
DVsc: An Automated Framework for Efficiently Detecting 
Viral Infection from Single-cell Transcriptomics Data
Fei Leng 1, Song Mei 1, Xiaolin Zhou 2, Xuanshi Liu 1, Yefeng Yuan 1, Wenjian Xu 1,  
Chongyi Hao1, Ruolan Guo 1, Chanjuan Hao 1,�, Wei Li 1,�, Peng Zhang 1,�

1Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in 
Children; Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 
100045, China 
2Institute of Biomedical Engineering, University of Toronto, Toronto, M5S 3G9, Canada
�Corresponding authors: peng.zhang@mail.ccmu.edu.cn (Zhang P), liwei@bch.com.cn (Li W), haochanjuan@ccmu.edu.cn (Hao C).
Handling Editor: Wei Lin

Abstract
Single-cell RNA sequencing (scRNA-seq) has emerged as a valuable tool for studying cellular heterogeneity in various fields, particularly in viro
logical research. By studying the viral and cellular transcriptomes, the dynamics of viral infection can be investigated at a single-cell resolution. 
However, limited studies have been conducted to investigate whether RNA transcripts from clinical samples contain substantial amounts of vi
ral RNAs, and a specific computational framework for efficiently detecting viral reads based on scRNA-seq data has not been developed. 
Hence, we introduce DVsc, an open-source framework for precise quantitative analysis of viral infection from single-cell transcriptomics data. 
When applied to approximately 200 diverse clinical samples that were infected by more than 10 different viruses, DVsc demonstrated high ac
curacy in systematically detecting viral infection across a wide array of cell types. This innovative bioinformatics pipeline could be crucial for 
addressing the potential effects of surreptitiously invading viruses on certain illnesses, as well as for designing novel medicines to target viruses 
in specific host cell subsets and evaluating the efficacy of treatment. DVsc supports the FASTQ format as an input and is compatible with multi
ple single-cell sequencing platforms. Moreover, it could also be applied to sequences from bulk RNA sequencing data. DVsc is available at 
http://62.234.32.33:5000/DVsc.
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Introduction
Understanding the interactions between a virus and its host 
cells is crucial for the development of effective treatment 
approaches for infectious diseases. Numerous investigations 
have been conducted to assess the host immune response to 
viral infection by bulk tissue or cell population analysis and 
further experimental examination [1,2]. The impact of the vi
ral life cycle on the host immune system has been systemati
cally explored from both the virus’s perspective, through the 
analysis of viral sequences, and the host cell’s perspective, 
through the analysis of transcription profiles [3,4]. 
Nevertheless, it has been challenging to use high-throughput 
sequencing strategies to characterize in vivo the full map of 
host−virus interactions at the viral and cellular levels simulta
neously. The effectiveness of viral replication is largely depen
dent on the host, as viruses adapt to take advantage of the 
host cell machinery. Therefore, cell heterogeneity is directly 
connected to the viral replication cycle and infection out
come, and the study of cell heterogeneity during the infection 
process is of significant interest. Achieving widespread infec
tion in a specific cell type is relatively rare, and this unequal 
susceptibility to infection can be explained by two non- 
mutually exclusive hypotheses [5,6]. First, viral heterogene
ity, which occurs primarily through cross-species transmis
sion, increases the likelihood of host jumping, resulting in 
increased diversity of viral populations. Second, various char
acteristics of host heterogeneity, such as host receptor avail
ability, post-translational modifications (PTMs), and 

antiviral defense diversity, result in distinct cellular settings 
that are favorable for virus propagation success in each cell.

Breakthroughs in single-cell genomic technology have pre
sented a chance to address this challenge [7,8], as they repre
sent a novel prospect for identifying specific cellular and 
molecular features that promote or restrict virus replication. 
Consequently, new targets for inhibiting viral replication 
could be identified, thereby contributing to a better under
standing of host−virus interactions. Single-cell analyses allow 
simultaneous mapping of both the host and viral transcrip
tomes in the same single cell and identification of cell subsets 
with certain phenotypes, which are vital for understanding of 
host−virus interactions and have the potential to alter the ex
perimental approach used for viral infection research [9–11]. 
In particular, single-cell sequencing technologies can capture 
viral diversity to identify sequence variation in viral quasispe
cies, examine cellular heterogeneity, and explore the immune 
response to viral infection in infected cells, thereby allowing a 
systematic investigation of the impact of cell-to-cell diversity 
on the outcome of viral infection. Moreover, the ability to ex
amine the same single cell before and after viral infection is 
ideal, because the cellular state and gene expression change in 
response to infection [7,12,13].

Thus, the purpose of this study was to develop a frame
work for exploring viral diversity and cell variability in re
sponse to viral replication by using single-cell RNA 
sequencing (scRNA-seq) and to make this open-source pipe
line available to the general public for use. With this pipeline, 
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we were able to simultaneously detect infected cells, uncover 
the composition of multiple viruses within the cell, and ob
tain the endogenous expression profiles of host genes within 
the cell. We believe that the application of this pipeline will 
profoundly impact research on infection and immunity, par
ticularly based on single-cell transcriptomics data. We have 
developed both an online version and a local version to cater 
to different user needs. The online version is suitable for users 
with smaller datasets and for testing purposes. Users can ana
lyze or test their data using the online version. Users with 
larger datasets can download the local version and run it on 
their local servers. The software and user instructions for 
both the online and local versions can be found at http://62. 
234.32.33:5000/DVsc.

Method
Reference database curation
The human reference genome version GRCh38 (hg38) was 
downloaded from the Ensembl database (http://asia.ensembl. 
org/index.html). The human mitochondrial genome was 
downloaded from the MITOMAP database (https://www. 
mitomap.org/MITOMAP). To create a broader annotation 
system for the genomes of the whole universe of viruses, a vi
ral reference database was compiled and annotated from sev
eral sources. Viral genome sequences were extracted from 
viruSITE (release 2021.02) and the NCBI RefSeq database 
(release 2021.08). The annotations obtained from the RefSeq 
entries were modified using the data obtained from viruSITE, 
ViralZone, NCBI Taxonomy, and PubMed. All the data were 
downloaded, preprocessed, and combined into the database 
using in-house developed scripts. In total, there were 14,698 
viral segments from 11,556 different viruses. The HISAT2 
[14] index was subsequently built for the viral reference data
base in addition to the host reference database.

Data access, preprocessing, and demultiplexing of 
the scRNA-seq dataset
Sequence Read Archive (SRA) files were downloaded from 
the Gene Expression Omnibus (GEO), and FASTQ files were 
split and extracted using the FASTQ-dump function (SRA- 
toolkit). Then, cellular barcode identification and unique mo
lecular identifier (UMI) demultiplexing were performed. For 
droplet-based techniques such as 10X Genomics Chromium 
and Drop-seq, this procedure was performed by using UMI- 
tools (v1.1.2) [15], which identify and extract cell barcodes 
from the data. Specifically, first, cell barcodes were extracted 
and a putative whitelist was generated using the UMI-tools 
whitelist command. Note that the parameters of the “—bc- 
pattern” varied depending on the platform. For instance, 
the “—bc-pattern” option was set to “CCCCCCCCCC 
CCCCCCNNNNNNNNNN” for 10X 30 v2 data and 10X 
50 data, while it was set to “CCCCCCCCCCCCCCCCNNN 
NNNNNNNNN “ for 10X 30 v3 data. For Drop-seq data, 
the same command was used, except that the “—bc-pattern” 
option was set to “CCCCCCCCCCCCNNNNNNNN". 
Collapsing of the UMIs was performed using the umi_tools 
extract command, and the parameters of the “—bc-pattern” 
were also set depending on the platform, as described above. 
For techniques that are not based on droplet-based 
approaches such as Seq-Well, we developed an in-house 
Python script for cellular barcode identification and UMI 
demultiplexing.

The raw FASTQ data were quality trimmed using fastp 
(v0.23.1) [16] based on the read quality, complexity, and 
length. Low-quality reads were disregarded if their percent
age of qualified bases was less than 40%, their complexity was 
less than 30, or their number of N bases was more than 5. 
Moreover, the polyA tail was trimmed for the sequence 
data, after which shorter reads with length less than 
20 were removed.

The DVsc framework consists of two steps for sequencing 
read mapping. The cleaned reads were first aligned to the 
host reference genome database to subtract the host sequen
ces using HISAT2 with relatively loose alignment parameters. 
The retained sequences were subsequently mapped to the vi
ral reference database with relatively stringent aligning 
parameters by using HISAT2 (or other options of sequence 
aligners), and the viral reads were identified using SAMtools 
(v1.10) [17].

Analysis process of the bulk RNA 
sequencing dataset
The datasets used were downloaded from the GEO database 
(https://www.ncbi.nlm.nih.gov/geo/), and the raw sequencing 
read files were split and extracted using FASTQ-dump. The 
FASTQ data were subsequently quality trimmed and mapped 
as described for the scRNA-seq dataset.

Quality control filtering of the detected viral reads
As a part of the virus identification process in DVsc, virus 
segments with a sufficient number of mapped reads are fil
tered according to in-house quality control (QC) strategies, 
which are based on the sequencing mapping number, se
quencing mapping quality, continuously mapped regions, 
and genome coverage. The first virus segment with 3 or more 
mapped reads was detected using SAMtools, and then, we fil
tered the virus using three features: the genome coverage, the 
number of qualified reads, and the length of continuously 
mapped regions. We analyzed these three features of expected 
and unexpected viruses in samples containing the given vi
ruses, defined as positive viruses and negative viruses, respec
tively. To determine the most appropriate threshold for each 
feature, we calculated the value of each feature at different 
percentiles for all the negative viruses. This showed that at 
first, the growth of the feature was very slow as the percentile 
increased. When the percentile reached an inflection point, or 
‘knee’, the feature suddenly increased sharply (Figure S1A). 
Hence, the values of the three features at this point were set 
as the threshold. Specifically, viruses with genome coverage 
less than 0.011554 or with qualified reads fewer than 
10 were excluded from the analysis. Moreover, outliers were 
removed according to the sequence length. If the sequence 
length is not exceeding 75 bp, the length of the continuously 
mapped regions should not be less than 50 bp, and if the se
quence length is exceeding 75 bp, the length of continuously 
mapped regions should not be less than 165.925 bp. As a re
sult of the aforementioned filtering, false positives in the viral 
read detection were eliminated. For samples with more than 
one virus detected, the second filter was applied, which dif
fered depending on whether the sample was analyzed by 
single-cell RNA-seq or by bulk RNA sequencing (RNA-seq). 
For single-cell RNA-seq, if the number of mapped reads was 
less than 50, the virus was excluded. For bulk RNA-seq, we 
analyzed two features: the number of each virus and the 
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percentage of each virus in a sample, which was calculated 
as follows: 

Percent of virus ¼ Ni=Nt (1) 

where Ni is the number of the given virus and Nt is the total 
number of detected viruses. These two features were calcu
lated for infected samples and control samples, defined as 
positive viruses and negative viruses, respectively. Boxplots 
showed that for both features, the number and percentage 
of positive viruses were much greater than those of negative 
viruses (Figure S1B). Therefore, we selected an integer value 
close to the minimum number of positive viruses as the 
threshold, which means that the virus is deleted if its Ni is 
less than 2981 (e8) and its percentage is less than 0.6 (60%).

A list of viruses was generated from the samples that 
passed the filtrations, and this list can then be subjected to 
further investigation. For the scRNA-seq dataset, the filtered 
viral reads were demultiplexed based on the UMIs and 
unique cell barcodes by using an in-house Python script and 
assigned to unique viral transcripts and infected cells. To cor
rect potential bias from different cells, we normalized the 
number of virus transcripts (Nv) in each cell based on the to
tal number of transcripts (NT) in each cell, which was calcu
lated as follows: 

Nnor ¼ Nv×1000000=NT (2) 

Transcriptome assembly
The majority of complete virus transcriptomes are not avail
able. Despite the constant discoveries of novel transcripts, the 
few published transcripts remain poorly annotated. 
Therefore, for all the viruses in the final list, the complete set 
of transcripts was reconstructed using de novo transcriptome 
assembly via StringTie [18].

Performance evaluation
To evaluate the performance of our method compared with 
that of other pipelines that can also detect virus-transcribed 
mRNAs, we conducted a benchmark experiment using Viral- 
Track [13], Venus [19], and our proposed DVsc. Based on 
the publicly available scRNA-seq and bulk RNA-seq datasets 
that we collected, we divided all the samples into positive 
sample sets (infected samples) and negative sample sets (unin
fected or mock samples). Since Venus can be used for only 
scRNA-seq datasets generated from the 10X Genomics plat
form, we included only single-cell sequencing data derived 
from the 10X Genomics platform. For scRNA-seq, we 
obtained a total of 55 samples, with 38 positive samples and 
17 negative samples. For bulk RNA-seq, we obtained a total 
of 71 samples, with 39 positive samples and 32 negative sam
ples. Using the DVsc, Viral-Track, and Venus methods, we 
calculated the positive and negative numbers based on the 
predicted results of each method. The predicted results of 
each method were then compared with the true labels of the 
samples. By comparing the predicted results with the ground 
truth, we calculated the accuracy of each method on the posi
tive, negative, and overall samples.

Reference file downloads
The Human RefSeq hg38 reference file was downloaded 
from http://ftp.ensembl.org/pub/release-105/fasta/homo_sapi 

ens/dna/Homo_sapiens.GRCh38.dna.toplevel.fa.gz. The mi
tochondrial genome of human was downloaded from https:// 
www.ncbi.nlm.nih.gov/nuccore/251831106. The viruSITE 
reference sequences were downloaded from http://www.viru 
site.org/index.php?nav=download. The virus RefSeq data 
from NCBI were downloaded from https://www.ncbi.nlm. 
nih.gov/genomes/GenomesGroup.cgi?taxid=10239.

Implementation of the web server
To provide an online data analysis platform, a web server 
was constructed using Flask, a Python web framework. The 
web server acts as the backend for the website, allowing users 
to interact with the data analysis functionality. Additionally, 
the website provides the option to download and access the 
local version, which includes the source code and the needed 
databases. To facilitate the use of the local version, we imple
mented automatic installation of the needed software depen
dencies and streamlined the analysis process to be executed in 
a single script.

Availability of data or materials
All the datasets obtained and analyzed in this study are avail
able from public databases (Table S1).

Results
Pipeline design of DVsc
The workflow of DVsc is shown in Figure 1. DVsc 
accepts single-cell RNA-seq files in FASTQ format. For the 
scRNA-seq reads, demultiplexing was needed before 
mapping. The raw FASTQ data were subsequently quality 
trimmed based on the quality, length, and complexity of the 
sequencing reads (Table 1). The read mapping module in 
the DVsc framework consists of two steps. In the first step, 
the clean sequencing reads are mapped to the host reference 
genome database, which includes the combined human refer
ence genome and mitochondrial genome, to remove the host 
RNA-seq reads. In the second step, the filtered sequencing 
reads are mapped to the high-quality curated viral genomes. 
Since viral reads are highly repetitive and can produce signifi
cant sequencing artifacts [13], the viruses identified in DVsc 
with a sufficient number of mapped reads were then filtered 
based on in-house quality QC strategies: the sequencing 
mapping number, sequencing mapping quality, continuously 
mapped regions, and genome coverage. After detecting the 
first virus segment with at least 5 mapped reads, false posi
tives in the viral read detection were eliminated using in- 
house scripts (see details in Method). For samples with more 
than one virus detected, a second run of the filtering module 
was performed. Ultimately, the filtered viral reads were 
demultiplexed based on the UMIs and unique cell barcodes 
and were assigned to the corresponding viral transcripts and 
infected cells.

Characterization of viral infections in single-cell 
transcriptomics data
We further examined the applicability of the DVsc workflow 
based on real-world datasets for detecting viral reads in hu
man clinical samples infected with various types of viruses 
(Table 1). Severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), which is the causative agent of coronavirus 
disease 2019 (COVID-19), has infected more than 2.3 million 
people and caused worldwide social and economic disruption 
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[20]. We collected the available scRNA-seq clinical samples 
with raw sequencing data from patients infected by SARS- 
CoV-2 and then performed DVsc analysis to evaluate the 
practicability of our pipeline and gain insights into the infec
tion course of SARS-CoV-2. We collected and analyzed the 

scRNA-seq datasets of bronchoalveolar lavage fluid (BALF) 
samples, colon and ileum organoids, and human bronchial 
epithelial cell lines infected with SARS-CoV-2. The unified 
expression profiles of all the cells profiled in the scRNA-seq 
datasets were compiled, and the cell populations were 
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Figure 1 Illustration of the study workflow 
Flowchart of the data collection, method implementation, and validation steps in this work. RNA-seq, RNA sequencing; scRNA-seq, single-cell RNA 
sequencing; UMI, unique molecular identifier; QC, quality control.

Table 1 Overview of the datasets used in this study

Dataset group Dataset name Source Virus Platform No. of infected samples Tissue/cell line Pubmed ID

scRNA-seq for 
SARS-CoV-2

COVID19_1 Colon organoids SARS-CoV-2 10X 30 v3 2 Tissue 33904651
COVID19_2 Ileum organoids SARS-CoV-2 10X 30 v3 2 Tissue 33904651
COVID19_3 BALF SARS-CoV-2 10X 50 9 Tissue 32398875
COVID19_4 Human bronchial 

epithelial cells
SARS-CoV-2 10X 30 v3 3 Cell line 33730024

scRNA-seq for 
other viruses

H1N1 A549 cells H1N1 10X 30 v2 2 Cell line 32614923
H3N2 A549 cells H3N2 10X 30 v3 2 Cell line 32614923
HAstV1 Ileum organoids HAstV1 10X 30 v2 and v3 8 Tissue 34309190
EBV B cells EBV 10X 30 v2 3 Cell line 33501914
HIV CD4þ T cells HIV 10X Genomics 2 Cell line 30282021
HPV HNSCC pri

mary tumors
HPV 10X 30 v2 8 Tissue 31924475

scRNA-seq for 
other platforms

DropSeq NHDF primary 
human fibroblasts

HSV Drop-seq 14 Cell line 31653857

SeqWell1 Saline nasal 
wash cells

SARS-CoV-2 Seq-Well 32 Tissue –

SeqWell2 Saline nasal 
wash cells

H1N1 Seq-Well 56 Tissue –

Bulk RNA-seq Bulkcell1 A549 cells SARS-CoV-2 – 6 Cell line 32416070
Bulkcell2 A549-ACE2 cells SARS-CoV-2 – 9 Cell line 32416070
Bulkcell3 NHBE cells SARS-CoV-2 – 3 Cell line 32416070
Bulkcell4 Calu-3 cells SARS-CoV-2 – 3 Cell line 32416070
Bulkcell5 A549 cells H1N1 – 2 Cell line 32416070
Bulkcell6 NHBE cells H1N1 – 4 Cell line 32416070
Bulkcell7 NHBE cells H1N1 lacks NS1 – 4 Cell line 32416070
Bulkcell8 A549 cells HPIV3 – 3 Cell line 32416070
Bulkcell9 A549 cells RSV – 5 Cell line 32416070
Bulk tissue BALF SARS-CoV-2 – 4 Tissue 32228226

Note: scRNA-seq, single-cell RNA sequencing; COVID, coronavirus disease; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; BALF, 
bronchoalveolar lavage fluid; HAstV1, human astrovirus 1; EBV, Epstein–Barr virus; HIV, human immunodeficiency virus; HPV, human papillomavirus; 
HNSCC, head and neck squamous cell carcinoma; HSV, herpes simplex virus; HPIV3, parainfluenza virus type 3; RSV, respiratory syncytial virus.
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subsequently identified and visualized using the uniform 
manifold approximation and projection (UMAP) algorithm 
provided in the “scRNA-seq preprocessing” module. To 
identify infected and bystander populations, the filtered viral 
data were then overlaid on the host transcriptome. As shown 
in Figure 2, DVsc successfully detected valid sequencing reads 
of SARS-CoV-2 from patients with severe COVID-19 
(Figure 2A), from colon and ileum organoid samples 
(Figure 2B), and from all infected human bronchial epithelial 
cell lines (Figure 2C). In many cases of infectious disorders, 
the infecting virus is accompanied by coinfection with un
known viruses. By analyzing the data from one of the patients 
with severe COVID-19 using DVsc, another virus, human 
metapneumovirus (hMPV), was identified. It was detected in 
more than one million valid viral reads in the sample 
(Figure S2). Therefore, these results strongly indicate that 
DVsc is an optimal method for systematically profiling the 
source of infection or coinfection in human clinical samples.

Next, we benchmarked DVsc on a greater number of pub
lic datasets using the 10X Genomics platform to evaluate the 
sensitivity of our pipeline over a broader range. These data
sets comprise a large number of publicly accessible studies of 
various sample sources with different virus infections, which 
cover a wide range of cell types (including B, T, and tumor 
cells), as well as a broad range of viruses, namely, human 
astrovirus 1 (HAstV1; Figure 3A), human papillomavirus 
(HPV; Figure 3B), influenza A viruses (IAVs; including H1N1 
and H3N2; Figure 4A and B), Epstein–Barr virus (EBV;  
Figure 4C), and human immunodeficiency virus (HIV;  
Figure 4D). In summary, DVsc detected all infected samples 
via accurate host−virus infection mapping. These results sug
gest that our analysis framework, DVsc, is a highly sensitive 
and reliable tool for identifying viral reads and characterizing 
virus-infected cells based on scRNA-seq data.

Detection of viral infection across different scRNA- 
seq platforms
To construct high-throughput sequencing libraries, scRNA- 
seq approaches require the isolation and lysis of single cells, 
the conversion of RNA into cDNA, and the amplification of 
cDNA. Because diverse scRNA-seq strategies have inherent 
strengths and weaknesses, distinct protocols based on differ
ent scRNA-seq platforms could result in substantial technical 
variation. Thus, we employed our DVsc pipeline for two 
other prominent scRNA-seq methods, Drop-seq and Seq- 
Well. Figure 5A shows the results of the scRNA-seq experi
ment performed on human primary fibroblasts infected with 
herpes simplex virus 1 (HSV-1) using the Drop-seq platform 
at different time points after infection. By analyzing the raw 
sequencing data, we identified infected cells with a gradual 
increase in the number of viral reads (Figure 5A). Similarly, 
another scRNA-seq dataset of nasal wash cells that was col
lected from adults infected with SARS-CoV-2 or IAV (H1N1) 
and from healthy donors was analyzed using the Seq-Well 
platform, and our DVsc pipeline also performed successfully 
in detecting the viral reads and the infected cell type 
(Figure 5B and C). Together, these extensive validations dem
onstrate that DVsc is a sensitive and accurate framework for 
detecting and identifying viral infection across diverse 
scRNA-seq platforms, across different tissues, and across 
varying viral types and loads.

Application of DVsc to bulk RNA-seq analyses
To further assess the applicability of DVsc to bulk RNA-seq 
analyses, we applied our DVsc pipeline to various RNA-seq 
datasets of multiple tissue samples and cell lines infected by 
different types of viruses. RNA isolated from the BALF and 
peripheral blood mononuclear cell (PBMC) specimens of 
COVID-19 patients and healthy donors was investigated via 
transcriptome sequencing. The DVsc pipeline was applied to 
the collected dataset to analyze the raw sequencing files. 
Sufficient numbers of SARS-CoV-2 viral reads were detected 
by DVsc in the BALF samples of COVID-19 patients, but no 
valid viral reads were detected in the PBMC samples of 
COVID-19 patients or in any healthy donor samples (Figure 
6A). Similarly, as shown in Figure 6B–F, bulk RNA-seq data 
of independent biological replicates of the primary normal 
human bronchial lung epithelial cells (NHBE), transformed 
lung alveolar (A549) cells transduced with/without a vector 
expressing human angiotensin-converting enzyme 2 (ACE2), 
and transformed lung-derived Calu-3 (Calu3) cells that were 
mock-treated or infected with SARS-CoV-2, IAV [A/Puerto 
Rico/8/1934 (H1N1)], IAV that lacked the NS1 protein 
(IAVdNS1), RSV (A2 strain), or human parainfluenza virus 
type 3 (HPIV3) were analyzed by DVsc. The results showed 
that the DVsc pipeline could detect all the infected samples 
with precise viral read counts. In summary, DVsc is an effec
tive framework for the quantitative analysis of viral infection 
from both scRNA-seq and bulk RNA-seq data. Importantly, 
DVsc can be applied to human clinical samples to obtain 
valuable insights into the biology of host−virus interactions.

Performance evaluation based on a 
benchmarking study
A benchmarking study was conducted to evaluate the viral 
detection performance of three recently released methods, 
namely, Venus, Viral-Track, and our proposed pipeline 
DVsc. The benchmarking was performed on both scRNA-seq 
and bulk RNA-seq datasets, and we assessed the accuracy of 
each method for detecting virus-transcribed mRNAs. Table 
S2 provides the performance results of the three methods. For 
scRNA-seq data, DVsc achieved an accuracy of 79% for pos
itive samples and 82% for negative samples, while Viral- 
Track achieved an accuracy of 71% and 82%, respectively, 
and Venus achieved an accuracy of 84% and 29%, respec
tively. Overall, on the combined scRNA-seq dataset, DVsc 
had an accuracy of 80%, Viral-Track had an accuracy of 
75%, and Venus had an accuracy of 67%. For bulk RNA-seq 
data, all three methods achieved 100% accuracy on positive 
samples; however, there was a significant difference between 
the accuracy for negative samples: DVsc achieved 100% accu
racy, Viral-Track achieved 53% accuracy, and Venus achieved 
19% accuracy on negative samples. These results indicate that 
DVsc consistently performs well on both scRNA-seq and bulk 
RNA-seq datasets. However, while Venus showed promising 
accuracy on positive samples, especially in the scRNA-seq 
dataset, it struggled to perform well on negative samples.

Discussion
Viruses are obligate intracellular pathogens that rely on the 
host cell machinery to survive; viruses attach to and enter tar
get host cells through interactions between viral attachment 
proteins and receptors on the host cell surface [21,22]. For 
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Figure 2 Discovery of SARS-CoV-2 infection in human samples and cell lines 
BALF (A), colon organoid (B), ileum organoid (C), and human bronchial epithelial cell line (D) samples infected with SARS-CoV-2. Left: 2D visualization of 
cells annotated by distinct clusters of cell phenotypes from SARS-CoV-2-infected clinical samples and cell lines. Middle: the density of viral reads across 
all the cells projected on the 2D map from corresponding samples. Right: a bar plot showing the abundance of viral infection across all corresponding 
samples. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; BALF, bronchoalveolar lavage fluid; mDC, myeloid dendritic cell; pDC, 
plasmacytoid dendritic cell; NK, natural killer cell; TA, transient amplifying cell; BC, basal cell; D, day.
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Figure 3 Discovery of virus infection in human samples based on scRNA-seq transcriptomic data 
A. Analysis of ileum organoids infected with HAstV1. Left: density plots of the detected viral reads across cell numbers from mock-infected, 4-h infected, 
and 16-h infected samples. Middle: enrichment of viral reads projected on the 2D map from the corresponding sample. Right: 2D visualization of cells 
annotated by distinct clusters of cell phenotypes. B. Analysis of HNSCC primary tumors infected by HPV. Left: density plots of the detected viral reads 
across cell numbers from uninfected and infected samples. Middle: enrichment of viral reads projected on the 2D map from the corresponding sample. 
Right: 2D visualization of cells annotated by distinct clusters of cell phenotypes. HAstV1, human astrovirus 1; HNSCC, head and neck squamous cell 
carcinoma; HPV, human papillomavirus.
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Figure 4 Discovery of virus infection in cell line samples based on scRNA-seq transcriptomic data 

8                                                                                                                                          Genomics, Proteomics & Bioinformatics, 2024, Vol. 22, No. 2 
D

ow
nloaded from

 https://academ
ic.oup.com

/gpb/article/22/2/qzad007/7479691 by G
enom

ic & Bioinfom
atic C

enter,C
AS user on 10 Septem

ber 2024



example, SARS-CoV-2 utilizes its spike glycoprotein to rec
ognize and bind to host ACE2 to enter host cells [23,24]. 
SARS-CoV-2 infects multiple tissues that express ACE2, such 
as the lung, oral cavity, vasculature, heart, kidney, gastroin
testinal tract, pancreas, and brain [25]. Once internalization 

is complete, viruses can utilize the host and its factors to rep
licate their genetic material, assemble new viral particles, and 
release them to infect new host cells. Some viruses can inte
grate their genomes into host chromosomes, become dormant 
if necessary, and replicate under certain circumstances [26]. 

Figure 4 Continued 

A. Analysis of A549 cells infected with H1N1. Left: density plots of the detected viral reads across cell numbers from mock-infected, bystander, and 
infected cells. Right: enrichment of viral reads projected on the 2D map from the corresponding sample. B. Analysis of A549 cells infected with H3N2. 
Left: density plots of the detected viral reads across cell numbers from mock-infected, bystander, and infected cells. Right: enrichment of viral reads 
projected on the 2D map from the corresponding sample. C. Analysis of B cells infected with EBV. Left: density plots of the detected viral reads across 
cell numbers from donor 1 infected with the EBV strain B95-8, donor 1 infected with the EBV strain M81, and donor 2 infected with the EBV strain B95-8. 
Right: enrichment of viral reads projected on the 2D map from the corresponding sample. D. Analysis of CD4þ T cells infected with HIV. Left: density 
plots of the detected viral reads across cell numbers from uninfected and infected cells. Right: enrichment of viral reads projected on the 2D map from 
the corresponding sample. EBV, Epstein–Barr virus; HIV, human immunodeficiency virus.

Figure 5 Performance evaluation of viral read discovery across different scRNA-seq platforms 
A. Analysis of HSV-1-infected NHDF cell lines from Drop-seq platforms. Left: density plots of the detected viral reads across cell numbers from 
uninfected, 1-h infected, 3-h infected, and 5-h infected cells. Right: enrichment of viral reads projected on the 2D map from the corresponding sample. B. 
Analysis of SARS-CoV-2-infected saline-treated nasal wash cells from Seq-Well platforms. Left: density plots of the viral reads detected across cell 
numbers from uninfected and infected samples. Middle: enrichment of viral reads projected on the 2D map from the corresponding sample. Right: 2D 
visualization of cells annotated by distinct clusters of cell phenotypes. C. Analysis of H1N1-infected saline-treated nasal wash cells from Seq-Well 
platforms. Left: density plots of the detected viral reads across cell numbers from uninfected and infected samples. Right: enrichment of viral reads 
projected on the 2D map from the corresponding sample. HSV-1, herpes simplex virus-1.
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Therefore, flexible methods are needed for the detection of 
SARS-CoV-2 RNA. In addition to entry receptors, interac
tions between viruses and host proteins occur constantly dur
ing virus intracellular life cycles, such as interactions with 
vesicular trafficking factors, which are needed for virus RNA 
synthesis, virus assembly, and viral mRNA translation [27]. 
These interactions are closely associated with the host im
mune response and pathological changes. However, it has 

been extremely challenging to analyze the virus status in host 
tissues, particularly in terms of the endogenous expression of 
host genes. Furthermore, because viral infection varies 
according to the cell population, it is unknown which cells 
are infected, how many virus species are present, and what 
conditions viruses and host cells are in. scRNA-seq technol
ogy is an effective method for elucidating viral pathogenicity 
and interactions between viruses and host cells. For example, 

Figure 6 Performance evaluation of viral read discovery based on bulk RNA-seq data 
Bar plots revealed the abundance of the detected viral reads across different samples based on the bulk transcriptomic data. A. Viral reads were 
determined in BALF and PBMC samples infected with SARS-CoV-2 and in healthy control samples. B. Vrial reads were detected in A549, A549-ACE2, 
NHBE, and Calu3 cells infected with SARS-CoV-2. C. Vrial reads were detected in A549 and NHBE cells infected with IAV. D. Vrial reads were detected in 
NHBE cells infected with IAVdNS1. E. Vrial reads were detected in A549 cells infected with HPIV3. F. Viral reads were detected in A549 cells infected 
with RSV. PBMC, peripheral blood mononuclear cell; NHBE, normal human bronchial lung epithelial cell; IAV, influenza A virus; IAVdNS1, IAV with a null 
interferon antagonist NS1 mutant; HPIV3, parainfluenza virus type 3; RSV, respiratory syncytial virus.
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specific cell subsets targeted by SARS-CoV-2 and the factors 
that regulate ACE2 expression were detected in host tissues 
by scRNA-seq [28]. Single-cell V(D)J sequencing also plays 
an important role in identifying SARS-CoV-2-neutralizing 
antibodies [29]. Moreover, some single-cell atlases are al
ready fairly complete for the exploration of host−virus 
interactions.

The lack of computation time evaluation based on different 
computational platforms and resources is a limitation of this 
work. The analyses in this study were all performed based on 
the same device with AMD processor 7742 and 1024 GB of 
RAM (DDR4), as well as the CentoS7 system. We believe 
that the analysis indicates that the runtime depends not only 
on the size of the dataset (the number of cells and the number 
of sequencing reads) but also on the computing environment. 
Therefore, in our future work, we will perform a systematic 
running time evaluation across different computing resources 
based on scRNA-seq datasets with various complexities. The 
lack of a polyA tail at the end of viral RNA molecules can sig
nificantly lower the capture rate of viruses via current 
scRNA-seq techniques, which may increase the difficulty of 
distinguishing between infected and bystander cells or accu
rately identifying infected cells via DVsc. As scRNA-seq tech
nology develops, researchers should take this limitation into 
account and strive to improve the representation and catego
rization of molecular traits that aid or hinder the detection of 
viruses. On the other hand, contamination is a plausible 
source, whether in scRNA-seq or bulk RNA-seq experiments. 
Although strict filtering conditions were set, false positives 
were still unavoidable. In our analysis, there were 49 virus- 
negative samples (including mock samples and uninfected 
samples), of which 4 samples were confirmed to contain the 
target virus at a false-positive rate of 8%. It is worth noting 
that the virus content in these false-positive samples was 
much lower than that in the true-positive samples of the 
same group.

According to our findings, bulk RNA-seq data from exter
nal sources are a reference for detecting viral infections. By 
comparing the expression profiles of single cells with bulk 
RNA-seq data, we were able to detect viral infection and as
sess the degree of viral involvement [30,31]. Furthermore, 
leveraging single-cell transcriptomics data from similar tis
sues as a reference holds significant promise, given the exten
sive efforts of cell atlas consortia in generating massive 
amounts of single-cell transcriptomics data [32,33]. This 
strategy has been successfully applied to challenging spatial 
transcriptomics analyses [34,35]. By utilizing single-cell data 
from similar tissues as a reference, we can gain insights into 
cell type-specific responses to viral infection and further en
hance our understanding of the impact of viral infection on 
specific cell types within tissues or organs. Moreover, future 
investigations should involve the analysis of spatial transcrip
tomics data.

We attempted to develop a technique for simultaneously 
monitoring multiple viral transcriptomes within a single cell. 
This technique was evaluated using data collected from vari
ous scRNA-seq platforms. These data included infections 
caused by different types of viruses, each with distinct RNA 
characteristics, and originated from a variety of tissues and 
cell types. We showed that DVsc could quickly provide cru
cial details on the infection status of clinical samples, identify 
infected cells, investigate virally induced transcriptional mod
ifications, and detect instances of coinfection. Our results 

demonstrate that DVsc is a robust and efficient computa
tional framework capable of detecting viral RNA in any 
scRNA-seq dataset without the need for experimental modifi
cations or prior knowledge of the infecting agent. With the 
use of this technique, we can uncover cells harboring acti
vated viruses and the composition of multiple viruses in a cell 
and determine how the expression differs in infected and 
uninfected cells. By serving as a trigger or moderator of ill
ness development, viruses contribute to the development of 
several diseases, and this study suggests viable treatment 
options by targeting viruses.
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