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Abstract Transcriptional regulation is critical to cellular processes of all organisms. Regulatory

mechanisms often involve more than one transcription factor (TF) from different families, binding

together and attaching to the DNA as a single complex. However, only a fraction of the regulatory

partners of each TF is currently known. In this paper, we present the Transcriptional Interaction and

Coregulation Analyzer (TICA), a novel methodology for predicting heterotypic physical interaction

of TFs. TICA employs a data-driven approach to infer interaction phenomena from chromatin

immunoprecipitation and sequencing (ChIP-seq) data. Its prediction rules are based on the distri-

bution of minimal distance couples of paired binding sites belonging to different TFs which are

located closest to each other in promoter regions. Notably, TICA uses only binding site information

from input ChIP-seq experiments, bypassing the need to do motif calling on sequencing data. We

present our method and test it on ENCODE ChIP-seq datasets, using three cell lines as reference

including HepG2, GM12878, and K562. TICA positive predictions on ENCODE ChIP-seq data

are strongly enriched when compared to protein complex (CORUM) and functional interaction

(BioGRID) databases. We also compare TICA against both motif/ChIP-seq based methods for

physical TF–TF interaction prediction and published literature. Based on our results, TICA offers

significant specificity (average 0.902) while maintaining a good recall (average 0.284) with respect to

CORUM, providing a novel technique for fast analysis of regulatory effect in cell lines. Further-

more, predictions by TICA are complementary to other methods for TF–TF interaction prediction

(in particular, TACO and CENTDIST). Thus, combined application of these prediction tools

results in much improved sensitivity in detecting TF–TF interactions compared to TICA alone (sen-

sitivity of 0.526 when combining TICA with TACO and 0.585 when combining with CENTDIST)
nces and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gpb.2018.05.004&domain=pdf
mailto:stefano.perna@polimi.it
https://doi.org/10.1016/j.gpb.2018.05.004
http://www.sciencedirect.com
https://doi.org/10.1016/j.gpb.2018.05.004
http://creativecommons.org/licenses/by-nc-nd/4.0/


Perna S et al / Transcriptional Interaction and Coregulation Analyzer 343
with little compromise in specificity (specificity 0.760 when combining with TACO and 0.643 with

CENTDIST). TICA is publicly available at http://geco.deib.polimi.it/tica/.
Introduction

Transcription factors (TFs) are proteins involved in the initia-
tion and regulation of gene transcription. DNA-binding
domains present on TFs make them able to bind to specific

DNA sequences, such as promoter sequences near transcrip-
tion start sites (TSSs). Some bound TFs help to form the
transcription initiation complex, while others bind distal
regulatory regions to either stimulate or repress transcription

of the targeted genes [1]. Transcriptional regulation is the most
common form of gene control and the action of TFs allows for
unique expression of each gene in different cell types and/or

during different stages of cell development [1].
Members of TF families often require some interactions

with other members from the same or even a different family

[2]. These interactions can be of various nature, from protein
dimerization and concurrent DNA binding to recruitment or
suppression of other TFs’ binding in the proximity of a

DNA-binding domain or site [3,4]. Depending on the choice
of partner, nature of the interaction, and cellular context, each
interactor triggers a series of regulatory events, thus leading to
a particular cellular fate [5]. The binding of TFs to their speci-

fic motifs in genomic regulatory regions has been the focus of
extensive study; given that only a limited amount of TFs can
be encoded in a genome, let alone be expressed at any given

moment, combinatorial gene regulation strategies are required
to generate diverse expression patterns [6]. Nevertheless, only
some combinatorial regulatory effects are known, partially

due to the intrinsic complexity of examining all combinations
of a large number of TFs and partially due to the many con-
founding effects that influence TF DNA-binding and co-
binding during in vivo confirmation experiments [7]. Thus com-

putational methods provide a powerful supplement to wet-lab
experiments in discovering co-regulation phenomena.

In this paper, we present the Transcriptional Interaction

and Coregulation Analyzer (TICA), a computational method
for in silico discovery of combinatorial TF interaction, based
on ChIP-seq data. The ‘‘interactions” considered in this study

include direct binding between TFs, presence of TFs in the
same complex without direct contact between TFs, and block-
age of another TF from binding its cognate partners. All three

cases mentioned above exhibit co-located peaks in the regula-
tory region(s) of the cognate target genes of the TFs. There-
fore, we look for significant co-located peaks in ChIP-seq
datasets for the TFs studied. It is of note that we do not

attempt to distinguish between the three kinds of aforemen-
tioned interactions or to decipher the regulatory effect of such
interactions on the expression of cognate target genes.

We implemented TICA using the genometric query lan-
guage (GMQL) [8], a high-level, interval-based query language
for genomic datasets to support knowledge discovery across

genomic repositories. GMQL extends the set of relational alge-
bra operators with domain-specific ones, such as COVER,
MAP, and JOIN, which were used to identify valid binding

peaks and efficiently detect region hits in the neighbourhood
of TF binding sites (TFBSs) and TSSs. Python was used for
statistical testing (with modules pandas [9], NumPy [10], and
scipy [11]). The TICA implementation is accessible as a web
service at http://geco.deib.polimi.it/tica/.
Methods

Conceptual description

TICA combines ChIP-seq peak datasets from a list of TFs in a

single cell line and generates interaction hypotheses, that is to
say TF pairs that exhibit significant colocation based on exper-
imental data.

Our model was built based on the assumption that interact-
ing TFs must be enriched in co-locating peaks, and in the pro-
moters of their cognate target genes, that is, if two binding sites

from two different TFs are in the promoter region of the same
TSS, then there is a chance that they regulate the expression of
the splicing isoform defined by that TSS. Since physical inter-

action is directly linked with coregulation [12], we assume that
the more such binding sites of two different TFs are found in
the promoter region of the same TSS, the more likely these two
TFs cooperate (or compete) for the regulation of the same

gene. Therefore, TFs are predicted to be interacting if the dis-
tance distributions of the TF couples (defined as the number of
base pairs intervening between the closest ends of the regions

that form the couples) is significantly skewed toward to 0 when
compared to those of random TF pairs.

Data pre-processing

Transcription factor binding sites

TICA requires genomic distances between TFBSs to be com-

puted at precision levels close to single-digit base pair lengths,
so the preferred format for TICA input data is ENCODE nar-
rowPeak (https://genome.ucsc.edu/FAQ/FAQformat.html\

#format12). When multiple samples are given for a single TF
in a cell line, we consider as a binding site any region that is
found in at least one of the original samples after merging

overlaps.
Since TICA can in principle use any point-source binding

information, we expect that some peaks in our input datasets

could be artifacts or otherwise not significantly different from
background noise. In addition, experimental evidence has sug-
gested that TFs exhibit multiple binding sites clustered around
target genes [13]. Based on the idea of binding clusters, we

screen all binding events in the input dataset and filter out
the binding events that do not reach a minimum amount of
same binding events in a scanning area of 1 kb upstream and

downstream of their boundary, which is set as 3 in our
experiments.

Transcription start sites

Transcriptomics studies [14] suggest that not all spliced ver-
sions of a given gene are actively transcribed in every single cell
line. Thus, TICA uses a two-step filter to select only TSSs that

are active in a given cell. First, since TSSs that have a high
amount of TF binding in their promoter region are more likely

http://geco.deib.polimi.it/tica/
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to be transcribed [15], we consider a TSS to be actively tran-
scribed when the number of surrounding TFBSs is above a cer-
tain threshold, which is a parameter of the model. For our

experiments, we consider a nominal value of 50 TFBSs to be
sufficient. Promoter regions are standardized as spanning from
�N bases upstream to +M downstream of the TSSs (also

parameters of the model; Table 1). Second, evidence for active
transcription is given by the presence of certain histone modi-
fications upon or in the area surrounding a TSS, we thus use

ChIP-seq broadPeak sequencing data (for reasons discussed
in [16]) of the histone marks. These include H3K36me3 (found
on the gene body of actively-transcribed genes [17], H3K4me1
(found in enhancer regions of actively-transcribed genes [18]),

as well as H3K9ac and H3K4me3 (both found in promoter
region of actively-transcribed genes [19]). A TSS is considered
actively transcribed if at least one nucleotide base can be found

in each of these regulatory regions with the relevant histone
mark. GMQL queries for TFBS and TSS filtering are pre-
sented in File S1.

Minimal distance couple

We define two binding sites x
�
1 and x

�
2 of two different TFs,

TF1 and TF2, to be a minimal distance couple (mindist couple)
if:

d x
�
1; x

�
2

� � ¼ min
xi2T1

d xi; x
�
2

� �

AND

dðx�1; x
�
2Þ ¼ min

xj2T2

dðx�1; xjÞ

where T1 and T2 refer to the sets of all binding sites available
for TF1 and TF2, respectively, and dð;Þ is the chromosome-wise

base-pair distance on the genome (the distance between TFBSs
on different chromosomes is assumed to be infinite). We define
d as the mindist couple distance, and we observe that it is well
defined for each mindist couple (due to the existence of the

minimum of a finite set of numbers). To account for the local-
ized nature of genomic interactions, we impose an upper
bound on d, which equals to the sum of one standardized pro-

moter length plus one standardized exon length (Table 1).
To compute the mindist couple distances, first we merge the

lists of binding sites (filtered as described in Data pre-processing

section) for the two TFs of interest, keeping track of the source.
Then for each of the sorted binding sites (henceforth anchor), we
Table 1 List of TICA parameters and related values

Class Parameter

Genomic dimensions Gene body length

Promoter length

Metric constraints Mindist couple max distance

Tests and thresholds Number of points in nulls

Test P value

Required number of rejected null hypothese

Minimum number of mindist couples

Minimum fraction of mindist couples coloc

Note: Parameters are classified as nominal, tuned or computed. Nominal

according to data analysis methods. The computed mindist couple max dist

one standardized gene body length.
check if two conditions are met: (1) at least one of the two
adjacent binding sites belongs to a different (i.e., the other)
TF; and (2) the distance from the anchor to at least one of the

differently-labeled TFBS is below the aforementioned upper
bound. Figure 1 exemplifies the process using synthetic data.

Prediction algorithm

TICA requires two conditions for TF–TF interaction predic-
tion. First, if two TFs are physically interacting while binding

to the genome, their binding sites should generally be found
close to each other. If not, their binding sites should be spread
widely from one another. Second, most of the TF couples in a

cell line are expected to be non-interacting [5]. Therefore, after
pairing the closest binding sites between two TFs, interactors
should exhibit a distribution significantly skewed toward 0 with
respect to random, non-interacting TF couples (Figure 2 and

Figure 3).
Following these assumptions, we developed a two-fold test

based on mindist couple distribution to predict interactions.

Firstly, a deterministic rule excludes TF couples which do not
present enough biological information in the datasets. Then, a
combination of statistical tests that aggregate information from

the distributions is evaluated to determine whether a couple is
more skewed than the typical distribution in the same cell line.

Biological information thresholding

The more couples are found to co-locate in the promoter
region of the same TSSs, the more likely they actually interact
in order to regulate the same genes [20]. Hence, we hypothesize

that TF pairs that do not co-locate in a large enough number
of sites are unlikely to be interactors; also, if too few couples
are found in promoters, the TFs are unlikely to be part of a
regulatory module [21]. Therefore, we only consider as valid

those predictions where candidates have a high enough
amount of mindist couples, and for which the percentage of
said couples that co-locate in the same promoter is also suffi-

ciently high. Both these minimum levels are parameters of
the algorithm and can be tuned by the users.

Statistical tests

Assuming two candidate TFs offer enough biological informa-
tion, by pairing all their binding sites we determine their
observed distance distribution. To infer whether a physical

interaction occurs, we compute test statistics that describe
Chosen value Category

200 bp Nominal

2000 bp Nominal

2200 Computed

10,000 Tuned

0.2 Tuned

s 1 Nominal

1 Tuned

ating in a shared promoter 0.01 Tuned

values are chosen as standard or reference while tuned values are set

ance is defined to be the sum of one standardized promoter length and



Figure 1 Example of mindist couple extraction on synthetic TFBS data

The closest binding site fitting the criteria becomes paired with the anchor and forms a mindist couple, and their distance is defined as the

couple distance accordingly. If both the adjacent binding sites are valid and tied for the closest, two different mindist couples with identical

distance values are generated. If none of the two is valid, no couple is generated and the algorithm then proceeds to the next binding site.

Note that a single binding site does not have to belong to only one couple, but any couple formed by the exact same binding sites (in any

order) is only counted once. A. The TF2 binding sites (yellow) can only be associated to the first TF1 sample (blue), as the next one in the

sorting has the same label. B. and C. TF1 is associated to both TF2 sites. These couples are found twice but only counted once. D. One of

the two TF2 sites is out of admissible range for the TF1 site, so only one couple is found. E. and F. Both TF1 sites are equally distant to

the anchor TF2 site, both generate a mindist couple.
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the skewedness of the observed distribution toward zero. The
chosen test statistics are median, median absolute deviation
(MAD), average, and the long (right) tail size. Median,
MAD, and average are well-known centrality measures,

whereas the long tail size is to the best of our knowledge a
novel contribution to the field (described below).

Right distribution tails

The concept of distribution right long tail can roughly be iden-
tified as the points of said distribution which are greater than
or equal to a certain threshold value. The key observation is

that if two TFs frequently co-locate close to each another,
the number of mindist couple that has a large intracouple dis-
tance should be low. This is a complement of the reasoning of

Jankowski and colleagues [22,23]: physically interacting TFs
show mindist couple distance distributions which are tightly
packed around low values, e.g., Myc-associated factor X

(MAX) and Myc (Figure 3), whereas randomly picked TF cou-
ples give rise to distributions which are significantly more
spread out, e.g., CCCTC-binding factor (CTCF) and Myc in

Figure 2. In our work, we consider the 1000-bp mark as the
starting point for the right tail, whereas the 500-bp mark is
more suited to the cases with a lower number of couples avail-
able. An example of the shape and size of the right tail for dis-

tance distributions is shown in Figure 4.
P values and null hypotheses

Each statistic is used to test whether or not a candidate couple is

significantly different from the respective null distribution. P
value for these tests is defined as the fraction of points in the null
distribution corresponding to the respective test statistics which

are closer to 0 in magnitude. Thus, we reject a certain null
hypothesisH0 atP value threshold p� (say, 0.05) for test statistic
h with respect to TF1 and TF2 if and only if
P h0 � h TF1;TF2ð Þð Þ � p�; where P is the empirical frequency
measure and h0 is a generic point in the null distribution gener-
ated b h.

Briefly, we build null distributions for each cell line by ran-
domly sampling candidate couples from a list of background
TFs, i.e., those with a TFBS count between the top 10% and

bottom 10% marks after filtering (to remove the most extreme
combinations) and extracting the mindist couples’ distance dis-
tribution (disregarding promoter colocation). We compute

each of the four test statistics on such distribution: each of
these is a point of the corresponding null distribution to be
used in the final test. This process is repeated many times (usu-

ally at least 10,000), generating the required null distributions.
TICA tests the aforementioned null hypothesis for a subset

of the aforementioned test statistics defined by the user and
calls a candidate pair of TFs as interacting if and only if a min-

imum number of such hypotheses (also defined by the user) is
rejected in this way. When testing on 3 out of 4 of the afore-
mentioned statistics (baseline scenario), we selected a P value

threshold of 0.20 for all tests associated (Table 1) and detailed
reasons for this lax choice are given in File S2.

Validation

To the best of our knowledge, there is no single gold standard for
the evidence of physical interactions and/or non-interactions. In

particular, it is not clear how one should define a pair of TFs as
non-interacting, given that most databases report only positive
cases and are potentially incomplete. Nonetheless, two TFs that
interact and have binding sites close to each other are expected

to be part of the same protein complex. Thus, a positive predic-
tion that is confirmed by a protein complex database is more
likely to be correct with respect to one that isn’t.



Figure 2 Histograms of distance distribution for TF couple CTCF and Myc in HepG2

A. Distance distribution of the TF couple for CTCF and Myc, for which there is no evidence known to support the interaction behavior.

B. Zoomed view of the distribution short and long tails. In both panels, blue columns denote the head of the distribution (couples with

distance ranging 0–500 bp), red columns denote the short right tail of the distribution (distance >1000 bp), and orange columns denote

the long right tail of the distribution (distance >500 bp). Note that the 500-bp tail and 1000-bp tail overlap for the distances >1000 bp.

CTCF, CCCTC-binding factor.
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To investigate this, we confront our predictions with

CORUM [24], a catalog of protein complexes in mammalian

organisms derived experimentally; we use human core com-

plexes database released on July 2nd, 2017 (http://mips.

helmholtz-muenchen.de/corum/#download). We also

compared our prediction with a curated list of human

protein–protein interactions in BIOGRID [25] as secondary

evidence. Details are reported in File S2.

A pair of TFs can be considered as actually positive and

supported by CORUM if its components are mentioned

together in at least one CORUM complex. We assume that

if a certain TF is not mentioned at all in the database then it

is not an object of the involved study; therefore, all pairs con-

taining that TF are discarded from the set of predictions that

are searched for in the database. Finally, we define a pair of

TF as negative if it is not positive and both its TFs cannot

be discarded. We also restrict our interactions to complexes/

interactions that contain TFs only.

Given the actually positive and negative sets defined above,
we compute the recall/sensitivity and specificity measures,

which remain invariant when the positive/negative proportion
changes in the test data. This is important since we do not have
a clear idea of how such positive/negative proportion changes
when the databases get updated. We use the geometric mean

performance GMP ¼def ffiffiffiffiffiffiffi
RS

p
to combine recall and specificity,

which works better when the positive:negative split is
unbalanced [26].

We also compute the enrichment ratio, defined as recall

divided by (1–specificity). The higher the enrichment, the more
accurate we can expect the predictions to be. There are, how-
ever, some caveats. First, CORUM is incomplete, so the

observed recall may be lower than actual when a predicted
TF–TF interaction is co-operative or competitive in nature
(hence not reported). Second, CORUM also includes com-

plexes that are not involved in gene transcription, so the
observed specificity may be lower than actual when a predicted
non-interacting TF–TF pair is found as a co-complex pair. At
the same time, the observed recall may be higher than actual

when some predicted interacting pairs are actually non-
interacting. However, since we restrict CORUM proteins to
TFs in this study, the latter situation is minimized.

Finally, direct literature investigation allows us to be much
more specific about the nature and contents of the evidence
supporting a prediction. We perform manual investigation in

http://mips.helmholtz-muenchen.de/corum/#download
http://mips.helmholtz-muenchen.de/corum/#download


Figure 3 Histograms of distance distribution for TF couple MAX and Myc in HepG2

A. Distance distribution of the TF couple for MAX and Myc, which are well-known interacting TFs. B. Zoomed view of the distribution

short and long tails. In both panels, blue columns denote the head of the distribution (couples with distance ranging 0–500 bp), red columns

denote the short right tail of the distributions (distance >1000 bp), and orange columns denote the long right tail of the distribution

(distance >500 bp). Note that the 500-bp tail and 1000-bp tail overlap for the distances >1000 bp. MAX, Myc-associated factor X.
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published studies and literature that support our positive pre-
dictions by searching on public interfaces such as PubMed

(http://www.ncbi.nlm.nih.gov/pubmed/) for published studies
pertaining to a selected subset of interactors. We mark as
‘‘confirmed” a positive prediction when there is evidence in

the literature, regardless of cell lines, that the two TFs physi-
cally bind to each other, bind to the same complex, or there
is a statement that they are co-factors or that they compete

for the same co-factors or target genes. As the process is
time-consuming, we limit our manual checks only to a small
subset of predictions for each cell line (Table S1).
Results

TICA parameter choice maximizes recall without sacrificing

specificity

We performed several computational experiments using TICA
on human ChIP-seq data from various immortalized cell lines
to evaluate its performance. Three reference cell lines were
tested, including HepG2 (liver carcinoma), K562 (chronic

myelogenous leukaemia), and GM12878 (healthy blood cells).
Data were downloaded from the ENCODE phase 2 (around
12% of samples) and 3 (around 88% of samples) repositories,

using human genome assembly version 19 (hg19) as reference
alignment. Table 2 reports the dataset cardinality for each cell
line. We fitted our parameters using datasets from HepG2, a

cell line with abundance of ChIP-seq libraries available in
ENCODE and of gene expression [27], suitable for building
null distributions and tuning parameters. Table 1 reports
threshold values chosen for each parameter, including the min-

imal number of minimal distance couples (see Methods) and
minimal percentage of TSS co-location. These values have
been chosen to maximize recall, since tuning has shown that

this choice does not significantly impact specificity.
We investigated whether the parameters fitted on HepG2

provide good results on other cell lines as well. To do this,

we run TICA on two additional, well-studied cell lines
(HEK293 and HeLa-S3) using the HepG2 parameters and

http://www.ncbi.nlm.nih.gov/pubmed/


Figure 4 Mindist couple distance right tails using TFs ARID3A and ATF1 on cell line HepG2

Blue columns denote the head of the distributions, red columns denote the short right tail of distribution(distance >1000 bp) and orange

columns denote the long right tail of the distribution (distance >500 bp). Note that the 500-bp tail and 1000-bp tail overlap for the

distances >1000 bp.

Table 2 Dataset cardinalities for all cell lines used in TICA computational experiments

Cell line No. of available TFs Total size (after filtering) No. of active TSSs

HepG2 103 2.95 Gb 97,904

GM12878 102 6.4 Gb 122,854

K562 214 1.97 Gb 59,556

Note: Data are obtained from ENCODE phase 2 and 3 database, narrowPeak format. TSS, transcription start site.

348 Genomics Proteomics Bioinformatics 16 (2018) 342–353
ENCODE phase 3 datasets. A good performance was achieved

on HeLa-S3 with respect to both databases (3% of possible
interactors reported as a complex in CORUM and 8% as a
PPI in BioGRID), on par with other cell lines (Table S2).

For HEK293, we found out that only 13 TFs available in
our ENCODE datasets are found in CORUM; on the other
hand, while more than 150 ENCODE TFs are found in Bio-
GRID, only 67 out of ca. 13,000 possible pairs are reported

as PPIs (0.5%). We thus conclude that the reference datasets
are not adequate enough to be used in validation for HEK293.

Type and number of TICA predictions

We compiled lists of candidate and background TFs for each
cell line (Table S3). Candidate pairs are compiled using TFs

for which narrowPeak data in the corresponding cell line are
available in ENCODE at the time of writing. Due to the way
binding sites are matched by TICA (see Methods), we cannot

predict homotypic TF–TF interactions (i.e., interactions
between TFs of the same kind). Thus, given N TFs for which
experimental data are available and assuming the symmetry
of interaction phenomena, we have up to N(N � 1)/2 possible

tests. We computed all the statistics listed inMethods, requiring
at least three of the corresponding tests to be rejected for a pre-

diction to be called positive. Detailed listings of candidates and
predicted interactions obtained by running TICA on all cell
lines using the default parameters are reported in Table S4.

Enrichment with respect to CORUM is above 1 for all cell lines

Using FANTOM TF list for humans [28], we found 535 TFs
out of 3601 proteins in CORUM complexes and 5709 couples

of TF–TF interactions. Observing the confusion matrices with
respect to CORUM, we note that the number of true negatives
(e.g., 1079 in HepG2 data) is much higher than that of false

positives (293), and even one to two orders of magnitude
higher than that of false negatives (40), indicating that TICA
shows very high specificity across all test scenarios.

In Table S2, we report recall, specificity, and enrichment
analysis of TICA predictions with respect to CORUM and
for all three cell lines and their intersections. We observe that

enrichment ratio remains well above 1 for all test scenarios
(minimum at 1.505, and almost always above 2.000).

We expect many of our predicted positives that could not
be verified using CORUM (i.e., the presumed false positives)

to be real positives, which awaits biological validation. For
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instance, out of the 42 (109–67) sampled positive predictions
for HepG2 that were analyzed for CORUM (i.e., both TFs
in each of these 42 couples were found in CORUM), 35

(32% of the total) are not reported to be co-complexed in
CORUM (Table S5). Notably, 21 of these 35 predicted inter-
actions have literature support. Thus, 32% of the current pre-

sumed false positives with respect to CORUM might turn out
to be true positives. For K562, a similar calculation suggests 45
(54.2% of the total) of the current presumed false positives

might turn out to be true positives.

TICA predictions are confirmed by manual literature investigation

We performed manual literature investigation of selected pre-
dictions in tumor cell lines (HepG2 and K562) and classified
the predictions according to whether they can be verified as
positives or negatives with respect to literature, as described

in Methods. As shown in Figure 5, about half of the predic-
tions were confirmed in published literature. Notably, more
than 50% of these prediction were also confirmed in one of

the two databases (CORUM and BioGRID), suggesting a
strong biological support for TICA predictions, irrespective
Figure 5 Summary of positive predictions supported by the literature

A. Literature analysis of the positive predictions for cell line HepG2. A

is found in published literature (green); ‘‘Verified as NEG” if evidence

can be ‘‘Unverified” if no evidence is found for either case (blue). B.

HepG2. ‘‘Not in any database” (red) means that the predicted interact

the number of positive predictions not found in BioGRID, whereas

CORUM. Green slice indicates the number of predictions found in a

analysis for cell line K562 (same color code as A). D. Database cross-c

code as B). pred., predictions.
of cell lines. A complete report of the literature investigation
is given in Table S1.

Cross-cell validation in the three cell lines shows TF predictions

in healthy to be validated

We then investigated the amount of overlap between the sets of

predicted positive interactions in different cell lines. To do so,
we used the Jaccard Coefficient, defined as the ratio between
the sizes of the intersection and of the union of the two sets.

Moreover, we compared a single cell line with the combined
predictions in the other two; when merging or intersecting pre-
dictions in different cells, we only consider those where both

TFs are shared between the target cell lines. As shown in
Table 3, GM12878 shares almost 50% of its positively-
predicted interactions with HepG2 and the same with K562.
This is consistent with the fact that GM12878 is derived from

a healthy donor, and hence its TF–TF complexes should be
basal in nature, unlike aberrant versions in tumor cell lines.
20% of positive TF–TF interaction predictions in GM12878

(on common TFs) are shared across all the three considered
cell lines, further validating this hypothesis (Table S6).
positive prediction can be ‘‘Verified as POS” if interaction evidence

is found that there is no interaction between members (red); or it

Database cross-check of verified positive predictions for cell line

ions are not found in either CORUM or BioGRID; blue indicates

orange indicate the number of positive predictions not found in

t least one of the two databases. C. Positive predictions literature

heck of verified positive predictions for cell line K562 (same color



Table 3 Cross-cell comparison of positive TICA predictions

Cell line 1 Cell line 2
Positive predictions

on shared TFs

Jaccard

coefficient

Recall in

cell line 1

Recall in

cell line 2

HepG2 GM12878 46 0.146 0.177 0.426

HepG2 K562 89 0. 163 0.256 0.309

GM12878 K562 110 0. 186 0.460 0.237

HepG2 GM12878 [ K562 121 0.191 0.111 0.210

GM12878 HepG2 [ K562 142 0.186 0.181 0.276

K562 HepG2 [ GM12878 185 0.192 0.079 0.645

All cell lines (intersection) 14 0.186 0.089 / 0.206 / 0.130

Note: For the intersection of all three cell lines, the recall value is given for all cell lines, in order (viz., recall with respect to HepG2, GM12878, and

K562). For comparisons involving all three cell lines, a TF in a prediction must be shared between all cell lines in order for it to be accepted as part

of the combination / intersection.
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Comparison with other TF-TF interactions prediction methods

To evaluate the improvement with respect to the state of art in

TF–TF prediction, we compared TICA with three other meth-
ods for TF interaction prediction. These include TACO that
predicts cell-specific TF dimers based on enrichment of motif

complexes [23], CENTDIST that is a co-motif scanning algo-
rithm ranking co-TF motifs based on their distribution around
ChIP-seq peaks [29], and a computational method based on

nonnegative matrix factorization (NMF) [30]. Results are tab-
ulated in Table 4.

Using TACO, Jankowski et al. reported the top 10 best
ranking predicted motif dimers using ChIP-seq data on cell

line K562 (ibidem, Figure 4, page 6) [23]. We compiled the list
of all TFs belonging to these dimers and intersected it with
data available in ENCODE. This resulted into 28 relevant

TFs and 378 candidate TF pairs. Data for these pairs were
extracted and fed to TICA. The resulting predictions were
compared with TACO’s original dimers. Note that if a TF pair

is not reported in the aforementioned dimer list, we assume the
corresponding TACO prediction to be negative. We observed
that TICA has a 3-fold higher recall with respect to TACO

on the 378 candidate list, with only 13% less specificity, result-
ing in a 1.6-fold increase in geometric mean performance.

We then selected 10 highly-conserved TFs from the list of
ENCODE ChIP-Seq data available for HepG2 and submitted

them to CENTDIST. Feeding the list of TFs and their
Table 4 Comparison between TICA, TACO, CENTDIST, and NMF

Predictor Cell line Recall Sp

TICA K562 0.421 0.8

TACO K562 0.140 0.9

TICA [ TACO K562 0.526 0.7

TICA HepG2 0.278 0.8

CENTDIST HepG2 0.390 0.7

TICA [ CENTDIST HepG2 0.585 0.6

TICA GM12878 0.424 0.6

NMF GM12878 0.238 0.9

TICA K562# 0.202 0.7

NMF K562 0.214 0.8

Note: Union of predictors is defined as predicting a positive interaction if a

CENTIDIST (respectively). An interaction is predicted negative if and only

only on the cell lines indicated (K562 for TACO, HepG2 for CENTDIST, G

available for database-wide comparison. # indicates that only a subset of

NMF, nonnegative matrix factorization method by Giannopoulou and co
CENTDIST-predicted partners to TICA resulted in 406 candi-
date predictions. It is of note that due to the assumptions and

target heterotypic interactions, homotypic predictions in
CENTDIST positive counts are not considered. As shown in
Table 4, TICA has a much better enrichment ratio than

CENTDIST with respect to CORUM/BioGRID, demonstrat-
ing better specificity but lower recall. However, comparison of
recall rate is biased in favor of CENTDIST, since CENTDIST

predictions were used to select the TFs for further considera-
tion. It is also worth mentioning that CORUM complexes
and CENTDIST’s co-motifs are not cell-line specific; hence
some verified CENTDIST-only predictions may be false posi-

tives in the cell lines tested.
To compare our results with the NMF method [30], we

extracted complexes on cell lines GM12878 and K562

reported previously (Figure 3 in [31]) and compared with
TICA predictions on shared TFs. Validation was done using
GeneMANIA [31], a gene network builder based on func-

tional annotations that is used by Giannoupoulou et al.
[30]. On GM12878, TICA shows improved recall but reduced
specificity, resulting in greater geometric mean performance,
but lower enrichment ratio with respect to the databases

(Table 4 again); on K562, performance between the two
methods with respect to proposed complexes is similar
(Table 4). However, there is no report of the full list of pre-

dicted complexes [30]; so we expect that the comparison is
skewed similarly to the CENTDIST comparison.
predictions

ecificity Geometric mean performance Enrichment

07 0.583 2.181

38 0.362 2.258

60 0.632 2.192

57 0.488 1.944

20 0.530 1.393

43 0.613 1.639

11 0.509 NA*

11 0.468 NA*

92 0.400 NA*

35 0.423 NA*

nd only if it is predicted positive by at least one of TICA and TACO/

if it is predicted negative by both methods. Comparison was performed

M12878, and K562 for NMF [23]). * indicates that there is no software

TFs predicted by NMF to be in complexes are used for comparison.

lleagues [30].
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Discussion

In this study, we reported TICA, a new method for predicting
interactions between TFs based on structural and positional

information of their binding sites. By exploiting the expressive
and distributed nature of the GMQL language together with
simple statistics, TICA provides fast combinatorial analysis of

interactions between TFs for detecting their potential physical
interactions. Its main advantage lies in allowing users to do par-
allel pre-screening of possible novel interactions. TICA shows
high specificity toward the commonly-used protein complexes

(>80%), and thus can be exploited to weed out unlikely
interactions.

The enrichment ratio of TICA’s predictions with respect to

CORUM ratio is above 1 in all scenarios, which indicates that
it can effectively separate true TF–TF interactions and non-
interactions. Of note is the fact that TICA reports fewer TF-

TF interaction predictions on healthy cell line GM12878 as
opposed to disease cell lines HepG2 and K562. Healthy gener-
ally have lower transcriptional activity than cancer cells [27],

providing indirect evidence supporting the correctness of the
prediction ratio.

The right tail size feature in TICA is (to the best of our
knowledge) a novel introduction to the field. To investigate

the relative impact of this feature, we computed all measures
under three alternative conditions: using all four features
(baseline scenario), using only the 1000-bp right tail size, and

using all other three measures (i.e., without the right tail size).
As reported in Table S7, incorporating the right tail size test
consistently leads to improved geometric mean performance,

irrespective of databases and/or cell lines considered. Using
right tail size (with the baseline parameters) alone beats all
other three measures in terms of geometric mean performance
by a large margin in two out of the three cell lines examined.

However, we detected lower database enrichment ratio when
using the right tail size test alone compared to the baseline sce-
nario. This might be due to a bias in the comparison: using the

baseline P value (0.2) in the right tail size test results in laxer
conditions for positive calling with respect to the three way
test, leading to better recall but lower class separation power.

Novel interactions predicted are confirmed by manual investigation

We extracted lists of novel interactions predicted using TICA

on the three aforementioned cell lines: we define an interaction
as a novel prediction if evidence for it can be found in
CORUM but not in PubMed. The combined support by TICA
structural predictions and protein complexes/ functional inter-

action databases is a strong indicator that these interactions
are likely to be real. A full list is provided in Table S8; hence-
forth we highlight some interesting examples.

SIN3A/TFAP4 in HepG2 is supported by the fact that effi-
cient TFAP4 DNA binding is known to require another
bHLH protein (http://www.genecards.org/cgi-bin/carddisp.

pl?gene=TFAP4) and SIN3A contains paired amphipathic
helix (PAH) domains, many of which contain basic regions
close to the HLH motif (http://atlasgeneticsoncology.org/

Educ/TFactorsEng.html). The interaction between CEBPB
and NR2F2 in K562 is notable because there is evidence of a
connection between these two TFs and the regulation of
gonadotropin-releasing hormone (GnRH) [32]. Another inter-
esting prediction is JUN/STAT1 in K562. Although we could
not find up-to-date evidence of their interaction in vitro, JUN

is known to interact with STAT3 [33] and STAT1 binds to its
interacting partners at the same or very close to the binding
sites of STAT3 [34], suggesting a potential interference sce-

nario where tumor suppressor STAT1 could bind to JUN at
STAT30s binding sites and thus prevents the formation of
JUN/STAT3 complexes in tumor cells. This speculation is sup-

ported by evidence of upregulation of c-JUN in mice with
knocked-down STAT1 [35]. Finally, evidence has been found
that cells transduced with a C-terminally truncated Runx1,
which lacks important cofactor interacting sites, showed

increased transcription of c-Myc [36], supporting the predic-
tion of MYC/RUNX1 in K562.

Taking the union of multiple predictors leads to increased

performance

Based on the comparison discussed in Results, we speculate

that taking the union of TICA and TACO or CENTDIST in
a given cell might produce an overall improved performance.
To validate this possibility, we computed quality measures

on the predictions resulting from taking the union of positive
predictions from TICA and TACO or CENTDIST (Table 4).
We notice a moderate drop in specificity (expected due to tak-
ing the union of two predictors) which is balanced by a sizeable

increase in recall, leading to an overall increase in geometric
mean performance and enrichment ratio, supporting our
hypothesis.

Conclusions

TICA is a novel methodology that employs genomic posi-
tional information of TFBSs to predict physical interactions
between TFs. The main advantages of TICA are three-fold.
(1) TICA leverages novel, parallel computing techniques to

efficiently scan ChIP-seq point-source (1 bp-sized) binding site
datasets and extract high-confidence binding sites and active
TSSs. (2) TICA does not require motif information for

TFBSs, bypassing incompleteness of selected motif databases
and related accuracy issues. (3) TICA demonstrates very high
level of specificity even at the laxest levels of parameters,

allowing users to weed out non-interacting TF–TF pairs with
high levels of confidence before proceeding to experimental
validation.

TICA has shown to be as reliable if not better than similar
interaction prediction algorithms that rely on precise motif
information, while allowing for significantly higher output rates
(ranging 5000–22,000 predictions on available cell lines). More-

over, TICAappears complementary to alternative TF–TF inter-
action prediction approaches (viz., TACO and CENTDIST),
and combining their predictions greatly improves sensitivity of

the predictions at moderately-reduced specificity.
Finally, selected TF–TF pairs could be competing for the

same cognate genes and interaction partners (competitive

interactors) instead of being part of the same complex (coop-
erative interactors) Both interactions are interesting in the
domain of gene expression regulation, and we plan to address
their classification in future studies.

http://www.genecards.org/cgi-bin/carddisp.pl?gene=TFAP4
http://www.genecards.org/cgi-bin/carddisp.pl?gene=TFAP4
http://atlasgeneticsoncology.org/Educ/TFactorsEng.html
http://atlasgeneticsoncology.org/Educ/TFactorsEng.html
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