performance on these datasets. In contrast, VASC fur-
ther separated 16-cell and blast from 8-cell stages in the Goo-

lam dataset. Moreover, compared to PCA and ZIFA, VASC
better separated blast cells from 4-cell stages, and identified
one zygote as a possible outlier in the Biase dataset, whereas
4-cell stage was better separated from zygote and 2-cell stages

using VASC in the Yan dataset (Figure 2A–C). These results
indicate that VASC can better model the embryo developmen-
tal progression than PCA and ZIFA.

Eleven different cell types were sequenced in the fourth
dataset reported by Pollen and colleagues [27]. In this case,
PCA and ZIFA showed poor performance in classification

(Figure 2D). In the SIMLR visualization, eleven compact clus-
ters of cells were formed, but at least four clusters were com-
posed of more than one cell type (the points from different

cell types were stacked together for possible misleading visual-
ization). This result was undesirable because the cells from dif-
ferent types should not compactly cluster together. Instead,
Using VASC, eight compact clusters of cells were formed, each

from the same cell type. The remaining three cell types, GW16,
GW21, and GW21 + 3 (originally sampled from the germinal
zone of human cortex at gestational week 16, 21, and cultured

for another three weeks, respectively), were distributed in a
more decentralized manner than the others. These cells, along
with neural progenitor cells (NPCs), are all neural cells. There-

fore, it seems reasonable that they are presented more closely
using VASC.

Kolodziejczyk et al. generated a dataset when examining

embryonic stem cells grown under three different conditions:
serum, 2i, and alternative 2i (a2i) [24]. Moreover, there existed
different experimental batches for every condition. As shown
in Figure 2E, PCA separated the cells grown under the three

different conditions but almost mixed the batches; ZIFA better
separated the cells under different growth conditions and from
different batches but incorrectly mixed one 2i cell batch (2i_2)

with a2i cells; SIMLR separated most cell populations under
different growth conditions and from different batches (except
two batches of 2i cells), but incorrectly grouped the cells from

2i and a2i conditions. Only t-SNE and VASC separated the
most cell populations, while preserving their proper relative
positions.

The dataset reported by Baron et al. [17] included several

sequencing subsets from four human donors and two mice.
Visualization of the first donor with 1937 cells from 14 differ-
ent cell types is shown in Figure 2F. On this dataset, PCA and

ZIFA separated only few cell types, whereas both t-SNE and
SIMLR showed better separation, although SIMLR produced
more compact clusters. However, the putative clusters grouped

using SIMLR contained mixtures of different cell types at var-
ious levels (for example, two kinds of stellate cells were com-
pletely mixed). Notably, VASC showed better separation of

the different cell types. Furthermore, the cells from close cell
lineages were clustered together. For instance, the alpha, beta,
delta, gamma, and epsilon cells that are all within islets were
grouped close to each other; beta cells, despite with the largest
number (872 cells), were most compactly clustered by VASC.
In addition, three types of immune cells, including macro-
phages (14 cells), mast (8 cells), and T_cells (2 cells), were

grouped close to each other, whereas the Schwann cells (only
5 cells) were well separated (see the purple dots in the central
region).

Next, to quantitatively assessing the performance of these
methods in dimension reduction and visualization, we com-
pared the cell sub-populations in the reduced subspaces (the

sub-populations were identified by k-means clustering [41])
with the true cell type labels annotated in the original publica-
tions. Four different parameters were used, including normal-
ized NMI [37], ARI [38], homogeneity [27], and completeness

[39], to quantitatively assess the clustering performances.
PCA, t-SNE, ZIFA, SIMLR, and VASC were used to system-
atically analyze 20 datasets, including Camp [19], Darmanis

[20], Deng [21], Klein [23], Li [25], Patel [26], Usokin [28],
Xin [29], Zeisel [31], besides the aforementioned databases.
These comparisons showed that VASC outperformed the other

methods in terms of NMI and ARI in most cases (best perfor-
mances achieved on 15 and 17 out of the 20 datasets, respec-
tively) (Figure 3A). Furthermore, VASC always ranked in

the top two methods on all the tested datasets (Figure 3B) in
terms of NMI and ARI, respectively. This suggests that VASC
has broad compatibility with various kinds of scRNA-seq
datasets (see the detailed results in the Section 4 of File S1).
Analysis of the model stability and parameter setting

In this section, we analyzed the stability and parameter settings

of VASC. Firstly, we analyzed the model fitting processes of
VASC on two datasets, the Pollen and Biase datasets (with
301 and 56 cells, respectively). Loss function of the whole neu-

ral network decreased sharply during the first few epochs, and
simultaneously, the NMI and ARI values increased sharply
(Figure 4A and B). After the first 100 epochs, the loss curves

quickly converged to a lower limit and the loss fluctuations
of the dataset with more samples (Pollen) were smaller than
those of the dataset with fewer samples (Biase). Based on these
observations, VASC is set to stop when there is no obvious

decrease in loss function within 50 epochs (see details in the
Methods section).

Due to the randomness of the stochastic gradient descent

method, the model initialization, and the k-means clustering,
slightly different results could be generated at different runs.
We thus analyzed the four datasets with the smallest sample

sizes, including Biase (56 samples), Goolam (124), Pollen
(301), and Yan (90), to test the stability of VASC by 20
repeated runs. As expected, the two datasets with relatively
more cells (Goolam and Pollen) showed much higher consis-

tent results than the other two datasets (Figure 4C). The
NMI values of the Biase dataset were almost distributed
between the two boundaries of the boxplots. Considering the

relatively small number of cells (only 56 samples), this distribu-
tion may be caused by the different clustering output of one or
two cells at the boundary between two cell types. A similar

result was also observed for the Yan dataset. However, the
Goolam and Pollen datasets with more cells did not show this
pattern.

Then, the down-sampling experiment based on the Pollen
dataset was implemented to further test the effect of number



Figure 3 Performance comparison using different methods

A. The NMI and ARI values for each method on each dataset. Clustering was performed on 2-D representations of different algorithms

and then the output was compared with true cell type labels for the 20 datasets indicated. Detailed dataset information is listed in Table 1.

B. The statistics of the ranks of the compared methods based on NMI and ARI values. For each dataset, NMI and ARI values given by

different algorithms were ranked in the descending order, with rank 1 indicative the highest NMI or ARI values. The number of ranks

achieved by these algorithms in the 20 datasets is then counted for distribution. NMI, normalized mutual information; ARI, adjusted rand

index.
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of cells on the stability of VASC. The dataset was boot-
strapped with 10%, 30%, 50%, 70%, 90%, and 100% cells,

also with 20 repeated runs. Low average NMI and ARI values
with high variations were observed when the number of sam-
ples was too small. However, comparable NMI and ARI val-

ues were achieved when the percentage of sampled cells was
above 50% (Figure 4D). We then down-sampled original reads
of the Pollen dataset similarly. For each cell, 5000, 10,000,

50,000, 100,000, 200,000, and 300,0000 unique reads were ran-
domly selected for the analysis, following the same pre-
preprocessing procedures. As shown in Figure 4E, low NMI
and ARI values were observed only when the number of reads

was very small.
The ZI layer was incorporated into VASC to model the

dropout event. We then evaluated its effectiveness. As shown

in Figure 4C, the inclusion of ZI layer improved both the sta-
bility and the average performances of VASC on three of the
four tested datasets.
The data projection to a 2D subspace is suitable for visual-
ization, but the subspace with higher dimension may explain

more variations. To further test the effects of dimension num-
ber, we varied the dimensions of the final latent variables from
2 to 20, using the Pollen dataset. Results showed that the

increase in the dimensions did not improve the identification
of known cell populations and the subspaces with high dimen-
sions may even cause worse performances in terms of NMI

and ARI values (Figure 4F).

Case study: human pre-implantation embryos

The scRNA-seq is very useful for studying the cell dynamics
during pre-implantation embryo development. We applied
VASC on a recently-published dataset of human pre-
implantation embryos (the Petropoulus dataset), including

1529 cells with detailed annotations of developmental stages,
inferred lineage, and inferred pseudo-time information (all



Figure 4 Analysis of the model stability and parameter settings of

VASC

A. The iteration process using the Pollen dataset [27]. The change

of loss values of the whole network as shown in Equation (2)

versus iteration epochs is shown on the left and the right part is the

change of NMI and ARI values versus iteration epochs is shown

on the right. B. The iteration process using the Biase dataset [18].

C. The stability of VASC. The boxplots were generated based on

20 repeated runs with (green) or without (orange) the ZI layer.

Tests were performed on the Biase [18], Goolam [22], Pollen [27],

and Yan [30] datasets. D. The down-sampling test on cell

numbers based on the Pollen dataset [27]. VASC was run on

10%–100% randomly-sampled cells of the original dataset. E. The

down-sampling test on read numbers based on the Pollen dataset

[27]. F. The effects of the dimensions (ranging from 2 to 30) for the

latent variables based on the Pollen dataset [27]. ZI, zero-

inflated.

328 Genomics Proteomics Bioinformatics 16 (2018) 320–331
annotations were obtained from original publication) [32].
According to the 2D visualization analysis, VASC and t-

SNE recovered the known developmental stages (form E3 to
E7) more precisely, with the exception that the E3 cells were
out of the trajectory by t-SNE. Both PCA and ZIFA generally
recovered the stage trajectory, but the E6 and E7 cells were lar-
gely overlapped. SIMLR, which emphasized the modularity of
cell populations, did not re-establish the basic pattern

(Figure 5A–E).
Compared to t-SNE, a sharper split in the grouping was

observed in the E5 cells by VASC (Figure 5B and E). We thus

investigated the impact of other annotations on the visualiza-
tion. We re-annotated the cells with their inferred lineages
instead of the developmental stages. Interestingly, we found

that the sharp split learned by VASC was a good separation
of the pre-lineage cells from the others (Figure 5F). The inner
cell mass (ICM), including the primitive endoderm (PE) and
epiblast (EPI), were split from trophectoderm (TE), and the

boundary was almost perpendicular to the direction of the
developmental stage (Figure 5F). Furthermore, the two sub-
populations of the TE cells, mural and polar cells, were sepa-

rated in the visualization as well (Figure 5G). Finally, the tra-
jectory recovered by VASC was strongly coincided with the
inferred pseudo time (Figure 5H).

The candidate genes associated with the pre-implantation
embryo development were identified by calculating the Spear-
man’s correlations between the gene expression and the two

features shown in the reduced subspace. Many known regula-
tors and markers were found in the top-correlated genes, such
as PGF, GCM1, CYP19A1, MUC15, CD24, CCR7, GREM2,
CGA, GATA2, TDGF1, ESRG, GDF3, and DNMT3L men-

tioned in the original article [32] (rank �100 for either feature).
Interestingly, the top-ranked genes were significantly enriched
in metabolic processes, such as carbohydrate derivative meta-

bolic process (37 genes, q = 5.63E � 05 by DAVID 6.8 [42]),
oxidation–reduction process (32 genes, q = 4.87E � 05), and
lipid metabolic process (32 genes, q= 4.94E � 03). Several

metabolic pathways have been recently shown to play essential
roles in regulating the stemness and differentiation of stem
cells [43]. Interestingly, we have identified several candidate

genes that are involved in different metabolic processes. These
include CYP11A1 (encoding a member of the cytochrome
P450 superfamily of enzymes, the same superfamily of
CYP19A1), NR2F2 (encoding a member of the steroid thyroid

hormone superfamily of nuclear receptors), PKM (encoding a
pyruvate kinase, a key kinase in glycolysis), PPARG (encoding
a member of the peroxisome proliferator-activated receptor

subfamily of nuclear receptors), and IDH1 (encoding an isoc-
itrate dehydrogenase, a key enzyme for cytoplasmic NADPH
production).

Application on a 10� Genomics dataset

We tested VASC on a dataset called PBMC3k [33] generated
using a new scRNA-seq technology – 10� Genomics, which

can handle more cells but with a relatively high dropout rate.
This dataset contains 2700 cells, each with only �2000 unique
molecular identifiers (UMIs). The cells were labeled based on

computational predictions and known markers. As shown in
Figure 6A, VASC can clearly distinguish most cell types, such
as B cells, CD4+ T cells, CD8+ T cells, and NK cells. Cells

from common myeloid progenitors, such as dendritic cells,
megakaryocytes, and monocytes, were separated from the cells
derived from common lymphoid progenitors, like B cells, T

cells, and NK cells. Then, we re-ran VASC on the population
of monocytes, and consequently further classified them into



Figure 5 Visualizations of Petropoulos dataset using different methods and various annotations

The 2D visualization of the Petropoulos dataset using PCA (A), t-SNE (B), ZIFA (C), SIMLR (D), and VASC (E). Cells are annotated

with the developmental stages [18]. F. Cells are annotated as pre-lineage and other cells. G. TE cells are further annotated as mural and

polar cells. H. Cells are annotated with the inferred pseudo time. All the annotations are based on the original study [18]. TE,

trophectoderm; PE, primitive endoderm; EPI, epiblast.

Figure 6 Application of VASC in the PBMC3k dataset

The 2D visualization of VASC on all cells (A) and monocytes (B). The PBMC3k dataset was downloaded from 10� Genomics

(https://support.10xgenomics.com/single-cell-gene-expression/datasets).
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FCGR3A+ monocytes and CD14+ monocytes (Figure 6B).
Therefore, VASC could identify the major global variance

structure in the first place, and then detect subtle differences,
when it is restricted to a local cell sub-population. These results
indicate that VASC could also perform well for the dataset
with more cells and higher dropout rate.
Discussion

Dimension reduction (or low-dimensional representation) is
fundamental to visualization and the downstream analysis of
scRNA-seq data. In this study we report VASC, a method

based on deep VAE, for dimension reduction and visualization
of scRNA-seq data. We evaluate the performance of VASC by
comparing with four other commonly-used methods, including
PCA, t-SNE, ZIFA, and SIMLR. These methods are broadly

divided into two categories. (1) PCA, ZIFA, and VASC aim at
finding the representation that can best explain the variations
of the original data; and (2) t-SNE and SIMLR try to find

another embedded space that can preserve the neighborhood
relationship of the samples in the original space. According
to our data analysis, the former group of methods can better
retain the basic shapes of the data distributions. ZIFA can

be treated as a combination of the probabilistic PCA and the
zero-inflated model. The major limitation of ZIFA is that it
assumes a linear relationship between the hidden subspace

and the observed data. Conversely, VASC can deal with com-
plex non-linear patterns based on deep neural networks. Our
data show that VASC has better performance than PCA and

ZIFA, especially when the sample sizes are larger (Figures 2
and 3). The two embedding methods in the latter group, t-
SNE and SIMLR, frequently change the topology of the orig-
inal data space. t-SNE tends to ‘‘disperse” the cells in the

embedded subspace. Compared to t-SNE, SIMLR adds penal-
ties on the modularity of samples in the embedded subspace,

https://support.10xgenomics.com/single-cell-gene-expression/datasets
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which forces the diagonal-block structure of the learned cell–
cell similarity matrix, and tends to generate compact clusters.
This penalty is very useful to identify the cell populations with

distinct transcriptomes (for examples, the Pollen dataset). Nev-
ertheless, it frequently fails, if the dataset is generated from
studies on ‘‘continuous” cell developmental processes or cell

lineages. Overall, performance evaluation using multiple data-
sets demonstrates that VASC is superior in most cases and
exhibits broader dataset compatibility.

One major application of scRNA-seq is to identify different
cell types at a single cell level. According to the quantitative
analyses shown in Figure 3, the first two dimensions are
enough to capture the major differences between different cells

in most cases (NMI >0.7 for 16 out of the 20 datasets tested
by VASC). Although higher dimensions can explain more vari-
ations in the original datasets, additional variations not asso-

ciated with cell type (for example, the fluctuations associated
with cell cycle) may even reduce the separation of different cell
types according to our data analysis. The determination of the

optimal dimension is a tricky task if prior knowledge is limited.
Usually, higher dimensions should be used when investigating
more subtle differences, for example, the intra-cell type

heterogeneity.
There are two parameters (the mean vector and the co-

variance matrix) in the variational distribution Q(z|X). When
the sample size is small, it is better to fix the co-variance

matrix. However, when the size is large enough (>1000
according to our preliminary data analysis), a co-variance
matrix learnt from the data can generate better results. It is

expected that more complex variational distribution families
should be tested in the near future, as the sample size of
scRNA-seq dataset is quickly increasing.

We also find that the inclusion of ZI layer improves the rep-
resentation of VASC in terms of recovering the known cell
types. Compared to ZIFA, the Gumbel distribution used by

the ZI layer does not generate zeroes strictly, which may addi-
tionally model the near-zero dropout events. ZIFA is unable to
deal with near-zero events, which could be a limitation of
ZIFA [6].

The stochastic optimization algorithms, used in the VASC
model learning, introduce variations in the dimension reduc-
tion. Repeated runs are thus recommended for more consensus

performance, although such random effect is small if the sam-
ple size is over several hundreds. The running time is a com-
mon issue for deep models. For the large dataset with

several thousands of cells, it costs several hours for the VASC
model learning using a desktop-level computer with single
GPU card, which may be acceptable for most scRNA-seq
studies.

Conclusions

In this study, a dimension reduction method, VASC, was
developed for scRNA-seq data visualization and analysis.
We systematically compared VASC with four state-of-the-art

dimension reduction methods on 20 datasets. Results show
that VASC achieves superior performance in most cases and
is broadly suitable for different datasets with different data
structures in the original space. Especially, VASC could make

clearer separation of rare cell types than other methods
according to our data analysis. The application on a dataset
of the human pre-implantation embryo development shows
that VASC can re-establish the cell dynamics in the reduced
2D-subspace and identify the associated marker genes.
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[32] Petropoulos S, Edsgärd D, Reinius B, Deng Q, Panula SP,

Codeluppi S, et al. Single-cell RNA-seq reveals lineage and X

chromosome dynamics in human preimplantation embryos. Cell

2016;165:1012–26.

[33] Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson

R, et al. Massively parallel digital transcriptional profiling of

single cells. Nat Commun 2017;8:14049.

[34] McCarthy DJ, Campbell KR, Lun AT, Wills QF. Scater: pre-

processing, quality control, normalization and visualization of

single-cell RNA-seq data in R. Bioinformatics 2017;33:1179–86.

[35] Vincent P, Larochelle H, Bengio Y, Manzagol PA. Extracting and

composing robust features with denoising autoencoders. Proc

25th Int Conf Mach Learn 2008:1096–103.

[36] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification

with deep convolutional neural networks. Adv Neural Inform

Process Syst 2012;25:1097–105.

[37] Strehl A, Ghosh J. Cluster ensembles—a knowledge reuse

framework for combining multiple partitions. J Mach Learn Res

2002;3:583–617.

[38] Hubert L, Arabie P. Comparing partitions. J Classif

1985;2:193–218.

[39] Vinh NX, Epps J, Bailey J. Information theoretic measures for

clusterings comparison: Variants, properties, normalization and

correction for chance. J Mach Learn Res 2010;11:2837–54.

[40] Brennecke P, Anders S, Kim JK, Kolodziejczyk AA, Zhang X,

Proserpio V, et al. Accounting for technical noise in single-cell

RNA-seq experiments. Nat Methods 2013;10:1093–5.

[41] Hartigan JA, Wong MA. Algorithm AS 136: a k-means clustering

algorithm. J R Stat Soc Ser C Appl Stat 1979;28:100–8.

[42] Huang DW, Sherman BT, Lempicki RA. Systematic and

integrative analysis of large gene lists using DAVID bioinformat-

ics resources. Nat Protoc 2009;4:44–57.

[43] Ito K, Suda T. Metabolic requirements for the maintenance of

self-renewing stem cells. Nat Rev Mol Cell Biol 2014;15:243–56.

http://refhub.elsevier.com/S1672-0229(18)30439-X/h0060
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0060
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0060
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0065
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0065
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0065
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0070
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0070
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0070
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0080
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0080
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0080
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0085
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0085
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0085
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0085
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0085
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0090
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0090
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0090
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0095
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0095
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0095
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0100
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0100
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0100
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0105
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0105
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0105
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0110
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0110
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0110
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0115
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0115
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0115
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0120
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0120
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0120
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0120
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0125
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0125
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0125
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0125
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0130
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0130
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0130
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0130
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0135
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0135
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0135
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0135
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0140
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0140
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0140
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0145
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0145
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0145
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0150
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0150
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0150
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0155
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0155
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0155
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0155
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0160
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0160
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0160
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0160
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0165
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0165
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0165
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0170
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0170
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0170
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0175
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0175
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0175
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0180
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0180
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0180
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0185
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0185
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0185
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0190
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0190
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0195
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0195
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0195
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0200
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0200
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0200
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0205
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0205
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0210
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0210
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0210
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0215
http://refhub.elsevier.com/S1672-0229(18)30439-X/h0215

	VASC: Dimension Reduction and Visualization of Single-cell RNA-seq Data by Deep Variational Autoencoder
	Introduction
	Methods
	VASC: the method overview
	Datasets
	VAE
	VASC method
	Input layer
	Dropout layer
	Encoder network
	Latent sampling layer
	Decoder network
	ZI layer
	Loss function
	Optimization

	Benchmarking
	Performance assessment
	NMI
	ARI
	Homogeneity
	Completeness

	Analysis of the PBMC3k dataset

	Results
	Visualization and performance comparison
	Analysis of the model stability and parameter setting
	Case study: human pre-implantation embryos
	Application on a 10× Genomics dataset

	Discussion
	Conclusions
	Authors’ contributions
	Competing interests
	Acknowledgments
	Supplementary material
	References


