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Abstract Identifying antimicrobial resistant (AMR) bacteria in metagenomics samples is essential

for public health and food safety. Next-generation sequencing (NGS) technology has provided a

powerful tool in identifying the genetic variation and constructing the correlations between geno-

type and phenotype in humans and other species. However, for complex bacterial samples, there

lacks a powerful bioinformatic tool to identify genetic polymorphisms or copy number variations

(CNVs) for given genes. Here we provide a Bayesian framework for genotype estimation for mix-

tures of multiple bacteria, named as Genetic Polymorphisms Assignments (GPA). Simulation

results showed that GPA has reduced the false discovery rate (FDR) and mean absolute error

(MAE) in CNV and single nucleotide variant (SNV) identification. This framework was validated

by whole-genome sequencing and Pool-seq data from Klebsiella pneumoniae with multiple bacteria

mixture models, and showed the high accuracy in the allele fraction detections of CNVs and SNVs

in AMR genes between two populations. The quantitative study on the changes of AMR genes frac-

tion between two samples showed a good consistency with the AMR pattern observed in the
nces and
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individual strains. Also, the framework together with the genome annotation and population com-

parison tools has been integrated into an application, which could provide a complete solution for

AMR gene identification and quantification in unculturable clinical samples. The GPA package is

available at https://github.com/IID-DTH/GPA-package.
Introduction

Bacterial antimicrobial resistance is considered as ‘‘one of the

biggest threats to global health, food security, and economic
development today” by the World Health Organization
(WHO). The effective prevention and treatment of infections
caused by bacteria require increasingly greater monitoring

and prevention activities [1]. Traditional bacterial monitoring
methods by the culture technology followed with the classifica-
tion by genotyping such as multi-locus sequence typing

(MLST) [2] and multi-locus VNTR analysis (MLVA) [3],
and pulsed-field gel electrophoresis (PFGE) [4], have been used
for more than thirty years to determine causative agents in out-

breaks and track the epidemiological trends [5]. However, at
present, the culture technology and large genomic diversity
within the species limited the development of these monitoring

methods. For example, only 126 bacteria have available typing
schema for MLST test [6–8]. This limitation resulted in a 20%
shortfall of global outbreaks that could not be adequately
illustrated [9]. Improving the genotyping method is an urgent

need for better monitoring and epidemiological surveillance.
Next-generation sequencing (NGS) technology has pro-

vided immense genotyping data for observing rare and low-

frequency genetic variations in complex samples for precision
medicine [10]. In humans and other mammals, these data are
well employed to observe molecular variations such as copy

number variation (CNV) and single nucleotide variant (SNV)
[11]. A series of bioinformatic tools have been developed, such
as BreakSeek [12], STRiP [13], SVM2 [14], LUMPY [15], and
inGAP-sv [16]. Among them, STRiP is well known for CNV

detection [13], while GATK [17] and SAMtools [18] tools are
used for SNV identification. However, the model fitting pro-
cess of these tools was based on a diploid genome, such as

human or mouse genome. Unlike mammals, the clinical sam-
ples are complex samples with a large amount of bacteria pre-
senting a large genomic diversity, even within the same species

[19]. These tools thus showed a large bias in quantifying the
proportion of genes from single species. Also, some metage-
nomics analysis tools have also been developed to investigate

the molecular variations in complex samples, to measure bac-
terial diversity and abundance, or to identify functional
changes in microbial communities under a species level [20].
However, given the lack of an efficient algorithmic model to

quantify the identified genes in complex samples, we have
few bioinformatics tools to continuously observe the dynamic
and potential quantitative changes in a given bacterial

population.
The Bayesian model is a widely used algorithm to estimate

bacterial diversity and abundances in complex NGS data sam-

ples for its strong capability to estimate genotypes in spite of
sequencing errors [21,22]. These errors may be generated for
several reasons [13]: molecular libraries contain chimeric mole-

cules that may be misidentified as structural variants [23]; read
depths vary across the genome in ways that they also vary
among different sequencing libraries [24]; and alignment algo-
rithms are misled by the tandem repeats in the genome [25].
GATK, developed by Broad Institute, has been applied to
reduce the impact of the errors in human and mouse sequenc-

ing data. For complex bacterial samples, this software may be
used with a polyploidy algorithm to estimate SNV proportions
[17]. However, GATK has rarely been evaluated in these sam-
ples. In addition, a Bayesian model pipeline for estimation of

CNVs in bacteria is still lacking, with the exception of Breseq
that can only be used for one genome at a time [26].

Here, we have developed the Genetic Polymorphisms

Assignments (GPA), a Bayesian framework for genotyping
multiple bacterial in mixed samples, including a genome anno-
tation pipeline. To evaluate the accuracy of GPA, we com-

pared Pool-seq data and individual genomic data of
Klebsiella pneumonia, and found that GPA could (i) detect
all SNVs and CNVs in Pool-seq data, and (ii) calculate an

accurate frequency of each known allele of target genes, which
were identified by individual genomic data. We further demon-
strated its capabilities through a consecutive analysis on the
frequency of the tolC gene, as well as rmpA and rmpA2, which

we previously reported in CR-HvKP, showing sequence anal-
ysis consistent with phenotypic changes over two years. This
software package can also be used to monitor antimicrobial

resistant genes in metagenomics data for a specific pathogen.
Results

Performance evaluation by simulation studies

Overview of the GPA package

The workflow of the GPA package is shown in Figure 1. First,

we processed the BAM file with the standard GATK pipeline:
raw reads were mapped with BWA-mem and duplicates were
removed with Picard (Figure 1A). Then, the BAM files were

processed in the novel CNV calling pipeline model. Using a
Bayesian framework, GPA analyzes the coverage depth at
each position and predicts its ploidy type (Figure 1B). The

results of this ploidy assignment were used as input for the fur-
ther identification of SNV with GATK UnifiedGenotyper call-
ing (Figure 1C). The total CNV and SNV results were then
mapped to reference genes and annotated for functional pre-

diction and population analysis (Figure 1D). This pipeline
serves as a complete toolkit for genotype assignments in
pooled bacterial sequence data. The GPA package is available

at https://github.com/IID-DTH/GPA-package.

GPA model applied to a simple CNV example

To better illustrate the GPA model when used in a CNV study,

we used a mixed dataset consisting of three randomly selected
Klebsiella pneumoniae genomes (Kpn12, Kpn14, and Kpn32)
as Pool-seq data to evaluate the model, posterior of different

genotypes, and major allele assignment (Figure 2A–E). Consid-
ering the previous bioinformatics tools preferred to applying in
mammals with a diploid sample, we used a mixture with three

https://github.com/IID-DTH/GPA-package
https://github.com/IID-DTH/GPA-package


Figure 1 Schematic overview of the GPA package

A. The process of data mapping. B. The CNV calling model: the depth in each position is analyzed (upper panel) and predicted for its

ploidy number with a Bayesian model (down panel). The pink and blue lines in the circle indicate duplication and deletion regions,

respectively. C. The SNV calling and correction model: the ploidy analysis result and processed BAM file are used as input for SNV calling

and identification with GATK UnifiedGenotyper. The allele fraction is corrected using the CNV identification result. The fractions of the

alternate and reference alleles are indicated in red and yellow, respectively. The gray bar indicate deletion regions. D. The CNV and SNV

calling results are annotated using the reference genes for functional prediction and further population analysis. The orange arrow

represents a transcript in the genome. The mutants in the population are drawn with yellow or pink circles. CNV, copy number variation;

SNV, single nucleotide variation.
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samples as a simple model, which also tends to be a common
occurrence in metagenomes. We used this model to show dele-

tion, normal, or insertion states with a 0, 1, or 2 in each refer-
ence genome position (Figure 2A). Seven allele types were thus
presented for each position in Pool-seq data, including 0, 1/3,

2/3, 1, 4/3, 5/3, and 2. (Figure 2A).
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Figure 2 CNV model in the GPA package

A.Diagram of how ploidy allele fraction is calculated using an example ploidy (n= 3). Blue indicates deletion, and red indicates duplication.

‘‘100 is a normal stage with a mixture of 3 bacteria. B. The negative binomial distribution fitting the main distribution curve of coverage depth

for each nucleotide site. The red line represents the real depth distribution in a simulation using the Pool-seq data from 3 genomes. The black

line represents the fitted negative binomial distribution, and the shadow region represents themain peak.C.Readdepthmodeled by anegative

binomial distribution with different allele fractions. See panel A for color codes.D. Prior estimation using iterations. E.An example of GPA

used to identifyKpn deletion regions in Pool-seq data. The individual genome shotgun sequencing data forKpn12 andKpn14 have a deletion

in the genome indicated by blue rectangles. The size of this deletion in the bottom panel represents the estimated posterior for different allele

types. F.MAE calculated with different ploidy numbers using GPA (green) and traditional DBA (red). The color gradient of the lines (from

light to dark) represents the coverage depth in themodel of 10�, 20�, 50�, and 100�, respectively.G.Evaluation ofGPAperformance in low

sequencing depth.MAEwas calculatedwith different coverage depths usingGPA(green) and traditionalDBA (red). The color gradient of the

lines (from light to dark) represents the number of ploidies in the model, which are 3, 5, 10, and 20, respectively. MAE, mean absolute error.
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The Pool-seq data were aligned to the reference genome,
and fitted the reads depth with a negative binomial distribution
curve and estimated its parameter j (Figure 2B). Using this

parameter, we calculated the likelihood value of each modeled
negative binomial distribution in each possible allele type (Fig-
ure 2C). Next, the posterior were estimated by multiple itera-

tions, and we observed that the priors converged quickly in 3
iterations (Figure 2D). The major allele assignment was dis-
played with 3 individual genome structures and compared with

mixed data. We found that both Kpn12 and Kpn14 genomes
had a �170-bp deletion, while Kpn32 was in normal stage.
This result was consistent with the observation in mixed data,
which was assigned with the peak value of allele type according

to the posterior (Figure 2E).

Performance evaluation of CNV analysis by simulation studies

We expanded the mixture analysis from 3 genomes to multiple
genomes (>3). We used genomic data from 2009 and 2013
from 44 K. pneumoniae isolates as a control, with shotgun
reads having an average depth of 150� as a simulated data

pool. 24 sample data were generated by constant coverage
(5, 10, 15, 20, 50, and 100�, respectively) from 3, 5, 10, and
20 randomly selected samples. To improve robustness, we

repeated to generate three replications for each sample data.
The mean absolute error (MAE) of the control was used to
measure the performance of different estimation methods.

We compared the performance of GPA with the previous
depth-based estimation (DBE) approach. Both approaches
readily identified deletions and duplications that occurred in

most strains, however, more errors were introduced when dele-
tions or duplications occurred in only a few strains (i.e., the
allele frequency was near to the peak) (Figure S1). In this con-
dition, the GPA method had fewer false positive results in the

detection of deletions or duplications. The average MAE was
0.02 for GPA and 0.2 for DBE. To evaluate the effect of depth,
we simulated an average depth of 10, 20, 50, and 100�. The

results showed that the GPA method was more tolerant of
low depth datasets (Figure 2F). For depths of more than
20�, the detection was relatively stable. To evaluate the effect

of ploidy number in low depth datasets, we simulated ploidies
of 3, 5, 10, and 20 under the depth of 20�. The MAE was rel-
atively dispersed when the ploidy number was small (Fig-
ure 2G). The GPA method was more robust compared to

the DBE method in both low depth and small ploidy number.
In total, the GPA method detected polymorphisms more
accurately.

GPA model with a simple SNV example

To better illustrate the GPA model when used in an SNV
study, we presented an example of SNV with 10 ploidies

(Figure 3). Notably, in this model, five genomes had a deletion
in the middle of the sequence. Traditional SNV calling tools
always ignore to correct the mutation frequencies, when the

mixed samples have deletions or duplications in the given gen-
ome site. In this example, there were five deletion alleles in a
particular position, two reference alleles and three alternative

alleles; the traditional SNV caller reported four reference alle-
les and six alternative alleles, determining a ploidy level of 10
in this position. The detected alternative allele fraction (6/10)

would be higher than the true state (3/10), leading to an incor-
rect conclusion. In contrast, the duplication would lead to a
relatively lower estimate of the allele fraction. From the previ-
ous results of CNV identification in our simulation, the dele-
tion region ranged from 10% to 15% of the genome size.

Thus, a more accurate model for SNV identification is
required.

Performance evaluation of SNV analysis by simulation studies

To evaluate the performance of SNV analysis of GPA, we use
the same simulated data as in the CNV analysis, and firstly
assessed the relationship between MAE and deletion fraction

in 10 ploidy states with 50� coverage. At the whole genome
level, using the GATK and DBE methods, we observed a sig-
nificant increase in MAE of SNVs when the deletion allele

fraction increased. In the same analysis, the GPA method per-
formed better in deletion identification, which corrected most
of the CNVs when the deletion fraction was over 0.3, thus

resulting in a sharp decrease in MAE (Figure 4A). We also
measured the accuracy of the frequencies of alternative alleles
and found the accuracy was also significantly increased
(Figure 4B). Comparison of results for other states also

showed significant improvements in accuracy when CNV was
considered in the model (Figures S2 and S3).

We also measured the combined impact of sequencing

depth and ploidy number on MAE in SNV analysis. The
MAE value showed a steep decrease and kept a constant low
level when the depth increased to 20 (Figure 4C). Interestingly,

with the increase in ploidy number, the GPA method presented
a lower MAE (Figure 4D), which suggested that this method
was more suitable for the identification of complex samples

than the traditional GATK and DBE method.

Performance evaluation in complex samples

Identification of CNVs and SNVs from Pool-seq data and public
metagenomics data

To evaluate the potential of GPA in the discriminant analysis

in real datasets, we used two datasets, (1) Pool-seq data from
44 K. pneumoniae strains, which could be divided into two
groups with the same number (one from 2009, and the other

from 2013), and (2) public metagenomics data from three stud-
ies on the human gut microbiota [27–29]. In the GPA package,
we integrated genome mapping, CNV and SNV identification,
as well as the variant annotation system.

We evaluated the capability of GPA to discriminate
between individual genomes within the Pool-seq data. Using
this procedure, we detected 18,131 and 27,819 deletion regions

in 2009 and 2013 datasets, respectively, from a total of 9.29 G
genome data (�2000�). Compared to the reference genome,
our pipeline observed 10.3% and 10.6% of genomic deletion

regions in the data from 2009 and 2013, respectively. Due to
the lack of comparable approaches to identify bacterial SNVs
and CNVs in complex data, we compared these deletions to

the deletion regions which we identified in the alignments of
the individual genome to the reference genome data. These
deletions covered 23.02% of deletion regions which were
observed in the individual genome from 2009 and 60.05% of

deletion regions observed in the individual genome from
2013. We also identified 1154 and 216 duplication regions in
the dataset from 2009 and 2013, respectively (Figure 5A).

Compared to the number of identified deletions in the genome,
the number of duplications was limited. SNVs were also



Figure 3 SNV correction model in the GPA package

Genomic feature of 10 sequencing reads in a given genomic site. The yellow circles represent sites on this genome that have the same allele

as the reference genome ‘‘T”, the red circles represent alternative alleles, for example ‘‘A”, and the blue circles represent deletion sites. Ref,

reference allele; Alt, alternative allele; Del, deletion allele.

Li J et al / Genetics Polymorphisms Assignment for Microbial Genome 111
identified in these two separate datasets. We observed 692,368
and 272,169 SNV sites in the dataset from 2009 and 2013,

respectively, which were similar to the SNV detection by
GATK (698,528 and 275,174 sites, respectively). Further anal-
ysis of the SNV site coverage to actual genome data presented

similar coverage of 79% in the dataset from 2009, but with dif-
ferent MAE rates. In datasets from 2009 and 2013, the MAE
rates were 2.00 and 1.78, respectively, when using GATK,

which were 1.43 and 1.40, respectively, when using GPA, indi-
cating a lower error rate with the GPA package.

We further evaluated the ability of GPA to discern SNVs
within the Pool-seq data by comparing results obtained using

GPA and GATK. In the different genetic sites observed by
individual genome analysis on the comparison of 2009 with
2013 data, GPA identified 128,803 SNVs. Among them,

GATK failed to predict 6675 SNV sites. For example, all six
SNV sites in KPHS_45500 were not properly detected by
GATK, because there was a 203-bp deletion in 10 of the 22

genome data from 2009 (Table 1). This result suggested that
the use of GATK in metagenomics or Pool-seq data from bac-
teria still has limitations, although it is very effective for data
from humans and other mammals.

Last, we expanded the application of the GPA package to
metagenomics data in order to identify dynamic changes in
gene frequencies within a given genome. The GPA package

treated metagenomics data as multi-strain pooled samples.
To obtain high enough coverage for the detected species, we
evaluated our ability to identify SNVs and CNVs in the dom-

inant species. Using MetaPhlAn2 [30], we found that the dom-
inant species in 15 samples was Prevotella copri, with
particularly high proportions in the MH0001, MH0005, and

MH0018 samples. Using the P. copri reference genome
(ASM15793v1), we applied the reference-based GPA package
to identify CNVs, SNVs, and indel mutations in the three sam-
ples. We identified 608, 1245, and 1290 SNV sites in the three

samples compared with the P. copri reference. Moreover, we
identified totally 1,192,437-bp deletion regions and 26,593-bp
duplication regions on MH0001, 1,106,144-bp deletion regions

and 353,830-bp duplication regions in MH0005, as well as
1,068,700-bp deletion regions and 12,581-bp duplication
regions on MH0018. Here, limited by the complexity of the

computation, we optimized the number of mixed strains in
the same species (N) to 20 in order to balance the precision
and efficiency, since the running time will exponentially
increase as N increases in GATK. Although we cannot evalu-

ate all the deletions, duplications, and insertions, we compared
the number of resistance genes identified by Resistance Gene
Identifier [31] to what was identified by BLAST in a previous

report. In MH0001, MH0005, and MH0018, respectively,
there were 40, 45, and 44 previously identified resistance genes
[27]. Among them, 5, 5, and 4 genes were from P. copri, which

matched to the reference genome ASM15793v1. In our GPA
package, we identified 1, 2, and 3 overlapping genes, respec-
tively. We identified 15 AMR genes in reference genome
ASM15793v1. In addition, we also identified another 10, 9,

and 9 antibiotic resistance genes in these metagenomics data
(Table S1). Moreover, we identified the deletion and duplica-
tion regions, and calculated the specific fraction of modified

alleles in these regions. Among these AMR genes, 4 genes,
EF-Tu, rpoB, gyrA, and ileS, performed antibiotic resistance
through mutations, none of which were identified in previous

BLAST pipelines.

The application of the GPA package to population comparisons

To better apply the GPA package in the comparison of

two groups, we constructed a complete pipeline for genome



Figure 4 Evaluation of the GPA package and comparison with other approaches

A. The correlation between MAE and deletion fraction in 10 ploidy states with 50� coverage using different methods. MAE rate was

calculated under different deletion conditions. Red represents the traditional DBE method, green represents the GATK method, and blue

represents the GPA method. B. The correlation between accuracy and deletion fraction in 10 ploidy states with 50� coverage using

different methods. C. The correlation between MAE and sequencing depths. The color gradient of the lines (from light to dark) represents

ploidy number of 3, 5, 10, and 20 in the model. D. The correlation between MAE and different ploidy numbers. The color gradient of the

lines (from light to dark) represents coverage depth in the model spanning 10�, 20�, 50�, and 100�.
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annotation using reference genome data. In a comparison of
two Pool-seq data, K. pneumoniae strains from 2009 and
2013, we screened the whole genome and found significantly

different genomic regions, including 184,654-bp CNV regions
and 128,803 SNVs. Among these CNVs and SNVs, 79.7%
and 90.9%, respectively, were from coding regions, which

was similar to the percentage of coding regions in K. pneumo-
niae. Then, using an automated model of ANNOVAR [32]
with the reference genome, we annotated SNVs with 8919
non-synonymous and 51,053 synonymous sites. Thus, we can
quickly and easily learn the biological meaning of these differ-
ences since this is an unusual pipeline in its ease of application

for the identification of gene function within large, complex
datasets.

This package also permitted automated annotation of SNV

sites and CNV regions identified by our pipeline in metage-
nomics data with the P. copri reference genome
(ASM15793v1). In the MH0001 dataset, 608 SNV sites were



Figure 5 Comparison of Pool-seq data analyzed by GPA with individually analyzed data from 2009 and 2013 datasets

A. Identification of CNVs in Pool-seq data of K. pneumoniae in 2009 and 2013 datasets by GPA. The red block represents CNVs found in

the 2009 data and the cyan block represents CNVs in the 2013 data. B. Detection of deletions in the antimicrobial resistance gene tolC in

K. pneumoniae populations in 2009 and 2013 datasets. The gray line represents the results of DBE analysis; the red and cyan lines represent

the results of GPA in 2009 and 2013 populations, respectively.
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identified; 1245 SNV sites were found in MH0005, and 1290
SNV sites were found in MH0018. Of these mutations, 43 sites
in MH0001, 78 sites in MH0005, and 64 sites in MH0018 were

identified as functional SNV sites, including nonsynonymous
mutations and stop-gain mutations. The mutations were
located in 5 genes across the three samples. The CNV regions
were annotated to 7 genes in MH0001, 10 genes in MH0005,

and 7 genes in MH0018.

Validating the impact of mutations on virulence and antimicro-

bial resistance genes

The GPA model for the estimation of gene abundance was
applied to Pool-seq datasets from 2009 and 2013 to evaluate
the dynamic changes in the frequencies on the functional gene.

We compared the frequency of the virulent genes (rmpA and
rmpA2) and antibiotic resistant gene (tolC) to two Pool-seq
datasets. Among them, rmpA and rmpA2 are genes recently
validated in CR-HvKP, whose percentage was recently

reported as rapidly elevated in 2013 by our team [33]. Using
the GPA package, we estimated that the rmpA gene was
increased from 7 copies in 2009 to 13 copies in 2013. Also,
we estimated that the copy number of rmpA2 was increased

from 10 to 13. This increase was consistent with our observa-
tions in individual genomes and phenotypes, although the copy
number was not predicted beforehand [33]. tolC is a common

protein subunit among many multidrug efflux complexes in
Gram-negative bacteria. This gene was observed to have a par-
tially deleted region of �90 bp in 10 strains in the 2009 dataset,

but only 2 strains in the 2013 dataset. Using the GPA package,
we detected a deleted region in the gene in the 2009 data but



Table 1 The discrimination of SNVs using GPA and GATK

Mutation
2009

Ref allele

2009

Alt allele

2009

Deletion

2013

Ref allele

2013

Alt allele

2013

Deletion

Fisher P

value
Method

Putative glycoside hydrolase 11 2 9 14 6 2 0.034679 True

KPHS_45500:exon1:c.A1518G:p.I506M 10 4 8 16 6 0 0.006104 GPA

16 6 0 16 6 0 1 GATK

Putative glycoside hydrolase 9 3 10 15 5 2 0.031614 True

KPHS_45500:exon1:c.A1012G:p.K338E 10 4 8 17 5 0 0.005152 GPA

15 7 0 17 5 0 0.73604 GATK

Putative glycoside hydrolase 11 3 8 10 10 2 0.027615 True

KPHS_45500:exon1:c.T853G:p.C285G 9 4 9 10 12 0 0.00092 GPA

15 7 0 10 12 0 0.223143 GATK

Putative glycoside hydrolase 10 2 10 19 1 2 0.009187 True

KPHS_45500:exon1:c.A583G:p.I195V 11 2 9 20 2 0 0.001246 GPA

19 3 0 20 2 0 1 GATK

Putative glycoside hydrolase 4 8 10 13 7 2 0.006573 True

KPHS_45500:exon1:c.G325A:p.E109K 7 6 9 13 9 0 0.003005 GPA

12 10 0 13 9 0 1 GATK

Putative glycoside hydrolase 10 2 10 19 1 2 0.009187 True

KPHS_45500:exon1:c.A307G:p.T103A 12 1 9 21 1 0 0.001403 GPA

21 1 0 21 1 0 1 GATK
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failed to detect it in the 2013 data (Figure 5B). In a comparison
of differences in estimated copy number between the two data-

sets, GPA also identified a significant increase of the strain
without deletions in 2013, which suggested that potential
antibiotic resistance might be elevated by the active efflux of

the drug from the periplasmic entrance using the efflux com-
plex (Table S2). The estimated result by GPA was also more
stable than with DBE in our analysis of a single gene

(Figure 5B).
We also estimated the antibiotic gene frequency in metage-

nomics data. The mexF gene, a resistance-nodulation-cell divi-
sion (RND) multidrug efflux transporter, was present in 0.6%

deletion regions inMH0001, in 65.7%of the duplication regions
inMH0005, and conservedwithoutmutation inMH0018.How-
ever, lacking of phenotypic and individual genomic data, we

could not well evaluate our accuracy in this dataset.

Discussion

Metagenomics tools provide powerful insights into the study
of populations of clinical or pathogenic microbiota [34]. To
fully exploit its potential in the discrimination of genetic vari-

ants, including CNVs and SNVs, data analysis tools and algo-
rithms are needed for detecting dynamic changes in complex
communities, and evaluating their effects on toxin production,

antimicrobial resistance, and other phenotypes [27]. The GPA
package is a Bayesian approach for estimation of microbial
genetics modal assignments, especially useful in complex clini-

cal samples (Table S3). Using individual genomes and Pool-seq
genomic data, we assessed the accuracy, sensitivity, and stabil-
ity in a uniform model. Compared to the traditional method,

this model efficiently decreased the false discovery rate
(FDR) of CNV and MAE of SNV in genotype calling. Consid-
ering that SNV and CNV profiles were two major factors in
the analysis of metagenomic samples, and given the limited

general methods that can estimate their distribution and rela-
tive abundance, we propose that Bayesian estimation could
improve the discrimination of CNVs and SNVs between pop-
ulations. In addition, we have constructed a GPA package

with a complete workflow to analyze Pool-seq data from clin-
ical or environmental samples, which will help researchers to
automatically align reads to a selected reference, identify

CNV and SNV variants, calculate the accuracy of the allele
fraction, and annotate these variants.

In the GPA package, we have improved three aspects of the

genotyping of bacterial genomes. First, the GPA package uses
the Bayesian model to detect CNV allele fraction, which
decreases FDR andMAE significantly compared to traditional
DBE. Second, the SNV allele fraction is modified according to

the CNV allele fraction, to correct the bias caused by the dele-
tion allele. The accuracy of genotyping provides a foundation
for further genotype–phenotype study. Third, this is a com-

plete package containing the major workflow used in microbial
assignment in complex samples, and optimized with Pool-seq
and whole genome/metagenomics sequence data from clinical

settings, which could be used in hospital-based epidemiological
molecular surveillance.

A limitation of GPA is the selection of the represented ref-
erence sequences. The integrity and complexity of the refer-

ences may influence the statistical estimation of deletions,
insertions, duplications, and translocations, which occur in
bacterial populations. A sliding ploidy number used in the

model will also extend the area of its application, instead of
the assumed ploidy number given in our multi-ploidy model.
For its application in metagenomics, we assume the sample

is a multi-ploidy model, which may not be true in actual sam-
ples. The computing time increases exponentially with the
increase in ploidy number, which also limits the application

in metagenomics sequence data since we cannot increase the
ploidy number too much to obtain an approximation in true
metagenomics samples. Metagenomics and Pool-seq are major
breakthrough technologies in clinical identification. Bayesian

estimation provides an algorithm for accurate and thorough
study of the epidemiology, distribution, and pathogenic
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potential of the reference strain. This approach will also pro-
vide considerable insight into other characteristics of individ-
ual strains, such as sequence type and gene evolution.
Materials and methods

Materials used for GPA evaluation

Whole genome sequencing and antibiotic resistance assays for 44
isolates of K. pneumoniae

We randomly selected 44 K. pneumoniae isolates obtained in

2009 and 2013 (22 in each year) (Table S2). The genomic
DNA from these isolates was extracted and purified using a
QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany). Then

we prepared 500 bp libraries from the genomic DNA of each
isolate using NEBNext Ultra DNA Library Prep Kit for Illu-
mina. The libraries were sequenced on the Illumina Hiseq 2500

platform to generate 125 bp paired-end reads (Illumina, San
Diego, CA, USA) according to the Illumina manual. The
sequence data were deposited in the GenBank database

(Accession number: SRP075790). The MICs of these isolates
tested with 10 antibiotic agents from eight categories were
determined using the broth microdilution method (Table S2).

Simulated data of individual genome sequence data and Pool-seq
data

We prepared simulated data to evaluate the accuracy of the
GPA package for different coverage depths and ploidies by

sampling the data from individual �150� shotgun reads.
NC_016845 was used as reference genome. The BAM files
were sampled with the DownsampleSam program in PICARD

tools (v1.141). Each raw sample was down-sampled to 3 inde-
pendent replicates with different coverage depths (5�, 10�,
15�, 20�, 50�, 100�). For the given depth of each sample,

we randomly selected the simulated reads from other bacteria
to generated the pooled sequence data with 3, 5, 10, 20 mixed
sample data.

Evaluation of simulated data

We mapped the simulated and original data from FASTQ files
to the reference genome using BWA-mem with default param-

eters, and then removed unmapped reads, low quality reads
(Q < 30), and multiple mapping reads to obtained the BAM
file. These BAM files were used to calculate the sequencing

depth and coverage for each genome. GPA and DBE
approaches were evaluated using simulated Pool-seq data
and individual genome shotgun sequence data.

Pool-seq data and metagenomics data

We mixed DNA from the aforementioned 22 K. pneumoniae
isolates from both years using average concentrations to make
a uniform level of DNA. We then constructed 2 Pool-seq

libraries using NEBNext Ultra DNA Library Prep Kits for
Illumina and then sequenced on an Illumina Hiseq 2500 plat-
form. Metagenomics data were downloaded from the BGI

website (http://gutmeta.genomics.org.cn/), with accession
number from MH0001 to MH0020 according to previously
described methods [27]. These two datasets were also used to

evaluate the discrimination of GPA in simulated data.
Description of the model for CNV detection

Likelihood ploidy state at each position is correct

For the Pool-seq data of n samples, we considered 2 � nþ 1

ploidy states in this position. In each position i, the genotype
hi could be expressed as

hi ¼

0=n; if this position is deleted in n ploidy

1=n; if this position is deleted in n� 1 ploidy

..

.

ðn� 1Þ=n if this position is deleted in 1 ploidy

1; if this position is normal in n ploidy

ðnþ 1Þ=n if this position is duplicated in 1 ploidy

..

.

ð2n� 1Þ=n if this position is duplicated in n� 1 ploidy

2 if this position is duplicated in n ploidy

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

The Poisson model has been widely employed for analyzing

sequence data as well as for differential gene expression [35].
However, the Poisson distribution assumes that the variance
of reads is equal to its mean, and with only one parameter.
The negative binomial model permitted additional parameters

that could be used as an alternative to model the larger vari-
ance, for example in CNV detection and Pool-seq data analysis
[36]. In the GPA model, we modeled the depth of each position

by a negative binomial distribution,

P dijhið Þ ¼ nbinom di; jhi ; lhi

� �

¼ Cðdi þ jhiÞ
dið Þ!CðjhiÞ

� jhi

jhi þ lhi

� �jhi

� lhi

jhi þ lhi

� �di

The dispersion parameter jhi was set as a global parameter

j for each single experiment. The mean parameter lhi was the

expected depth of each site, which should be proportional to

the ploidyhi, i.e., lhi ¼ a � hi.
We assumed that most positions were normal ploidy, which

means that the main peak of depth distribution is contributed

by hi ¼ 1. To cover more than 95% of the non-zero regions
in sequencing depth, we defined the range of 1/2 to 3/2 as the
median depth. This peak value works well in single genome

(Kpn24 genome as an example), 3 pooled genomes (Kpn12,
Kpn14, and Kpn32), and true metagenomics data (MH0005)
in our study (Figure S4). We applied the maximum likelihood

method to fit the main peak of observed depth distribution,
estimated dispersion parameter j; and the coefficient a. The
likelihood was calculated with lhi . For hi ¼ 0, the lhi was set

as 1 since there are a few false positive reads in total deletion
regions.

Iteratively updating the prior of the ploidy state

Prior probabilities of each ploidy states were estimated with an
iterative algorithm. We started from equal probabilities,

PðhiÞ ¼ 1

ð2nþ 1Þ
The ploidy state of each position in the data was determined

by the highest posterior probability, which was calculated as

P hijdið Þ / P dijhið Þ � PðhiÞ

http://gutmeta.genomics.org.cn/
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After determining the ploidy state of each observed posi-
tion, the prior probabilities of ploidy state PðhiÞ were updated.
The repeated process will continue until PðhiÞ convergence to a

stable state. The genotyping quality score was calculated as a
Phred score of the maximum likelihood to qualify the confi-
dence of the results.
SNV allele fraction correction of the deletion genotyping data

For the majority of bacterial genomes, deletions are widely dis-

tributed, potentially as high as 10% compared to the reference
genome. The effect of CNVs cannot be ignored in SNV detec-
tion. For a particular position in the genome, ignoring a dele-

tion would lead to an over-estimated allele count of alternative
alleles, while ignoring a duplication might lead to a decreased
allele fraction.

In our pipeline, we applied the UnifiedGenotyper in GATK

software (version 3.4) [17] to detect bi-allelic SNVs. The
parameter ‘‘-ploidy” for each position was set according to
the CNV result.
Mutation annotation and population analysis

Functional annotation of mutations is important in the

research of a bacterial population. However, for the diversity
of bacterial genomes, there is not a general method for a muta-
tion annotation pipeline. Breseq is not flexible in the annota-
tion of a custom mutation list and genes. We have developed

a pipeline for mutation annotation based on ANNOVAR (ver-
sion 2017-06-01) [32]. ANNOVAR software is designed for
human mutation annotation, and also provides solutions for

novel genomes and gene annotations. A genome FASTA file
and a gene annotation file in GenePred format were required
for file preparation. Additional programs for file format con-

version were provided in our software package. The AMR
gene was annotated by the Resistance Gene Identifier pipeline
(RGI v3.1.1) using the Comprehensive Antibiotic Resistance

Database (CARD v1.1.7) [31].
In the comparison mode, the GPA package provided

information on the difference in allele frequency between two
populations. Mutations with an allele frequency were listed

in the results, with the statistical significance calculated by
Fisher’s exact test [37].
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