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Abstract Intrinsically disordered or unstructured proteins (or regions in proteins) have been found

to be important in a wide range of biological functions and implicated in many diseases. Due to the

high cost and low efficiency of experimental determination of intrinsic disorder and the exponential

increase of unannotated protein sequences, developing complementary computational prediction

methods has been an active area of research for several decades. Here, we employed an ensemble

of deep Squeeze-and-Excitation residual inception and long short-term memory (LSTM) networks

for predicting protein intrinsic disorder with input from evolutionary information and predicted

one-dimensional structural properties. The method, called SPOT-Disorder2, offers substantial

and consistent improvement not only over our previous technique based on LSTM networks alone,

but also over other state-of-the-art techniques in three independent tests with different ratios of dis-

ordered to ordered amino acid residues, and for sequences with either rich or limited evolutionary

information. More importantly, semi-disordered regions predicted in SPOT-Disorder2 are more

accurate in identifying molecular recognition features (MoRFs) than methods directly designed

for MoRFs prediction. SPOT-Disorder2 is available as a web server and as a standalone program

at https://sparks-lab.org/server/spot-disorder2/.
Introduction

Intrinsic disorder in proteins is the lack of tendency of a pro-
tein to fold into a well-defined, rigid structure. These dynamic
protein structures can be experimentally observed as their

backbone angles vary over time due to their innate flexibility
[1]. The discovery of intrinsically disordered proteins (IDPs)
or intrinsically disordered regions (IDRs) in proteins chal-

lenged the dogmatic structure–function paradigm, forcing a
nces and

earning,
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new perspective where protein rigidity is no longer a foregone
conclusion [2].

IDPs are able to fulfil a wide range of niche, yet biologically

crucial functional roles despite their lack of a rigid structure,
due to their ability to transition between a set of transient,
interconverting structural states [3]. Advantaged by their disor-

dered flexibility [4], IDPs play essential roles in signaling,
assembling, and regulatory functions [5], and are implicated
in numerous human diseases, such as cancer, amyloidoses, car-

diovascular disease, neurodegenerative diseases, and various
genetic diseases [6]. A recent study on the amino acid (AA)
residue-wise coverage of disorder has estimated that 19.6%
of AA residues in eukaryotic organisms and 9.6% of AA resi-

dues in viral organisms are disordered [7]. This prevalence is
vindicated by the fact that naturally-occurring proteins, partic-
ularly those in eukaryotes and viruses [7–9], tend to be more

disordered than random sequences [10]. Thus, determining
the identity and locations of IDPs and IDRs is fundamental
to understanding and addressing the cause and effect of these

unstructured states [11].
Due to the extensive monetary and time cost of experimen-

tal procedures, such as nuclear magnetic resonance (NMR), X-

ray crystallography, and circular dichroism (CD) [12,13], many
computational methods have been designed to bridge the
growing gap between unannotated and annotated protein
structures and/or their intrinsic disorder. Early work in protein

disorder prediction was often based on small machine learning
models [14], such as neural networks and support vector
machines (SVMs). Other computational methods calculated

disorder through the analysis of AA propensities and other
sequence properties [15]. As more data and powerful tools
became available, deep learning and recurrent architectures

have taken the forefront, in methods such as SPINE-D [16],
ESpritz [17], AUCpreD [18], SPOT-Disorder [19], and
NetSurfP-2.0 [20]. A recent review by Liu et al. [21] placed

SPOT-Disorder and AUCpreD as the two top-performing pre-
dictors for protein disorder prediction.

SPOT-Disorder [19], previously introduced by us,
employed long short-term memory (LSTM) cells [22] in a bidi-

rectional recurrent neural network (BRNN) [23] for protein
disorder prediction. Since the publication of SPOT-Disorder,
the single LSTM-BRNN topology for deep learning has been

enhanced by utilizing an ensemble set of hybrid models con-
sisting of both LSTM-BRNNs and residual convolutional neu-
ral networks (residual CNNs, called ResNets) [24] for protein

contact map prediction [25], protein x angle prediction [26],
and protein secondary structure prediction [27]. This architec-
Table 1 Architecture of five network models in the ensemble

Model First segment NLSTM NCNN

0 RNN 250 60

1 RNN 250 60

2 RNN 250 60

3 CNN 250 60

4 RNN 250 60

Note: The order of layers in the model is presented in the column for the fir

for RNN and CNN, respectively (i.e., at the input layers). NLSTM, NCN

convolutional filters in each CNN layer, and nodes in each FC block, respe

memory; RNN, recurrent neural network; CNN, convolutional neural n

inception paths, residual connections, and Squeeze-and-Excitation network
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ture of network ensembles is advantageous because it can con-
gregate and propagate both short-distance (ResNets) and
long-distance (LSTM-BRNN) interactions throughout the

protein sequence. Furthermore, the residual connections in
these models alleviate the issues brought about by the vanish-
ing gradient problem and allow for much deeper models (in the

case of CNNs) and more effective gradient flow.
The effectiveness of ResNets and their various derivatives is

displayed by their high performance in recent image classifica-

tion competitions (ImageNet) [28]. Two such derivatives yet to
be applied in bioinformatics are residual-inception networks
[28] and Squeeze-and-Excitation networks [29]. Inception net-
works (v4) expand on the basic ResNets by increasing the

number of paths available for data to be passed through. As
such, the identity mapping function provided by the residual
connection has a deeper level of abstraction due to the inde-

pendent data paths. Squeeze-and-Excitation networks are
another effective modification to ResNets that compresses
the passing information into an excitation signal. This excita-

tion signal can control the specific values added to the residual
connection through the convolutional paths, behaving simi-
larly to the learned gates of an LSTM cell. These models are

currently cutting edge in image and speech processing tasks.
In this work, we examine models incorporating inception

paths, residual connections, and Squeeze-and-Excitation net-
works (IncReSeNet) for their usefulness in disorder prediction.

We find that the ensemble of different deep learning models
leads to a stable and superior performance in four independent
test sets with different ratios of ordered to disordered AA

residues.

Methods

Neural network

The neural network topology employed in SPOT-Disorder2
consists of various models sequentially combining IncReSe-
Net, LSTM, and fully-connected (FC) topographical seg-

ments. Several models have been individually trained and
then combined as an ensemble by averaging the disorder pre-
diction output from each model. The hyperparameters of each

individual method are outlined in Table 1.
The IncReSeNet segments follow the order of operations in

the pre-activation ResNets architecture [24], with a multi-path

inception-style architecture similar to Inception V4 [28]. As
shown in the flow diagram (Figure 1), each block has three
KCNN NFC No. of blocks

LSTM CNN FC

5 250 2 10 1

7 500 2 10 1

9 250 2 10 1

9 250 2 10 2

9 250 1 10 1

st segment, with LSTM and IncReSeNet blocks being the first segment

N, and NFC refer to the number of hidden units in each LSTM cell,

ctively. KCNN refer to the kernel size of CNNs. LSTM, long short-term

etwork; FC, fully-connected layer; IncReSeNet, model incorporating

s.
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branches, including the residual connection and two convolu-
tion paths with 3 and 1 convolution operation, respectively.
Each convolution operation is performed with a one-

dimensional (1D) kernel with its size denoted as KCNN, except
for the first convolution in each branch, which has a kernel size
of 1. These two paths are then concatenated and passed into a

convolution of kernel size 1 and its depth denoted as NCNN.
The input to every convolution is normalized by the batch nor-
malization technique [30], and is then activated by the expo-

nential linear unit (ELU) activation function [31]. As each
residual connection is preactivated, at the conclusion of all
of the IncReSeNet layers, the output is both normalized and
activated. Dropout of 25% is applied internally in some of

the InReSeNet convolutions to avoid overtraining [32]. As
Figure 1 IncReSeNet blocks

This plot shows the data pathways from the input (top) to the

output (bottom) of each IncReSeNet block. The Squeeze-and-

Excitation (blue) section takes the output of the inception paths

(green) and uses this information to control how much of itself is

output from this block onto the residual pathway (purple). This is

repeated for each sequential IncReSeNet block. The network-

dependent parameters are detailed in Table 1. IncReSeNet, model

incorporating inception paths, residual connections, and Squeeze-

and-Excitation networks; BN, batch normalization; Act, activa-

tion; C, 1D convolution with kernel width KCNN; D(0.25),

dropout of 25%; FC, fully-connected layer; K, parameter denot-

ing layer kernel size; CNN, convolutional neural network; NFC,

number of neurons in FC; NCNN, number of nodes in each

convolutional layer; ReLU, rectified linear unit.
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shown in Figure 1, dropout is applied after batch normaliza-
tion (to not affect the moving average and variance measure-
ments), but before the convolution operations (to not to

affect the residual connection).
The Squeeze-and-Excitation segments in the residual blocks

consist of two FC layers applied directly before the residual

connection is applied. The means and variances across the pro-
tein for the outputs of the prior convolution layer are calcu-
lated to provide 2 � NCNN values per protein. These values

are then passed through two FC layers with NCNN/10 outputs
and a single output, respectively, and an ReLU and sigmoid
activation. The outputs of the second FC layer are then used
as a makeshift logic gate to select which values from the final

convolution of the block will be added to the residual
connection.

The LSTM layers follow a similar format to our previous

experiments [19,27]. Each LSTM block consists of one bidirec-
tional LSTM layer with a memory cell size annotated as
NLSTM in both directions, resulting in NLSTM � 2 output val-

ues. Dropout of 50% is applied to the output of the LSTM
blocks. Each FC layer’s size is denoted as NFC, is activated
by a rectified linear unit (ReLU) [33] and regularized by drop-

out. No dropout is employed for the output layer, which
employs a sigmoid activation to convert the singular output
into a probability of the AA residue being disordered.

The use of an ensemble predictor minimizes the effect of

generalization errors between models [34]. A large corpus of
models with varying hyperparameters are trained and their
performance is analyzed on a validation set. These hyperpa-

rameters are swept through in a grid search and include the
layout of the network, the number of nodes in each layer
(one parameter each for LSTM, IncReSeNet, and FC layers),

and the number of layers for each layer type. The five top-
performing models with hyperparameters listed in Table 1
are chosen from this validation period and used in the final

ensemble for SPOT-Disorder2. Selecting more models did
not contribute to an increase in accuracy (data not shown).

SPOT-Disorder2 has been trained using the inbuilt Adam
optimizer [35] in TensorFlow v1.10 [36], on an NVIDIA

TITAN X GPU. A typical IncReSeNet model takes 40 s/epoch
over our whole training set, whereas an LSTM network takes
3 min/epoch.

Input features

SPOT-Disorder2 employed a similar set of features to SPOT-

Disorder. Besides the same evolutionary content consisting
of the position-specific substitution matrix (PSSM) profile
from PSI-BLAST [37], SPOT-Disorder2 also includes the hid-
den Markov model (HMM) profile from HHblits [38]. The

PSSM profile is generated by 3 iterations of PSI-BLAST
against the UniRef90 sequence database (UniProt release
2018_03), and consists of 20 substitution values of each posi-

tion for each AA residue type. The HMM profile consists of
30 values generated by using HHblits v3.0.3 with the UniProt
sequence profile database from Oct 2017 [39]. These 30 values

themselves consist of 20 AA substitution probabilities, 10 tran-
sition frequencies, and the number of effective homologous
sequences of a given protein (Neff). In addition, we utilized

the predicted structural properties from SPOT-1D [27], a sig-
nificant update from SPOT-Disorder which utilized SPIDER2
: Improved Protein Intrinsic Disorder Prediction by Ensembled Deep Learning,
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[40,41]. The features from SPOT-1D consist of 11 secondary
structure probabilities (both three- and eight-state predicted
secondary structure elements), 4 sine and 4 cosine h, s, u,
and w backbone angles, 1 relative solvent-accessible surface
area (ASA), 1 contact number (CN), and 2 half-sphere expo-
sure (HSE) values based on the carbon-a atoms.

These feature groups are concatenated to form 73 input fea-
tures for each protein residue. Features of each residue are
standardized to have zero mean and unit variance before being

input in the network by the means and standard deviations of
the training data.

Datasets

The datasets used in these experiments, as shown in Table 2,
were obtained from our previous disorder prediction publica-
tions [16,19]. To summarize, we obtained 4229 non-

redundant, high-resolution protein sequences from the Protein
Data Bank (PDB) and Database of Protein Disorder (DisProt)
[42]. These include 4157 X-ray crystallography structures

(deposited to the PDB prior to August 05, 2003) and 72
fully-disordered proteins from DisProt v5.0. These chains were
randomly split into a training set (Training) of 2700 chains, a

validation set (Validation) of 300 chains, and a testing set
(Test) of 1229 chains. Sequence similarity among these pro-
teins is <25% according to BLASTClust [37]. As SPOT-1D
has not been trained for proteins of length >700 AA residues,

we remove all proteins of length >700 from all datasets. This
reduces our training, validation, and test sets to 2615, 293, and
1185 proteins, respectively. For convenience, we will label this

test set as Test1185.
We also obtained three independent test datasets (SL250,

Mobi9414, and DisProt228) for a fair comparison against

other methods. These datasets were the subsets from the estab-
lished SL477 [16], MobiDB [43], and DisProt Complement [44]
sets, respectively, after removing long proteins (>700 residues)

and homologous proteins in our training dataset (25%
sequence identity cutoff with BLASTClust). The proteins in
DisProt228 are newly-annotated proteins that are deposited
in the DisProt database v7.0 [45]. The proteins in SL477 with

unknown residue types were also removed. The annotations in
Mobi9414 (i.e., from MobiDB) contain direct labels from the
DisProt database, inferred labels from the PDB, and predicted

labels from a large ensemble of disorder predictors such as
ESpritz [17]. Predicted labels in MobiDB are not utilized due
to their potential inaccuracy. Residues listed as ‘conflicting’

labels in MobiDB are omitted for performance analysis.
Because some predictors employed MobiDB as a part of their
training set, we also made a reduced subset of the Mobi9414,
called Mobi4730 for independent testing for all methods com-

pared. Because not all training sets are available for all meth-
Table 2 Order and disorder propensity in each of the datasets

Dataset No. of proteins No. of ordered resid

Training 2615 542,532

Validation 293 57,470

Test1185 1185 246,616

SL250 250 32,261

Mobi9414 9414 1,932,536

DisProt228 228 30,772

Please cite this article as: J. Hanson, K. K. Paliwal, T. Litfin et al., SPOT-Disorder2
Genomics Proteomics Bioinformatics, https://doi.org/10.1016/j.gpb.2019.01.004
ods, Mobi4730 was obtained by clustering Mobi9414 against
the largest disorder training dataset for NetSurfP-2.0 at a
sequence similarity of 25% by BLASTClust.

Performance evaluation

Analyzing the performance of a disorder predictor is difficult

due to the innate class imbalance present between disordered
and ordered AA residues. As such, several skew-independent
metrics are used to gauge the overall classification accuracy

of the predictor. They include sensitivity (the fraction of pre-
dicted positives in all true positives), precision (the fraction
of true positives in predicted positives), specificity (the fraction

of true negatives in predicted negatives), the weighted score Sw
(Sw = sensitivity + specificity � 1), the area under the recei-
ver operating characteristic (ROC) curve (AUCROC), and the
area under the precision–recall curve (AUCPR). The difference

between two AUCROC values can be qualified as statistically
significant according to a P value from a bivariate statistical
test [46], where a smaller P value indicates a higher likelihood

of the difference being significant. AUCPR emphasizes the per-
formance on positive labels, which is particularly informative
when the fraction of positive labels is low, as the case of pro-

tein disorder [47].
In addition, we obtain the Matthew’s correlation coefficient

(MCC) between the predicted and true labels with

MCC ¼ TP� TNþ FN� FPð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þp

TNþ FNð Þ, where TP, TN, FP, and FN indicate true positive, true

negative, false positive, and true negative, respectively.

These metrics all have a maximum value of 1, and as such
the highest performing predictor can be taken as the one that
provides the overall highest metrics across our testing datasets.

Method comparison

We compare SPOT-Disorder2 to several high-performing pro-

tein disorder predictors. These include the local versions of
DISOPRED2 [48] and DISOPRED3 [49] (http://bioinfad-
min.cs.ucl.ac.uk/downloads/DISOPRED/), MobiDB-lite [50],

AUCpreD [18] (https://github.com/realbigws/RaptorX_Prop-
erty_Fast), s2D [51] (http://www-mvsoftware.ch.cam.ac.uk/in-
dex.php/s2D), SPOT-Disorder [19], SPOT-Disorder-Single
(denoted as SPOT-Disorder-S for brevity) [52], and SPINE-

D [16] (http://sparks-lab.org/). We also used the webserver of
NetSurfP-2.0 [20] (http://www.cbs.dtu.dk/services/NetSurfP-
2.0/). Additionally, different versions of ESpritz method [17]

downloaded were (http://protein.bio.unipd.it/download/),
which were based on either single-sequence (seq) or sequence
profile (prof) information. These ESpritz methods were trained

based on structural information obtained from DisProt data-
ues No. of disordered residues Percentage of disorder

59,743 9.92%

5765 9.12%

26,515 9.71%

21,173 39.62%

127,362 6.18%

18,811 37.94%

: Improved Protein Intrinsic Disorder Prediction by Ensembled Deep Learning,
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base, or PDB as determined by NMR or X-ray crystallogra-
phy, which were termed as ESpritz-D, ESpritz-N, and
ESpritz-X, respectively.

Application to prediction of molecularSPOT-Disorder2 were

obtained by Necci recognition motifs

In order to predict molecular recognition features (MoRFs),
we define two thresholds as upper and lower bounds to classify
the outputs of SPOT-Disorder2 as MoRFs. We also smooth

the outputs of SPOT-Disorder2 to prevent the prediction of
short MoRFs regions of <3 residues, since MoRFs typically
are longer based on our analysis. To do this, we apply a sliding

window of size wL to the predicted labels (yM) of SPOT-
Disorder2, and apply the following function

cym ið Þ ¼ 1 if
P

ym jð Þ > wL, and 0, if otherwise.

Results and discussion

Importance of ensembled learning and features for disorder

prediction

One novel aspect of SPOT-Disorder2 is the use of an ensemble

of IncReSeNet, LSTM, and FC network topologies, rather
than a single LSTM topology in the previous version (SPOT-
Disorder). Thus, it is necessary to examine if additional net-
work models lead to an improvement of SPOT-Disorder2 over

SPOT-Disorder. As shown in Table 3, there is a clear signifi-
cant improvement across all test datasets based on four differ-
ent measures (AUCROC, AUCPR, MCC, and Sw). For

example, MCC values are improved by 7%, 8%, 7%, and
8% for the four independent test sets of Test1185, SL250,
Mobi9414, and DisProt228, respectively. Improvement on

AUCPR is less consistent with 7%, 2%, 13%, and 8%
improvement for the four test sets, respectively, because
AUCPR is very sensitive to precision at low sensitivity.

To demonstrate the effectiveness of using an ensemble over

using a single model for intrinsic disorder prediction, we com-
pared the performance of the single component models to that
of the ensemble using the Mobi9414 dataset. As shown in

Table S1, the use of ensembled learning enables more accurate
final output when compared to the Model 2, the highest-
performing component model on this dataset. However,

Model 4, rather than Model 2, is the highest performing com-
ponent for Test1185 (MCC of 0.599 and 0.593 for Models 4
and 2, respectively, against 0.607 for SPOT-Disorder2). This

variation in model ranking for different test sets indicates the
Table 3 Performance of the SPOT-Disorder2 and SPOT-Disorder on

Dataset SPOT-Disorder2

AUCROC AUCPR MCC Sw

Validation 0.938 0.725 0.621 0.7

Test1185 0.914 0.698 0.607 0.6

SL250 0.901 0.889 0.679 0.6

Mobi9414 0.943 0.71 0.642 0.7

DisProt228 0.81 0.722 0.5 0.4

Note: For SPOT-Disorder2, both MCC and Sw are obtained using thresho

0.370 for MCC and 0.070 for Sw, respectively). AUCROC, area under the rec

recall curve; MCC, Matthew’s correlation coefficient; Sw, weighted score.

Please cite this article as: J. Hanson, K. K. Paliwal, T. Litfin et al., SPOT-Disorder2
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effectiveness of ensembling in increasing the robustness of
the culminating model.

To examine the contribution of each feature type to the

performance of SPOT-Disorder2, we analyzed the perfor-
mance of Model 0 for the Mobi9414 dataset. The features have
been separated into groups provided by the following

programs: PSI-BLAST (PSSM), HHblits (HHblits), and
SPOT-1D (SPOT-1D). As shown in Table S2, PSSM is the
most critical feature for maximizing both AUC metrics, while

SPOT-1D is the most critical for enhancing the single thresh-
old metrics MCC and Sw. HHblits, on the other hand, does
not seem to have a significant contribution to the performance
of the model, probably because the HHblits profile has already

been used in the input pipeline through SPOT-1D. The differ-
ence between AUCROC for the full Model 0 and HHblits-
omitted model is insignificant (P < 0.15). We also analyzed

the performance of Model 0 with the removal of the LSTM
layers. The performance between the modified and original
Model 0 is comparable for AUCROC, but is significantly worse

in terms of AUCPR and MCC, indicating that the combination
of LSTM and IncReSeNet layers adds significant performance
gains to the ensemble as a whole.

Improved disorder prediction over existing techniques

We further compared the prediction performance of SPOT-
Disorder2 with that of 26 other predictors using the newest

annotated proteins in DisProt (DisProt228) [44]. The results
of all methods except SPOT-Disorder, NetSurfP-2.0, and
SPOT-Disorder2 were obtained by Necci et al. [44]. JRONN

[67], IUPred optimized for short and long disorder [IUpred
(short)] and [IUpred (long)] [15], and PONDR-VSL [14] are
not discussed here because of lower performance except the

second-best shown below. However, predictions for two pro-
teins were missing from these data, so the comparisons in this
section are based on a 226-protein subset of DisProt228. As

shown in Table 4, SPOT-Disorder2 improves over the
second-best ESpritz-X (prof) by 2% in AUCROC, 4% in
AUCPR, 5% in MCC, and 5% in Sw. The precision–recall
curves of the top 10 predictors according to AUCPR are shown

in Figure 2. The curve for SPOT-Disorder2 is above all other
curves at all sensitivity values tested, except that its perfor-
mance is slightly worse than that of IUpred (long) at sensitivity

<0.15, or ESpritz-X (prof) at sensitivity between 0.4 and 0.6.
It should be noted that ESpritz-X (prof) has very poor preci-
sion at extremely low sensitivity (or near the highest possible

threshold that separate disordered residues from ordered resi-
dues), suggesting that false positives exist even for the highest
four independent test datasets

SPOT-Disorder

AUCROC AUCPR MCC Sw

39 – – – –

76 0.894 0.65 0.567 0.477

25 0.893 0.875 0.629 0.567

44 0.924 0.628 0.598 0.567

52 0.793 0.668 0.463 0.465

lds that maximize MCC and Sw on the Validation set, (thresholds are

eiver operating characteristic curve; AUCPR, area under the precision–

: Improved Protein Intrinsic Disorder Prediction by Ensembled Deep Learning,
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Table 4 Performance of various disorder prediction methods on a 226-chains subset of the DisProt228 dataset

Note: Performance of NetSurfP-2.0, SPOT-Disorder, SPOT-Disorder-S, and SPOT-Disorder2 was obtained from

this work, whereas performance of other methods was reported previously [44]. Two proteins were missing in the

DisProt228 dataset [44], so the results here are calculated from the remaining 226 chains. MCC and Sw values for

SPOT-Disorder2 were obtained using the disorder probability thresholds that maximize MCC and Sw on the

Validation dataset. AUCPR labeled with # is unreliable because the sensitivity (recall) does not cover the whole range

from 0 to 1 for the respective methods. seq and prof indicate single sequence-based and sequence profile-based,

respectively. See above-mentioned references [64–66, 68–70] for further information.
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confidence scores when using ESpritz-X (prof). The difference
between AUCROC from SPOT-Disorder2 and that from

ESpritz-X (prof) is statistically significant (P < 1 � 10�5,
bivariate statistical test).
Please cite this article as: J. Hanson, K. K. Paliwal, T. Litfin et al., SPOT-Disorder2
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DisProt provides experimental evidence for the labels of
about 50% of the residues in the dataset [44]. The remaining

‘undefined’ residues are labeled by DisProt as ordered by
default, which would likely introduce some mis-classification
: Improved Protein Intrinsic Disorder Prediction by Ensembled Deep Learning,
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Figure 2 Precision–recall curves of the top 10 predictors for the DisProt228 dataset

The precision–recall curves were plotted by varying the threshold for defining disordered residues. ESpritz-N (prof) and ESpritz-X (prof)

indicate profile-based ESpritz methods trained based on structural information obtained from PDB as determined by NMR or X-ray

crystallography, respectively. SPOT-Disorder-S stands for SPOT-Disorder-Single.

Table 5 Performance of various disorder prediction methods on the Mobi4730 dataset

Method AUCROC AUCPR MCC Sw

s2D 0.761 0.215 0.234 0.409

ESpritz-D (prof) 0.762 0.226 0.274 0.366

MobiDB-lite 0.811 0.434# 0.45 0.449

DISOPRED2 0.859 0.536 0.394 0.577

ESpritz-N (prof) 0.864 0.567 0.299 0.524

SPOT-Disorder-S 0.878 0.567 0.51 0.394

ESpritz-X (prof) 0.893 0.608 0.439 0.635

SPINE-D 0.904 0.644 0.469 0.661

DISOPRED3 0.912 0.641 0.601 0.531

SPOT-Disorder 0.913 0.638 0.595 0.562

AUCpreD 0.917 0.297# 0.603 0.611

NetSurfP-2.0 0.926 0.716 0.632 0.511

SPOT-Disorder2 0.933 0.723 0.648 0.715

Note: MCC and Sw values for SPOT-Disorder2 were obtained using the disorder probability thresholds that maximize MCC and Sw on the

Validation dataset. AUCPR labeled with # is unreliable because the sensitivity (recall) does not cover the whole range from 0 to 1 for the respective

methods.
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of disordered residues. The PR curve is particularly affected by
label error due to the increased susceptibility to false positive

predictions. We speculate that this label error may account
for the (0,0) point of the SPOT-Disorder2 PR curve as well
as the poor performance of several methods at low precision

(ESpritz-X, MetaDisorder-md2, etc.). For example, the first
33 residues for actin-related protein 8 (UniProt: Q9H981; Dis-
Prot: DP00873) are amongst the highest confidence disorder

prediction hits by SPOT-Disorder2. Despite being labeled as
ordered by DisProt, there is no experimental evidence to sup-
port this labeling as these residues are missing from the solved
X-ray structure [45,53]. However, we opt not to remove

ambiguous residues from the dataset as they do not change
Please cite this article as: J. Hanson, K. K. Paliwal, T. Litfin et al., SPOT-Disorder2
Genomics Proteomics Bioinformatics, https://doi.org/10.1016/j.gpb.2019.01.004
the performance ranking of the methods compared. Further-
more, SPOT-Disorder2 shows consistent improvement in

terms of other metrics that are more robust to potential label
noise, as well as in other datasets where undefined residues
have been excluded (e.g., MobiDB).

We further employed other independent test datasets to
compare our methods with other top performing methods
for DisProt228 that are available to us as either a local imple-

mentation or online server. The performance of other methods
for Mobi4730 after excluding training datasets is shown in
Table 5. ESpritz-X (prof), the second-best predictor for Dis-
Prot228, performs significantly worse than SPOT-Disorder2

for Mobi4730, with a 19% difference in AUCPR and 47% dif-
: Improved Protein Intrinsic Disorder Prediction by Ensembled Deep Learning,
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Figure 3 Precision–recall curves of 13 predictors for the Mobi4730 dataset

The methods compared are s2D, ESpritz-D (prof), MobiDB-lite, DISOPRED2, ESpritz-N (prof), ESpritz-X (prof), SPINE-D, SPOT-

Disorder-S, SPOT-Disorder, AUCpreD, DISOPRED3, NetSurfP-2.0, and SPOT-Disorder2.
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ference in MCC. The second best for Mobi4730 is NetSurfP-
2.0. SPOT-Disorder2 achieved a 1% increase in AUCPR and

a 2.5% increase in MCC over NetSurfP-2.0 for Mobil4730,
while the corresponding improvements are 17% in AUCPR

and 18% in MCC for DisProt228, respectively. PR curves

for all the methods tested are shown in Figure 3. SPOT-
Disorder2 has only a slight edge over NetSurfP-2.0, but both
are significantly better than other methods examined. It is

noted that AUCpreD is optimized for AUCROC, but performs
poorly in terms of AUCPR. Low AUCPR values result from the
inability of methods, such as AUCpreD and MobiDB-lite, to
resolve high-confidence true and false positives for this dataset.

For example, the PR curve of AUCpreD ends at roughly a sen-
sitivity of 0.4 and a precision of 0.83 because AUCpreD pre-
dicts a high number of false positives even when the

predicted disorder probability is 1. Calculating AUC without
complete coverage of sensitivity from 0 to 1 makes the AUCPR

value somewhat arbitrary. To stress the inapplicability of this

metric to AUCpreD (and others), we have included a note in
Tables 4, 5, S3, and S4 for the predictors whose sensitivity val-
ues do not reach close to 0 and therefore having significantly
disadvantaged AUCPR scores. Nevertheless, the AUCROC of

SPOT-Disorder2 is still significantly better than that of the
nearest competitor, NetSurfP-2.0 (P < 1 � 10�7, bivariate sta-
tistical test).

To further demonstrate the stability of the performance of
SPOT-Disorder2, we repeated the performance comparison of
the aforementioned methods for the SL250 dataset. As shown

in Table S3 and Figure 4, SPOT-Disorder2 continues to be the
best performer with SPOT-Disorder being the second best. The
PR curve of SPOT-Disorder2 is clearly above the curves of all

other predictors for this dataset, including SPOT-Disorder and
the two second-best methods for the two datasets tested previ-
ously, NetSurfP-2.0 and ESpritz-X (prof). The difference in
AUCROC is significant between SPOT-Disorder2 and the near-
Please cite this article as: J. Hanson, K. K. Paliwal, T. Litfin et al., SPOT-Disorder2
Genomics Proteomics Bioinformatics, https://doi.org/10.1016/j.gpb.2019.01.004
est predictor AUCpreD (P < 1 � 10�7, bivariate statistical
test), as well as between the SPOT-Disorder2 and SPOT-

Disorder (P < 1 � 10�3, bivariate statistical test) according
to a bivariate statistical test.

Application of SPOT-Disorder2 to long proteins

Analysis on the UniProtKB/Swiss-Prot database (as of Dec
2018) [54] has shown that more than 91% of proteins consist

of <700 AA residues, indicating that SPOT-Disorder2 is
applicable to the vast majority of available sequences. How-
ever, it is also important to see how SPOT-Disorder2 performs
for longer proteins representative of the remaining 9% that are

not covered. Note that the size of 700 AA residues is not a
hard limit in the software, but the size which was found to
maximize the memory usage of GPU on our workstation.

The size limitation is mainly due to the use of SPOT-1D in
the input of SPOT-Disorder2 input, which relies on the contact
map prediction tool SPOT-Contact [25]. The computational

memory necessary for using SPOT-1D with extremely long
sequences becomes far too high for a typical user’s worksta-
tion. To test the utility of SPOT-Disorder2 for long proteins,

we replaced SPOT-1D by the secondary structure prediction
tool SPIDER3 [55]. We generated the disorder profiles of
SPOT-Disorder2 for 31 proteins that were initially omitted
from the DisProt complement set from Necci et al. [44] in Dis-

Prot228, using the outputs of the secondary structure predic-
tion tool SPIDER3 [55] in place of SPOT-1D (one protein
consisting of >18,000 AA residues is still omitted). As SPI-

DER3 does not predict for 8-state secondary structure, we
merely assign the 3-state probability predictions of SPIDER3
to the C, H, and E states for the 8-state predictions (and 0

for the S, T, I, G, and B states).
We compared the modified SPOT-Disorder2 to other meth-

ods for 31 large proteins (consisting of >700 AA residues) that
: Improved Protein Intrinsic Disorder Prediction by Ensembled Deep Learning,
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Figure 4 Precision–recall curves of 13 predictors for the SL250 dataset.
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were initially omitted from the DisProt complement set from

Necci et al. [44] in DisProt228. Table S4 shows that s2D is
the top predictor for long proteins although it was the worst
predictor for Mobi4730 and SL250, indicating that the disor-

dered residues in the large-protein dataset tend to be in a coil
state. However, the MCC of s2D is poor. SPOT-Disorder2
drops in the rankings, as is expected due to the learned distri-
bution of the secondary structure inputs changing from SPOT-

1D to SPIDER3, as well as losing the information from the 8-
state secondary structure. The higher performance of SPOT-
Disorder-S (highest MCC of 0.457) for this set of 31 proteins

with >700 AA residues might be explained by the fact that
profile-based models are not well-trained for large proteins
consisting of >700 AA residues. A single-sequence-based

method, on the other hand, is less dependent on sequence
length. This is also echoed in the performance of single
sequence-based ESpritz-D (seq) against the sequence profile-

based ESpritz-D (prof) method (MCC of 0.382 vs. 0.228,
respectively). Nevertheless, SPOT-Disorder2 is still one of
the higher-ranking predictors, indicating that it is useful for
long protein chains as well.

SPOT-Disorder2 is less accurate for the proteins with few

sequence homologies

Robust performance of SPOT-Disorder2 across different data-
sets can be attributed to the evolutionary information derived
from multiple sequence alignments in PSI-BLAST and

HHBlits. To examine the contribution of evolutionary infor-
mation, we evaluated the performance of disorder prediction
according to AUCPR as a function of Neff. The larger

Mobi9414 set is used, so that we have sufficient statistics for
different values of Neff. As Figure 5 shows, SPOT-Disorder2
performs more accurately for proteins with Neff > 5, below
which there is a sharp decline in performance. However, there

is a drop for proteins with Neff > 6. Significant homology
between sequences seems to introduce noise into our predic-
Please cite this article as: J. Hanson, K. K. Paliwal, T. Litfin et al., SPOT-Disorder2
Genomics Proteomics Bioinformatics, https://doi.org/10.1016/j.gpb.2019.01.004
tion of disordered regions, indicating that these regions might

not be conserved like structured regions. Another possible
cause is the sensitivity of disorder prediction to false positives
in the homolog search. More studies are needed to isolate the

cause of this pattern. Nevertheless, SPOT-Disorder2 makes
significant improvement over SPOT-Disorder at all Neff val-
ues even for sequences with little evolution information
(Neff � 1). This suggests that improvement is possible even

at the single sequence level when several advanced machine
learning techniques are integrated for consensus prediction.

Application of SPOT-Disorder2 to prediction of binding regions

in disordered regions

Some intrinsically disordered regions can fold when interacting

with other molecules including proteins, while others are struc-
tureless under any circumstances. Separating these foldable
and non-foldable disordered regions is important for identifi-

cation of functional regions, or MoRFs. Previously, we have
proposed that foldable disordered regions are in a semi-
disordered state with predicted disordered probabilities rang-
ing from fully disordered [p(D) = 1] to fully structured [(p

(D) = 0] [56]. We tested this hypothesis using the output pre-
dictions from SPOT-Disorder2.

We have downloaded the Test and Test2012 datasets from

the MoRFpred server [57] (http://biomine.cs.vcu.edu/servers/
MoRFpred/) for validation and independent testing, respec-
tively. We removed redundant sequences between the Test2012

and Test datasets at 25% sequence similarity using BLAS-
TClust and the proteins with >700 AA residues. As a result,
220 and 22 chains from Test2012 and Test datasets were

retained for further analysis, respectively. The smoothing win-
dow size, along with the upper and lower thresholds, are opti-
mized on the Test dataset. For comparison with other models,
besides the web servers of MoRFpred, fMoRFpred, and Dis-

oRDPbind [58,59] (http://biomine.cs.vcu.edu/#webservers),
we also used ANCHOR2 [60] (https://iupred2a.elte.hu/),
: Improved Protein Intrinsic Disorder Prediction by Ensembled Deep Learning,
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Figure 5 AUCPR for proteins with different Neff values generated from HHblits

AUCPR, area under precision-recall curve; Neff, number of effective homologous sequences of a given protein.
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MoRFchibi [61] (https://gsponerlab.msl.ubc.ca/soft-
ware/morf_chibi/), and the local version of MoRFPred-plus

[62] (https://github.com/roneshsharma/MoRFpred-plus). In
addition, we compared our results to the prediction by DIS-
OPRED3 [49].

The performance of all predictors on the subset (220 chains)
of the Test2012 dataset is shown in Table S5. With only three
parameters trained for the Test dataset, SPOT-Disorder2 out-

performs the second best MoRFPred-plus for MoRF predic-
tion of the Test2012 dataset in terms of MCC (0.155 by
SPOT-Disorder2 compared to 0.143 by MoRFPred-plus).
Unlike SPOT-Disorder2, all other methods were specifically

trained for MoRF regions. However, the performance of all
methods is low, with MCC< 0.2. More data might be needed
to further improve these methods for predicting binding resi-

dues in disordered regions.

Conclusion

In this paper, we have introduced a new method for predicting
protein intrinsic disorder by taking advantage of recent pro-
gress in image recognition. With regard to the neural network

architecture, we implemented two recent developments for an
extension on residual convolutional neural networks, i.e., mul-
tiple inception-style pathways [30] and signal Squeeze-and-

Excitation [29]. We have also updated our feature set from
our previous work [19] to include the latest state-of-the-art pre-
dictions for protein secondary structure from SPOT-1D [27].

Finally, the use of an ensemble of these methods has been
again demonstrated effective in increasing accuracy through
the removal of spurious false predictions. These enhancements
over our previous and other disorder predictors enables SPOT-

Disorder2 to achieve more robust and higher performance
across different datasets with varied disorder to order ratios.
Please cite this article as: J. Hanson, K. K. Paliwal, T. Litfin et al., SPOT-Disorder2
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Consequently, SPOT-Disorder2 achieves the best performance
over all metrics analyzed among the predictors tested.

MMSeqs2 [63] is considered in this study due to its speedup
in generating profiles over PSI-BLAST. However, MMSeqs2
produces a less accurate prediction if its profiles are directly

used to replace the profiles from PSI-BLAST, partially because
SPOT-Disorder2 is trained on PSI-BLAST profiles. We hope
to train a model for disorder prediction based on MMSeqs2

profiles in a future work.

Availability

SPOT-Disorder2 is available at https://sparks-lab.org/server/
spot-disorder2/ as a server and downloadable package for
local implementation.
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